Go to the corresponding LIPIcs Volume Portal |
Li, Hao ; Yuan, Zhendong ; Dax, Gabriel ; Kong, Gefei ; Fan, Hongchao ; Zipf, Alexander ; Werner, Martin
pdf-format: |
|
@InProceedings{li_et_al:LIPIcs.GIScience.2023.7, author = {Li, Hao and Yuan, Zhendong and Dax, Gabriel and Kong, Gefei and Fan, Hongchao and Zipf, Alexander and Werner, Martin}, title = {{Semi-Supervised Learning from Street-View Images and OpenStreetMap for Automatic Building Height Estimation}}, booktitle = {12th International Conference on Geographic Information Science (GIScience 2023)}, pages = {7:1--7:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-288-4}, ISSN = {1868-8969}, year = {2023}, volume = {277}, editor = {Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/opus/volltexte/2023/18902}, URN = {urn:nbn:de:0030-drops-189028}, doi = {10.4230/LIPIcs.GIScience.2023.7}, annote = {Keywords: OpenStreetMap, Street-view Images, VGI, GeoAI, 3D city model, Facade parsing} }
Keywords: | OpenStreetMap, Street-view Images, VGI, GeoAI, 3D city model, Facade parsing | |
Collection: | 12th International Conference on Geographic Information Science (GIScience 2023) | |
Issue Date: | 2023 | |
Date of publication: | 07.09.2023 | |
Supplementary Material: | Software (Data and code supporting this paper): https://github.com/bobleegogogo/building_height archived at: https://archive.softwareheritage.org/swh:1:dir:1731a2bf38d083320ed151eefd51b4c6686c3f7c |