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Abstract
This work shows how the performance of sparse random embeddings depends on the Renyi entropy-
like property of data, improving upon recent works from NIPS’18 and NIPS’19.

While the prior works relied on involved combinatorics, the novel approach is simpler and
modular. As the building blocks, it develops the following probabilistic facts of general interest:
(a) a comparison inequality between the linear and quadratic chaos
(b) a comparison inequality between heterogenic and homogenic linear chaos
(c) a simpler proof of Latala’s strong result on estimating distributions of IID sums
(d) sharp bounds for binomial moments in all parameter regimes.
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1 Introduction

The celebrated result due to Johnson and Lindenstrauss [38] states that random linear
mappings are perfect embeddings: they nearly preserve distances of input data points,
while mapping them into a much lower dimension. This enables accomplishing otherwise
computationally demanding tasks, by running on the reduced yet representative data. Formally,
the lemma states that for any distortion ϵ > 0 and confidence parameter 0 < δ < 1, with
the embedding dimension m = Θ(log(1/δ)ϵ−2) and the m × n matrix A sampled from the
appropriately scaled normal or Rademacher distribution, for every vector x ∈ Rn

(1 − ϵ)∥x∥2 ⩽ ∥Ax∥2 ⩽ (1 + ϵ)∥x∥2 with probability 1 − δ. (1)

For modest but practically meaningful distortion and confidence parameters ϵ, δ and large
data dimensions n we obtain m ≪ n, that is a significant dimension reduction; on the
other hand nearly-preserving distances (up to a relative factor of ϵ) translates into nearly-
preserving scalar products and thus the internal data geometry, making it representative for
many tasks. Indeed, over the years variants of the Johsnon-Lindenstrauss Lemma have found
important applications to text mining and image processing [7], approximate nearest neighbor
search [35, 3], learning mixtures of Gaussians [22], sketching and streaming algorithms [43, 47],
approximation algorithms for clustering high dimensional data [6, 12, 54], speeding up linear
algebraic computations [57, 61, 16], analyzing combinatorial properties of graphs [28, 52]
and even to privacy [9, 42]; on the pure theory side, it is worth mentioning the importance
for understanding Hilbert spaces in functional analysis [39].

Although the embedding dimension m is optimal [40, 37], the costly matrix-vector product
can be optimized by the use of sparse matrices. The long line of research [1, 21, 51, 3, 55, 41, 18]
have finally established the same guarantees for matrices A with only s = Θ(log(1/δ)ϵ−1)
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18:2 Sparse Random Projections

entries per column1. Optimal in the worst-case, these results were far away from the
performance empirically observed on real-world data, particularly the remarkable accuracy
of feature hashing [65] which uses only s = 1 (!). This leaded to the following intriguing
question:

Why extremely sparse random projections work better-than-expected?

A careful reader notices that so far we have been speaking of data-oblivious results, that is
under no assumption on the data structure. Indeed, the relevant research in [65, 21, 41, 30, 36]
has finally established [30, 36] that the certain metric which captures data dispersion, more
precisely the ratio v = ∥x∥∞/∥x∥2, allows for setting the matrix sparsity to2

s = Θ(v2ϵ−1) · max
{

log 1
δ

,
log2 1

δ

log2 1
ϵ

}
(2)

while keeping the optimal dimension m = Θ(log(1/δ)ϵ−2). This offers an additional improve-
ment by a factor of 1/v2. In simple terms: the more data is dispersed, the better matrix
sparsity works. This breakthrough result still suffers from the following limitations:
1. Unsatisfactory definition of data dispersion. The ratio ℓ∞-to-ℓ2 is a crude notion: on the

unit sphere ∥x∥2 = 1 it depends on the heaviest element and so is not smooth enough.
It suffers particularly from “spikes” that are naturally present in real-world data (such
as features produced in text-mining [4]) and due to pairwise vector differences studied
in multi-vector setup (uniform guarantees for multiple vectors are obtained by looking
at pairwise differences x − x′, which leads to “spikes” for example in images [48]). This
motivates further research for a more accurate notion of dispersion.

2. High proof complexity and lack of modern toolkit. Proofs in prior works [30, 36] suffer
from being lengthy and convoluted, mostly in supplementary materials, which results
in numerical mistakes as well as gaps not immediately fixable (see Appendix A). These
works did admirable efforts on presenting the self-contained proof, yet did not utilize the
modern probability toolkit to the full extent. Their strategy is to see Equation (1) as
the concentration of the quadratic form x → ∥Ax∥2

2, and quantify its tails by controlling
high-order moments estimated via multinomial expansions coupled with combinatorial
arguments. However, this does not leverage tools to control quadratic random forms,
namely the modern techniques of the Hanson-Wright inequality [31, 60, 67] such as
decoupling of quadratic forms [63, 24]. Furthermore, it re-develops a variant of the sharp
result from [49] on moment estimation and certain known facts from high-dimensional
probability on sub-gaussian distributions [11, 10]. Finally, while [36] develops its technical
lemmas for symmetric random variables, this condition is not satisfied which leaves a
gap. Thus, further effort in revisiting and modernizing the toolkit used in recent state-
of-art works [30, 36] is well-motivated. Indeed, simplifying proofs and developing novel
techniques for the JL Lemma is an independent and valued line of research [28, 29, 23, 19],
as these have been historically difficult (the original result used sophisticated geometric
approximations, while the sparse variant [21] relied on correlation inequalities [27]).

1 As shown by [18] one can reduce further sparsity s by B > 1 at the cost of exponentially increasing the
dimension m by a factor of 2Θ(B). However, in practice, sub-optimal dimension is less interesting.

2 The formula arises from rearranging Theorem 1.5 in [36]
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2 Our Contribution

This work offers a solution to the two problems discussed above: we strengthen and to a
great extent simplify the state-of-art results from prior works.

2.1 Performance of Sparse Random Projections
We introduce the following (novel) notion of the data dispersion:

vd(x) ≜ sup
|I|<d/2

(∑
i ̸∈I |x|di∑
i ̸∈I x2

i

) 1
d−2

/∥x∥2, d > 2. (3)

where I are taken as strict subsets of the support of x.
The matrix A is sampled from the sparisfied Rademacher distribution, as in prior works:

Algorithm 1 Sparse Random Projections: Matrix Sampler.

Data: data dimension n, embedding dimension m, matrix sparsity s

Result: A ∈ Rn×m

for every column i, select s positions at random (without replacement)
set randomly ±1 on the selected positions
scale the matrix by 1/

√
s

For the matrix as in Algorithm 1 above, we prove the following result.

▶ Theorem 1. Let d = log(1/δ), then the JL Lemma, that is (1), holds for the dimension

m = Θ(dϵ−2) (4)

and any sparsity s such that

vd(x) ⩽ Θ(sϵ)1/2 min(log(mϵ/d)/d, 1/d1/2). (5)

We now discuss the result in detail in the series of remarks below.
▶ Remark 2 (Intuition). We give the following rationale for one could conjecture a result like
the one above: the analysis of sparse random projections establishes that the performance
depends on the d-th moment of the error expression, where d = log(1/δ) is relatively small;
it seems reasonable to expect that the assumptions on the data should not include moments
higher than of order d, particularly bounding ∥x∥∞ seems to be an overshooting.
▶ Remark 3 (Comparison with previous bounds). Since vd(x) ⩽ ∥x∥∞/∥x∥2, we obtain the
previous state-of-art bounds from [36], by rearranging Equation (5) to Equation (2). This
approximation is however rather crude, as it merely replaces the d-th norm ∥·∥d by ∥·∥∞, and
our bound can do much better. Consider the more explicit example where x2

i = (n/d)−1/d

for d values of i and x2
i = 1 − (n/d)−1/d/(n − d) otherwise. We then have vd(x) = Θ(n− 2

d−2 )
while ∥x∥∞/∥x∥2 = Θ(n− 1

d )). Since the best possible sparsity s is roughly proportional to
vd(x)−2, our gain over the previous approach is by a factor of n

4
d−2 − 2

d which is huge for
moderate values of d and large n (that is, in a typical application regime).

▶ Remark 4 (Relation to Renyi Entropy). Let’s introduce the probability measure wi ∼ x2
i ,

then (
∑

i |xi|d/
∑

i x2
i )

1
d−2 /∥x∥2 = (

∑
i w

d
2
i )

1
d−2 = 2Hd/2((wi))/2 where the Renyi entropy [58]

of the distribution w is defined as Hd(w) ≜ 1
1−d

∑
i wd

i and H∞(w) ≜ − log maxi wi when

ISAAC 2022



18:4 Sparse Random Projections

d = ∞. Under the mild assumption that x such that
∑

i ̸∈I x2
i = Θ(∥x∥2

2) for all |I| ⩽ d we
can thus compare the sparsity achieved in Theorem 1 and the result in [36] as low-order
Renyi entropy versus min-entropy. More precisely, our bound on s is better by a factor
of 2Hd/2((wi))−H∞((wi)), that is the gain is exponential in entropy deficiency understood as
Hd/2((wi)) − H∞((wi)). The well-known bounds from information-theory [14] show that this
gap can be as big as 1

d/2−1 Hd/2((wi)) (which is unbounded without some restrictions on x).

▶ Remark 5 (Dimension-Sparsity Tradeoffs). It is possible to improve the sparsity parameter s

by a factor of B at the expense of making the dimension worse by a factor of eΘ(B), exactly as
in [36]. However, this tradeoff does not seem to be interesting from the application-oriented
point of view (the whole idea of random projections is to keep the low dimension).

2.2 Techniques of Independent Interest

2.2.1 From Quadratic to Linear Chaos

One important novelty in our approach is that we get rid of analyzing quadratic forms, which
appear due to considering the expression ∥Ax∥2

2, by an elegant reduction to their linear
analogues. Although quadratic chaoses of symmetric random variables have been studied
in the past [49, 46], the generic bounds were found intractable to analyze by the authors of
prior works [30, 36] and other workarounds have been proposed. It has been not clear if one
can get rid of these complicated methods. Indeed, we show that we can:

▶ Lemma 6. Let Xi be independent zero-mean random variables, with possibly different
distributions. Then for even d ⩾ 2 we have

∥
∑
i ̸=j

XiXj∥d ⩽ 32∥
∑

i

Xi∥2
d.

▶ Remark 7. The result is fairly general, not requiring symmetry or identical distributions.
In fact, the constant reduces to 4 if Xi are already symmetric.

This bound allows for reducing a bulk of technical calculations, and almost directly applying
existing tractable bounds for linear forms such as those in [50]. The proof uses decoupling [63]
which allows for upper-bounding the moments of the quadratic form

∑
i ̸=j XiXj by the

moments of bilinear form
∑

i ̸=j XiX
′
j , and symmetrization [64] which allows for replacing Xi

by their symmetrized versions Xi − X ′
i at the expense of a constant factor.

2.2.1.1 Heterogenic Sparse Rademacher Chaos

Although we reduce the problem to studying linear forms, they are not IID sums. More
precisely in our case we will be interested in sums of form

∑
i xiXi where Xi are symmetric

and IID, but the given weights xi can be very different. Such sums are notoriously difficult
to analyze, the best example being probably the classical Khintchine’s inequality which seeks
to bound ∥

∑
i xiσi∥d where σi are Rademachers, for a given sequence of weights (xi); it took

a while until the original bounds [44] have been tightened, in a way that explicitly depend
on x [33]. While prior works [30, 36] handle this difficulty in our context implicitly (in
combinatorial analyses of multinomial expansions), we use majorization theory to essentially
compare the heterogenic and homogenic (easier) setup. We prove
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▶ Lemma 8. Let ∥x∥2 = 1 and Xi ∼IID ηiσi where ηi are IID Bernoulli and σi are IID
Rademacher r.vs. Then for v = vd(x) where vd(x) is as in Equation (3), and even d > 0

∥
∑

i

xiXi∥d ⩽ O(∥K−1/2
K∑

i=1
Xi∥d), K = ⌈v−2⌉.

The result depends on the structure of x captured by v = vd(x), note that the equality holds
when xi = v for all non-zero weights xi (note that we normalize ∥x∥2 = 1 w.l.o.g.); this is
the core of our method, and we can see it as a sparse analogue of Khintchine’s Inequality
(Bernoulli variables restrict the summation to a random subset). The result should be
considered strong and somewhat surprising; per analogy to the case when there are no
Bernoulli variables, results from majorization theory seem to suggest that the moment should
be rather minimized for xi that are nearly uniform3 . The answer is in the condition vd(x)
which is, to a certain degree, a relaxation of the requirement that xi is flat and in the constant
under O(1). What we prove is not that (xi) with K elements gives the maximum, but that
the value differs from the actual maximum by at most a constant factor. In our proof, we
use the assumption in Equation (3) and majorization [17] to compare the behavior of sums
Sk =

∑
i1 ̸=...ik

x2
i1

· · · x2
ik

when xi is uniform over K elements versus over the whole space.
Under the normalizing condition ∥x∥2 = 1, they can be interpreted as birthday collision
probabilities, which makes the comparison easy to evaluate.

2.2.1.2 Moments of IID Sums

We will need a result which provides tight bounds on moments of iid sums. Although this
problem has been solved by a characterization due to Latala [50], the result seems to be
little known within the TCS community; instead classical bounds due to Hoeffding [34],
Chernoff [15], Bernstein [5] or more modern bounds stated sub-gaussian or sub-gamma
distributions [11] are used. Since the analysis of sparse random projections involves random
variable with little exotic behavior, the classical inequalities are not sufficient.

In hope for popularizing the technique and to make the paper self-consistent, we provide
an alternative and simpler proof of Latala’s result [50].

▶ Lemma 9. For zero-mean r.vs. Xi ∼IID X and even d > 0

∥
n∑

i=1
Xi∥d ⩽ 2e · max

k

[(
d

k

)1/k

(exp(d/n) − 1)−1/k∥X∥k : max(2, d/n) ⩽ k ⩽ d

]
(6)

which implies the following simpler bound

∥
n∑

i=1
Xi∥d ⩽

2e2

(1 − e−1)1/2 · max
k

[
d/k · (n/d)1/k · ∥X∥k : max(2, d/n) ⩽ k ⩽ d

]
. (7)

▶ Remark 10. In addition to simplifying the proof, we provide an explicit constant (not given
in the original proof). For non-symmetric distributions, our numerical constant is better
than the one implied by symmetrizing the original proof. We also note that there is the
same matching, up to a constant, lower bound [49], so that in the result above we have the
equality up to a constant.

3 The map (xi) → ∥
∑

i
xiσi∥d

d is Schur-concave in variables x2
i [26].

ISAAC 2022



18:6 Sparse Random Projections

2.2.1.3 Sharp Bounds for Binomial Moments

Having reduced the problem to studying moments of
∑

i ηiσi, we face the problem of
estimating binomial moments. Somewhat surprisingly, the literature does not offer good
bounds for binomial moments. What we know are combinatorial formulas [45] not in a
closed asymptotic form, and nearly perfect estimates (up to o(1) relative error) for binomial
probabilities [62] as well as the tails [20, 53, 56] (see also the survey in [2]); these tails
unfortunately lead to intractable integrals expressing moments (with Kullback-Leibler terms).

Since the question is foundational with clear potential for applications beyond our problem,
we give the following general and detailed answer

▶ Lemma 11. Let S ∼ Binom(K, p) where p ⩽ 1
2 , and d > 0 be even. Then

∥S − ES∥d = Θ(1)


(dKp)1/2 log(d/Kp) < d/K ⩽ 2
KpK/d log(d/Kp) < 2 ⩽ d/K

d
log(d/Kp) max(2, d/K) ⩽ log(d/Kp) ⩽ d

(Kp)1/d d < log(d/Kp)

. (8)

▶ Remark 12. The bound has up to 4 regimes, in which we provide an estimate sharp up
to a constant. The upper bound (sufficient for our needs) follows from Lemma 9, while the
lower bound holds because the bound in Lemma 9 is sharp up to an absolute constant [49].

2.3 Proof Outline
We actually prove that

(1 − ϵ)∥x∥2
2 ⩽ ∥Ax∥2

2 ⩽ (1 + ϵ)∥x∥2
2 with probability 1 − δ (9)

from which Equation (1) follows by taking the square roots and using the elementary
inequalities

√
1 + ϵ ⩽ 1 + ϵ, 1 − ϵ ⩽

√
1 − ϵ. Denoting Z = ∥Ax∥2

2 − ∥x∥2
2 we find [36])

Z = 1
s

m∑
r=1

Zr, Zr ≜
∑
i ̸=j

xixjηiηjσiσj . (10)

It can be shown that Zr are negatively dependent and thus their sum obey moment upper-
bounds for independent random variables [25, 8]. More precisely we have that

∥Z∥d ⩽
1
s

∥
m∑

r=1
Zr∥d, Zr ∼IID

∑
i ̸=j

xixjηiηjσiσj . (11)

The techniques outlined above, namely Lemma 6 and Lemma 8 show that for K = ⌈vd(x)−2⌉

∥Zr∥d ⩽ O(K−1∥S − S′∥2
d), S, S′ ∼IID Binom(K, p). (12)

Since ∥S − S′∥d ⩽ 2∥S − ES∥d (the triangle inequality), by Lemma 11 we obtain

▶ Corollary 13. For any even d > 0 we have

∥Zr∥d ⩽ O(1)


dp log(d/Kp) < d/K ⩽ 2
Kp2K/d log(d/Kp) < 2 ⩽ d/K

K−1d2

log2(d/Kp) max(2, d/K) ⩽ log(d/Kp) ⩽ d

K−1(Kp)2/d d < log(d/Kp)

. (13)
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It now suffices to plug this bound in Lemma 8 (it applies for negatively dependent r.vs.) and
analyze the 4 different regimes, to obtain moment bounds for Z from Equation (10); then
Theorem 1 follows by Markov’s inequality. The work has been mostly finalized at this point,
due to our modular approach; the application of Lemma 8 is discussed in the appendix.

▶ Remark 14. At the final stage [36] also obtains analogous bounds (with K defined in terms
of v = ∥x∥∞/∥x∥2). They are however not derived via a single application of a lemma, but
rather a mixture of three techniques (direct bounds on quadratic forms, linear forms, and
the reproved result on the sub-gaussian norm of a binary random variable [13]).

2.4 Organization

The rest of the paper is organized as follows: in Section 3 we introduce basic notation and
some simple auxiliary facts that will be used throughout the discussion, in Section 4 we
present proofs of the key ingredients of our proof. Details omitted in the proof outline are
provided in Appendix B. In Section 5 we conclude the work.

3 Preliminaries

3.1 Basic Notation

For a random variable X, we define its d-th moment as E|X|d and its d-th norm as ∥X∥d =
(E|X|d)1/d (this is indeed a norm when d ⩾ 1). For the sequence (xi) we define ∥(xi)∥d =
(
∑

i |xi|d)1/d for 0 < d < 1, ∥x∥∞ = maxi |xi| and ∥xi∥0 = #{i : xi ̸= 0}.
By Bern(p) we denote the Bernoulli distribution, that is 1 with probability p and zero

otherwise. By Binom(K, p) we denote the binomial distribution with parameters K and p

(equal in the distribution to the sum of K independent copies of Bern(p).

3.2 Auxiliary Functions

We need the elementary properties of the two functions that often appear in our analysis:

▶ Proposition 15. The function g(d) = 1/q · a1/q for q > 0 is decreasing when a ⩾ 1 and for
a < 1 it achieves its local maximum at q = log(1/a) with the value g(q) = 1/e log(1/a).

▶ Proposition 16. The function g(q) = q · a1/q for q > 0 is increasing when a ⩽ 1 and for
a > 1 achieves its local minimum at q = log a with the value g(q) = e log a.

3.3 Probabilistic Techniques

The following fact will allow us to handle non-symmetric distribitions.

▶ Proposition 17 (Symmetrization trick [64]). For any norm ∥ · ∥ we have

1
2∥
∑

i

Xiσi∥ ⩽ ∥
∑

i

Xiσi∥ ⩽ 2∥
∑

i

Xiσi∥,

for any zero-mean independent Xi and independent Rademacher random variables σi.

We will also need the decoupling inequality, useful in attacking quadratic forms

ISAAC 2022
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▶ Proposition 18 (Decoupling inequality [63]). Let Xi be zero-mean independent r.vs. and
X ′

i be their independent copies. Then for any weights ai,j

Ef(
∑
i ̸=j

ai,jXiXj) ⩽ Ef(4
∑
i ̸=j

ai,jXiX
′
j),

for any convex function f .

▶ Remark 19. The summation is over i ̸= j, e.g. the quadratic form must be off-diagonal!

4 Proofs

4.1 Quadratic vs Linear Chaos
Proof of Lemma 6. Let X ′

i be independent copies of Xi. The decoupling inequality gives

∥
∑
i ̸=j

XiXj∥d ⩽ 4∥
∑
i̸=j

XiX
′
j∥d. (14)

We apply the symmetrization trick to the d-th norm twice: first for random variables Xi with
any fixed choice of X ′

j which gives ∥
∑

i ̸=j XiX
′
j∥d ⩽ 2∥

∑
i ̸=j XiσiX

′
j∥d (here we use the

independence of Xi and X ′
j) and second for random variables X ′

j under the fixed values of
Xiσi) which gives ∥

∑
i̸=j XiX

′
j∥d ⩽ 4∥

∑
i̸=j XiσiX

′
jσ′

j∥d (σ′
j is an independent Rademacher

sequence). For simplicity, we denote Xi := Xiσi and Xj := Xjσ′
j , note that the introduced

random variables Xiσi and Xjσj are also identically distributed.
Consider the sum

∑
i,j XiX

′
j =

∑
i(
∑

j ̸=i X ′
j)Xi as linear in Xi with coefficients depending

on X ′
j , and apply the multinomial theorem which gives

E[(
∑
i ̸=j

XiX
′
j)d|(X ′

j)] =
∑
(di)

(
d

2d1 . . . 2dn

)∏
i

(
∑
j ̸=i

X ′
j)2diEX2di

i .

where we use the symmetry of Xi, so that all odd moments vanish. Again by the multinomial
theorem we see that

E(
∑
j ̸=i

X ′
j)d ⩽ E(

∑
j

X ′
j)d.

Combining the last two bounds gives

E(
∑
i ̸=j

XiX
′
j)d ⩽ E(X′

j
)[E[(

∑
i ̸=j

XiX
′
j)d|(X ′

j)]]

⩽
∑
(di)

(
d

2d1 . . . 2dn

)
E[
∏

i

(
∑

j

X ′
j)2diX2di

i ]

⩽ E(
∑

i

(
∑

j

X ′
j)Xi)d

= E(
∑

i

Xi)d(
∑

j

X ′
j)d = E(

∑
i

Xi)2d,

which can be stated as

∥
∑
i ̸=j

XiX
′
j∥d ⩽ ∥

∑
i

Xi∥2
d. (15)
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By combining Equation (14) and Equation (15), and keeping in mind that Xi above are
symmetrized versions, we obtain for original (only centered) random variables Xi

E∥
∑
j ̸=i

XiXj∥d ⩽ 16E∥
∑
j ̸=i

Xiσi∥d,

and the result follows by one more application of the symmetrization trick. ◀

4.2 Heterogenic vs Homogenic Chaos

Proof of Lemma 8. By the multinomial expansion and the symmetry of Zi (which implies
that the odd moments vanish) we obtain

E(
∑

i

xiXi)d =
∑
(di)

(
d

2d1 . . . 2dn

)
p∥(di)∥0

∏
i

x2di
i ,

where the summation is over non-negative sequences (di) for i = 1, . . . , n such that
∑

i di =
d/2, and we denote ∥(di)∥0 = #{i : di > 0}. Considering possible values of k = ∥(di)∥0, we
find that the above expression is a non-negative combination of

S
[d]
k (x) =

∑
i1 ̸=... ̸=ik

x2d1
i1

. . . x2dk
ik

where possible values of k are 1 ⩽ k ⩽ min(d/2, n0) where n0 = ∥(xi)∥0. We now apply our
assumption on x iteratively to xik

, xik−1 . . ., obtaining

S
[d]
k (x) ⩽ v

2
∑

i:di>1
(di−1) ∑

i1 ̸=...̸=ik

x2
i1

. . . x2
ik

.

Here we have used the fact that vd(x) is increasing in d, so vk(x) ⩽ v when k ⩽ d; this
follows from seeing vd(x) as the power mean of order d − 2 and weights x2

i /
∑

i̸∈I x2
i [32, 66].

We make the following important observation: the equality holds whenever xi is flat
with the value v, e.g. all non-zero entries are equal to v. Observe that the sums Sk(x) =∑

i1 ̸=...̸=ik
x2

i1
. . . x2

ik
are elementary symmetric polynomials in variables yi = x2

i where∑
i yi =

∑
i x2

i = 1, hence over the probability simplex. The elementary symmetric functions
are Schur-concave [17], and thus they are maximized at the uniform distribution, in our
case when xi = n−1/2. In fact, Sk(x) is the probability that k independent samples from
the distribution pi = x2

i do not collide. For any sequence (x2
i ) which has N non-zero equal

entries and
∑

i x2
i = 1 we have that:

Sk(x) = N · (N − 1) · · · (N − k + 1)/Nk.

Since N ⩾ k and since k ⩽ d, using Stirling’s approximation [59] we obtain

Sk(x) =
k−1∏
i=0

(1 − i/N) ⩾ k!/kk = Θ(1)k ⩾ Θ(1)d.

Clearly Sk(x) ⩽ 1 for any x. If we replace (xi) by a sequence such that xi = v for K = v−2

values of i (e.g., flat), we lose at most a factor of Θ(1)k ⩽ Θ(1)d in every term S
[d]
k (x). ◀
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4.3 Moments of IID Sums
Proof of Lemma 9. We have the following chain of estimates

E(
∑

i

Xi)d =
∑

di:d1+...+dn=d,di⩾2

(
d

d1 . . . dn

)∏
i

EXdi
i

⩽
∑

di:d1+...+dn=d,di⩾2

∏
i

(
d

di

)
E|Xi|di

⩽
∑
di⩾2

∏
i

(
d

di

)
E|Xi|di

⩽

(
d∑

k=2

(
d

k

)
∥X∥k

k

)n

.

Applying this for Xi := Xi/t we have for any t > 0

E(t−1
∑

i

Xi)d ⩽

(
d∑

k=2

(
d

k

)
∥X∥k

k/tk

)n

.

Thus ∥
∑

i Xi∥d ⩽ et for any t such that the right-hand side is at most e, equivalently
d∑

k=2

(
d

k

)
∥X∥k

k/tk ⩽ exp(d/n) − 1,

which is satisfied for

t = 2 max
k=2...d

(
d

k

)1/k

(exp(d/n) − 1)−1/k∥X∥k.

This proves the first part. Observe that for k ⩾ 2 we have(
d

k

)1/k

(exp(d/n) − 1)−1/k ⩽
ed

k exp(d/kn) · 1
(1 − exp(−1))1/2 ,

where we use the elementary inequalities
(

d
k

)
⩽ (de/k)k and exp(u) − 1 ⩾ exp(u) · (1 − e−1)

for u ⩾ 1. The function u → u/ exp(u) decreases for u ⩾ 1; applying this to u = d/kn gives(
d

k

)1/k

(exp(d/n) − 1)−1/k ⩽
en

(1 − e−1)1/2 , k ⩽ d/n.

Since ∥X∥k increases in k we have

max
k=2...d,k⩽d/n

(
d

k

)1/k

(exp(d/n) − 1)−1/k∥X∥k ⩽
en∥X∥d/n

(1 − e−1)1/2 .

We have (exp(d/n) − 1)−1/k ⩽ (d/n)−1/k due to the elementary inequality exp(u) − 1 ⩾ u,
and

(
d
k

)
⩽ (de/k)k for any k. This gives

max
k=2...d

(
d

k

)1/k

(exp(d/n) − 1)−1/k∥X∥k ⩽ e max
k=2...d

d/k · (n/d)1/k · ∥X∥k

When d/n ⩾ 2 we have that d/k · (n/d)1/k · ∥X∥k = n∥X∥d/n · 2−1/2 for k = d/n. Comparing
the last two equations, we obtain

max
k=2...d,k⩽d/n

(
d

k

)1/k

(exp(d/n) − 1)−1/k∥X∥k ⩽ C max
k=2...d,k>d/n

d/k · (n/d)1/k · ∥X∥k,

with C = e
(1−e−1)1/2 . This completes the proof. ◀
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4.4 Binomial Moments
Proof of Lemma 11. Applying Lemma 9 we obtain

∥S − ES∥d ⩽ O(1) · max
{

(d/k) · (Kp/d)1/k : max(2, d/K) ⩽ k ⩽ d
}

.

because S ∼
∑

i Xi where Xi ∼ Bern(p) and ∥Xi − EXi∥d = (p(1 − p)d−1 + (1 − p)pd−1)1/d

so that ∥Xi − EXi∥d = Θ(p)1/d for p ⩽ 1/2.
The expression under the maximum is proportional to k−1 · a1/k where a = Kp/d. The

claim follows by applying Proposition 15, namely a) when max(2, d/K) ⩽ log(1/a) ⩽ d (that
is, inside the interval) we have necessarily a ⩽ e−2 < 1 our maximum is at k = log(1/a)
b) when log(1/a) > d we must have a < 1 and our maximum is at k = d and c) when
log(1/a) < max(2, d/K) then the maximum is at k = max(2, d/K). ◀

5 Conclusion

We have proven novel bounds for sparse random projections, showing that the performance
depends on the data statistic closed to Renyi entropy. Some intriguing problems we leave for
future work are

How do results extend to non-Rademacher matrices?
Can we use majorization theory to fully characterize worst case for the linear chaos?
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A Some remarks on prior works

A.1 Some issues with numeric constants
Lemma 2.1 in [36] gives the following bound (expressed in our notation)

∥Zr∥d ≲


dp d = 2 or d ⩽ pe/v2

min
(

d2v2

log(dv2/p) , d
log(1/p)

)
1 ⩽ log(dv2/p) ⩽ d

v2(p/dv2)2/d d < log(dv2/p)

There is a minor mistake in splitting the branches: they emerge from taking the derivative
test of the function d2v2u−2(p/dv2)1/u where 1 ⩽ u ⩽ d/2 (Lemma D.1). Here the local
maxima occurs at u = log(dv2/p)/2 and when comparing this with edges u = 1 and u = d/2
we obtain the conditions 2 ⩽ log(dv2/p) and log(dv2/p) ⩽ d. Thus, the splitting conditions
should be a bit different; this particular issue doesn’t affect the bounds expressed in the
asymptotic notation; we report it with intent to motivate our effort in giving a simple and
clear proof.

A.2 Gaps in symmetrization
Section 2.2 of [36], when explaining the proof strategy, proposes to apply the bounds on Zr

defined in Equation (10) assuming they are symmetric. But Zr are not symmetric (it is easy
to see they have positive higher-order moments), thus extra work is needed to push this
argument forward.

https://arxiv.org/abs/1510.05517
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B Concluding Main Theorem

Without loosing generality, we assume that d = log(1/δ) is even. Recall that we denote
v = vd(x), also without loosing generality we assume that v−2 is an integer. For K = v−2

define the following quantities

I1 ≜ max
q

{
d/q · (m/d)1/q · qp : log(q/Kp) ⩽ q/K ⩽ 2, 2 ⩽ q ⩽ d

}
I2 ≜ max

q

{
d/q · (m/d)1/q · K(Kp2K/q)2 : log(q/Kp) ⩽ 2 ⩽ q/K, 2 ⩽ q ⩽ d

}
I3 ≜ max

q

{
d/q · (m/d)1/q · K−1q2/ log2(q/Kp) : max(2, q/K) ⩽ log(q/Kp) ⩽ q, 2 ⩽ q ⩽ d

}
I4 ≜ max

q

{
d/q · (m/d)1/q · K−1(Kp)2/q : q ⩽ log(q/Kp), 2 ⩽ q ⩽ d

}
.

Following the proof outline we arrive at Corollary 13. Taking into account Lemma 11 and
Lemma 9, implies that:

∥
m∑

r=1
Zr∥d ⩽ O(max(I1, I2, I3, I4)).

The goal is to prove that for t = sϵ we have

∥
m∑

r=1
Zr∥d ⩽ t/e, (16)

and then the result follows from Markov’s inequality. We give first bounds for I1, I2, I4 as
they are fairly easy to obtain. The case of I3 is analyzed as the last one.

B.1 First Branch
We will show the following bound

▶ Lemma 20. We have

I1 ⩽ O(dmp2)1/2.

Proof of Lemma 20. We have

I1 = max
q

{
pd(m/d)1/q : log(q/Kp) ⩽ q/K ⩽ 2, 2 ⩽ q ⩽ d

}
⩽ (dmp2)1/2

where the inequality follows because m ⩾ d and 1/q ⩽ 1
2 (for q satisfying the constraints).

This completes the proof. ◀

B.2 Second Branch
We will show the following bound

▶ Lemma 21. For p ⩽ 2e−2 we have

I2 ⩽ (dmp2)1/2.
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Proof of Lemma 20. For q satisfying the constraint we have K/q ⩾ e−2/p which, due to
p ⩽ 2e−2, implies K/q ⩾ 1/2. Then p2K/q ⩽ p (recall that p < 1!) and thus

I2 ⩽ max
q

{
d/q · (m/d)1/q · Kp : log(q/Kp) ⩽ 2 ⩽ q/K, 2 ⩽ q ⩽ d

}
.

For q within the constraints we have K/q ⩽ 1
2 and therefore

I2 ⩽
p

2 max
q

{
d · (m/d)1/q : log(q/Kp) ⩽ 2 ⩽ q/K, 2 ⩽ q ⩽ d

}
.

Since m/d ⩾ 1 the expression under the maximum decreases with q, thus is not bigger than
the value at q = 2. Thus, I2 ⩽ p(dm)1/2/2 and the result follows. ◀

B.3 Fourth Branch
We will prove the following bound

▶ Lemma 22. We have

I4 ⩽

{
(dmp2)1/2 log(dv4/mp2) ⩽ 2
dv2/ log(dv4/mp2) log(dv4/mp2) > 2

.

Proof of Lemma 22. We have

I4 = max
q

{
K−1 · d/q · (K2p2m/d)1/q : q ⩽ log(q/Kp), 2 ⩽ q ⩽ d

}
.

Let a = K2p2m/d, the expression under the maximum is proportional to 1/q · a1/q. We now
apply Proposition 15: for a ⩾ 1 the maximum is not bigger than the value at q = 2, so

I4 ⩽ (dmp2)1/2.

We now can assume a < 1, equivalent to K2p2m < d. The global maximum is at q = log(1/a),
thus our maximum is still at q = 2 when log(1/a) ⩽ 2 and otherwise is not bigger than the
value at q = log(1/a). We then obtain

I4 ⩽ K−1d/ log(d/mp2K2) ⩽ K−1d = dv2.

This complete the proof. ◀

B.4 Third Branch
We will show the following bound

▶ Lemma 23. Suppose that v2 ⩾ sϵ/d2, then

I3 ⩽ O(dmp2)1/2 + O(dv/ log(dv2/p))2

Proof of Lemma 23. The proof is based on splitting the maximum into three regimes:
q ∈ [2, 3],3 ⩽ q ⩽ log(m/d) and log(m/d) ⩽ q ⩽ d. Define

I0 = max
q

{
d/q · (m/d)1/q · v2q2/ log2(qv2/p) : 2 ⩽ log(qv2/p) ⩽ q ⩽ d, 2 ⩽ q ⩽ 3

}
I− = max

q

{
d/q · (m/d)1/q · v2q2/ log2(qv2/p) : 2 ⩽ log(qv2/p) ⩽ q ⩽ d, 3 ⩽ q ⩽ log(m/d)

}
I+ = max

q

{
d/q · (m/d)1/q · v2q2/ log2(qv2/p) : 2 ⩽ log(qv2/p) ⩽ q ⩽ d, log(m/d) ⩽ q ⩽ d

}
.
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so that we have I3 ⩽ max(I0, I+, I−) (for convenience, we replace the constraint
max(2, qv2) ⩽ log(qv2/p) in I3 by the weaker one 2 ⩽ log(qv2/p)). By the assumptions we
have v2/p ⩾ mϵ/d2. Since m ⩾ dϵ−2 we have ϵ ⩾ (d/m)1/2, and thus

v2/p ⩾ (m/d)1/2 · d−1.

▷ Claim 24. We have I− ⩽ O(d2v2/ log2(dv2/p) when log d ⩽ 5 log(m/d)
12 .

Proof of Claim. For any q satisfying the restrictions it holds that

q ⩾ log(v2/p)

⩾
log(m/d)

2 − log d

⩾
log(m/d)

12 .

We then have (m/d)1/q ⩽ O(1) and thus

I− ⩽ max
q

{
d · qv2/ log2(qv2/p) : 2 ⩽ log(qv2/p) ⩽ q ⩽ d, 3 ⩽ q ⩽ log(m/d)

}
.

Considering the auxiliary function u → u/ log2 u with u = qv2/p ⩾ e2, we see that it decreases
in u and hence in q for fixed v2 and p. The expression is thus not smaller than its value at
q = d, which gives

I− ⩽ d2v2/ log2(dv2/p),

and completes the proof. ◁

▷ Claim 25. We have I− ⩽ d2v2/ log2(dv2/p) when log d > 5 log(m/d)
12 .

Proof of Claim. We have that dv2/p ⩾ mϵ/d ⩾ (m/d)1/2 and therefore

I− ⩽ dv2d(m/d)1/3 log(m/d)

⩽ dv2(m/d)5/12/ log2(m/d)

⩽ dv2(m/d)5/12/ log2(dv2/p)
⩽ O(d2v2/ log2(dv2/p)),

which completes the proof. ◁

▷ Claim 26. We have I+ ⩽ O(d2v2/ log2(dv2/p))

Proof of Claim. We have (m/d)1/q ⩽ e for q ⩾ log(m/d), thus

I+ ⩽ d · max
q

{qv2/ log2(qv2/p) : 2 ⩽ max(log(qv2/p), log(m/d)) ⩽ q ⩽ d}.

Considering the auxiliary function u → u/ log2 u with u = qv2/p ⩾ e2, we see that it decreases
in u and hence in q for fixed v2 and p. The expression is thus not smaller than its value at
q = d, which gives

I+ ⩽ O(d2v2/ log2(dv2/p))

and the claim follows. ◁
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▷ Claim 27. We have I0 ⩽ O((dmp2)1/2).

Proof of Claim. We have I0 ⩽ O(v2(md)1/2) because (m/d)1/q ⩽ (m/d)1/2 (due to m/d ⩾ 1
and q ⩾ 2). However, for q ∈ [2, 3] the constraint log(qv2/p) ⩽ q gives v2 ⩽ O(p). Thus

I0 ⩽ O(p(md)1/2),

which completes the proof. ◁

The result follows now by combining the above three claims. ◀

B.5 Merging Branch Bounds
To conclude the main result it suffices to satisfy

c · max(I1, I2, I3, I4) ⩽ sϵ (17)

for some absolute constant c. The condition in Equation (17) for I1, I2 is equivalent to
c · (dmp2)1/2 ⩽ sϵ, which holds when

m ⩾ Ω(dϵ−2). (18)

To satisfy Equation (17) for I4 we require, in addition to Equation (18), that cdv2 ⩽ sϵ,
equivalent to

v ⩽ O((sϵ)1/2/d1/2). (19)

Finally, in order to satisfy Equation (17) for I3 we observe that, under the restriction

v2 ⩾ sϵ/d2, (20)

the bound in Lemma 23 gives

I3 ⩽ O(dmp2)1/2 + O(dv/ log(mϵ/d))2,

which follows because log(dv2/p) ⩾ log(sϵ/dp) = log(mϵ/d). Thus, in addition to Equa-
tion (18) and Equation (20) it suffices that

v ⩽ O((sϵ)1/2 log(mϵ/d)/d). (21)

Now observe that for

v = Θ(sϵ)1/2 min(log(mϵ/d)/d, 1/d1/2) (22)

the condition in Equation (20) is automatically satisfied. Thus, the theorem holds for v as
above, and clearly for any smaller v.
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