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Abstract
We initiate the study of the Bounded-Degree Subset Traveling Salesman problem (BDSTSP)
in which we are given a graph G = (V, E) with edge cost ce ≥ 0 on each edge e, degree bounds
bv ≥ 0 on each vertex v ∈ V and a subset of terminals X ⊆ V . The goal is to find a minimum-cost
closed walk that spans all terminals and visits each vertex v ∈ V at most bv

2 times. In this paper,
we study bi-criteria approximations that find tours whose cost is within a constant-factor of the
optimum tour length while violating the bounds bv at each vertex by additive quantities.

If X = V , an adaptation of the Christofides-Serdyukov algorithm yields a (3/2, +4)-
approximation, that is the tour passes through each vertex at most bv/2 + 2 times (the degree of v

in the multiset of edges on the tour being at most bv + 4). This is enabled through known results in
bounded-degree Steiner trees and integrality of the bounded-degree Y -join polytope. The general
case X ̸= V is more challenging since we cannot pass to the metric completion on X. However, it is
at least simple to get a (5/3, +4)-bicriteria approximation by using ideas similar to Hoogeveen’s
TSP-Path algorithm.

Our main result is an improved approximation with marginally worse violations of the vertex
bounds: a (13/8, +6)-approximation. We obtain this primarily through adapting the bounded-degree
Steiner tree approximation to ensure certain “dangerous” nodes always have even degree in the
resulting tree which allows us to bound the cost of the resulting degree-bounded Y -join. We also
recover a (3/2, +8)-approximation for this general case.
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1 Introduction

Consider the problem of having a very disruptive vehicle travel about a road network to
serve some locations X. As with classic TSP, one could be interested in minimizing the total
distance of this tour. However, we may want to restrict the number of times the vehicle passes
through a location due to its disruptive nature. Or perhaps the driver does not wish to pass
through a location too many times, e.g. it is difficult to traverse. In this paper, we consider
approximations for this problem that induce only mild violations on these restrictions.

Without these traversal restrictions, the problem is equivalent to classic Traveling
Salesman Problem (TSP), e.g. by considering the metric completion of the underlying
graph and then restricting it to X. In an instance of TSP, we are given a graph G = (V, E)
with edge cost ce ≥ 0 on each edge e ∈ E. The goal is to find a shortest tour that visits all
the vertices at least once. The Chistofides-Serdyukov algorithm [2, 17] from 1976 gives a
simple 3

2 -approximation for TSP; this was only recently improved to ( 3
2 − δ)-approximation

for some constant δ > 0 by Karlin, Klein, and Oveis Gharan [6]. On the other hand, it is
NP-hard to approximate TSP within a constant factor smaller than 123

122 [7].
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8:2 Bi-Criteria Approximation Algorithms for Bounded-Degree Subset TSP

In reality, TSP problems are concerned with visiting a subset of nodes of some larger
graph. Thus, we consider the Bounded-Degree Subset Traveling Salesman problem
(BDSTSP) in which we are given an undirected graph G = (V, E) with edge costs ce ≥ 0, e ∈ E,
a subset of terminals X ⊆ V we are to visit (|X| ≥ 2), and even integer bounds bv ≥ 0 for
all nodes v ∈ V . The goal is to find a minimum-cost closed walk Q spanning all terminals
such that dQ(v) ≤ bv (i.e., the number of edges in the multiset Q incident to v is at most
bv). Note bv should be thought of as a degree bound, thus the tour should pass through v

at most bv/2 times. We call a special case of BDSTSP where X = V , Bounded-Degree
Traveling Salesman problem (BDTSP).

To the best of our knowledge (and to our surprise), BDTSP or BDSTSP have not
been studied before. However, finding special subgraphs whose vertices satisfy some degree
bounds has been an active research area in computer science and operations research, e.g.,
Bounded-Degree Spanning Trees [5, 18], Bounded-Degree Steiner Networks [9,
11, 12, 13], Bounded-Degree Element-Connectivity and Bounded-Degree Vertex-
Connectivity [4, 8].

Throughout this paper by a tour we mean a closed walk that spans all the required
vertices, i.e., a tour in BDTSP is a closed walk that contains all the vertices and a tour in
BDSTSP is a closed walk that contains all the terminals and possibly other vertices. The
cost of a tour is the sum of the cost of the edges in the tour (counting with multiplicity).
Note the edge set of a tour is potentially a multiset, we may be required to span an edge
multiple times. All of our algorithms are based on linear-programming relaxations: if the
LPs are not feasible then we report there is no feasible solution. Otherwise, we will find
an (α, +d)-approximate solution: the cost of the tour will be at most α times the value of
the LP relaxation and will visit each node at most (bv + d)/2 times (i.e. the degree of the
tour at v will be at most bv + d). We note that if there is a feasible solution, then the LP
relaxations we use will be feasible and will have value at most the optimum solution value.

1.1 Our Results and Techniques
As a warm up, in Section 3 we present a simple (3/2, +4)-approximation algorithm for
BDTSP (i.e. if X = V ).

▶ Theorem 1 (BDTSP). There is a (3/2, +4)-approximation algorithm for BDTSP.

Since a feasible solution is an Eulerian graph and bv’s are even, if there is an approximation
algorithm whose degree violation is better than additive factor of 2, then this algorithm can
decide the Hamiltonian cycle problem. Hence, assuming P ̸= NP, the additive factor of 2
violation on degree bounds is necessary. Furthermore, the same integrality gap example for
Held-Karp relaxation where the degree bound on every vertex is 2, see Figure 1, shows the
integrality gap of the natural LP formulation (BDTSP-LP) is at least (4/3, +2), meaning
any tour has cost at least 4/3 times the LP optimum and any tour violates the degree bound
of at least one vertex by at least +2.

The proof is a straightforward adaptation of Wolsey’s analysis [19] of the Christofides-
Serdyukov algorithm for TSP so we sketch it here to discuss our techniques. Let x∗ be
an optimal solution for the natural LP formulation of BDTSP. Step (1): using the natural
cut-based LP formulation (augmented with degree bounds) for spanning trees and the fact
that x∗

2 is feasible for this LP, using the rounding technique in [11] one can obtain a spanning
tree T of cost at most

∑
e∈E

ce · x∗
e whose degree on vertex v is at most bv

2 + 3. Step (2): fix

the degree parities of T using Y -join polytope augmented with degree bounds at most bv

2 + 1
(depending on the parity of v’s degree in the tour) and show x∗

2 is feasible for this LP.
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Figure 1 This is the graph G = (V, E) that shows the ( 4
3 , +2) integrality gap of the natural LP

for BDTSP (BDTSP-LP). All vertices are terminals, the cost of blue edges is zero and the cost
of black edges is 1. The LP value on blue edges are 1

2 , and 1 on all the other edges. Also bv = 2
for all v ∈ V . Note that the cost of the LP is 3 · k and satisfies all the degree bounds. However, in
any integer solution we must cross one of the path of length k at least twice. Therefore, any integer
solution will violate the degree constraint by at least an additive factor of 2 and its cost is at least
4 · k which give the desired integrality gap.

▶ Remark 2. Notice we did not use the +1 algorithm for degree-bounded spanning trees
by [18]. This is because dividing x by 2 is only guaranteed to satisfy the weaker cut-based
LP relaxation for spanning trees.

The main focus of this paper is on BDSTSP (i.e. X ̸= V ). Our results present different
approximation/violation tradeoffs.

▶ Theorem 3. There is a (5/3, +4)-approximation algorithm for BDSTSP.

▶ Theorem 4. There is a (13/8, +6)-approximation algorithm for BDSTSP.

▶ Theorem 5. There is a (3/2, +8)-approximation algorithm for BDSTSP.

In each of these, we first adapt step (1) from BDSTP discussed above, compute a Steiner
tree (instead of spanning tree) T using x∗

2 as a fractional solution to the Bounded-Degree
Steiner Tree polytope. However, step (2) is not applicable since x∗

2 might not be feasible for
the Y -join polytope.

To prove Theorem 3, it is easy to show that 1
3 ·(χT +x∗) is feasible for the degree-bounded Y -

join polytope where χT is the characteristic vector of T which yields (5/3, +4)-approximation
factor1. In order to improve the cost factor, we first augment the natural LP for BDSTSP
with non-trivial constraints asserting the degree of Steiner cuts should be at least the degree
of any Steiner node in the cut. Then, we modify the iterative rounding algorithm of [11]
using splitting off techniques by Mader to obtain a more “structured” Steiner tree. Namely,
some Steiner nodes are designated dangerous because they have low fractional degree in our
LP solution: our modification ensures dangerous nodes will have even degree in the resulting
tree. Finally, we show how this Steiner tree helps us to obtained a better bounded-degree
Y -join to fix the degree parity of odd-degree vertices.

2 Preliminaries

In this section, we state definition and recall previous work that will be used throughout
the paper. All graphs may be multigraphs and all subsets of edges may be multisubsets, we
adopt this convention now so we do not have to use the prefix multi on every set or graph.
In particular, when we discuss the degree of a vertex with respect to a set of edges or with

1 Interestingly, this is basically the same fractional join from [1] that could be formed to analyze
Hoogeveen’s TSP-Path algorithm.

ISAAC 2022



8:4 Bi-Criteria Approximation Algorithms for Bounded-Degree Subset TSP

respect to a graph, we mean its degree if we count all edges with the same multiplicity that
they appear in the set/graph. However, all subsets of vertices will be actual sets: each vertex
will be in the set at most once.

Given a graph (or subgraph) H = (V, E), denote by dH(v) the degree of vertex v in
H. For a subset S ⊆ V , we denote by δH(S) the set of edges in E(H) with exactly one
endpoint in S while EH [S] is the set of all edges in E(H) having both endpoints in S. We
define costc(H) :=

∑
e∈E(H)

ce. We may drop the subscripts in the above notation if the

underlying graph/cost is clear from the context. Denote by odd(H) the set of all vertices
with odd degree in H, i.e., odd(H) = {v ∈ V (H) : dH(v) is odd}. For a subset of edges (or
a subgraph) F , we denote by χF the characteristic vector of the edges in F (i.e., χF (e) = 1
if e ∈ F and zero otherwise). For a solution x of an LP by cost(x) we mean the value of
the objective function given solution x. We sometime use notation |A| = odd which means
|A| ≡ 1 (mod 2), similarly we define the notation |A| = even.

We use the Bounded-Degree Steiner Tree problem (BDSTP) and the Bounded-
Degree Y -Join problem (BD-Y -join) in our results. In BDSTP, the input is a tuple(
G = (V, E), X, c, b

)
, where c is the edge cost, i.e., ce ≥ 0 on each edge e ∈ E, X ⊆ V is a

set of terminals, and b is a degree bound for a subset of vertices W ⊆ V , i.e., bv ∈ Z≥0 for all
v ∈W . Non-terminal vertices are called Steiner nodes. The goal is to compute a minimum
cost connected subgraph T that spans all the terminals and respects the degree bounds, i.e.,
dT (v) ≤ bv for all v ∈W .

There is a natural cut-based LP relaxation for this problem. Let W ⊆ V :

minimize:
∑
e∈E

ce · xe (SNDP-LP)

subject to: x(δ(v)) ≤ bv ∀v ∈W (1)
x(δ(S)) ≥ 1 ∀S ̸= X, S ∩X ̸= ∅ (2)

x ≥ 0 (3)

Lau and Singh [11] presented an iterative rounding algorithm for this LP.

▶ Theorem 6 (Theorem 1.1 in [11]). There exists a polynomial time algorithm for Bounded-
Degree Steiner Tree which returns a Steiner tree of cost at most 2 · opt with additive
degree violation of at most 3, where opt is the cost of an optimal Steiner tree. In our notation,
this is a (2, +3)-approximation algorithm.

The above theorem is based on an iterative rounding method that rounds an extreme
point of (SNDP-LP) to an integral solution. The following is an immediate consequence of
the above theorem.

▶ Corollary 7. Let x̄ be a feasible solution to (SNDP-LP). Then, in polynomial time, one
could get a Steiner tree T of cost at most 2 · cost(x̄) and dT (v) ≤ bv + 3 for all v ∈W .

In the BD-Y -join problem, we are given a graph G = (V, E), a non-negative cost ce on
each edge e ∈ E, a subset Y ⊆ V with even size, and a degree bound bv ∈ Z≥0 on each
vertex such that bv is odd for all v ∈ Y and even otherwise. The goal is to find a minimum
cost subset of edges J ⊆ E such that |dJ(v)| = odd if and only if v ∈ Y . Furthermore, we
want |dJ(v)| ≤ bv for all v ∈ V . There is a natural LP relaxation for this problem as well,
which is just augmenting the integral Y -join polyhedron with the degree constraints.
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minimize:
∑
e∈E

ce · xe (BD-Y -join LP)

subject to: x(δ(v)) ≤ bv ∀v ∈ V (4)
x(δ(S)) ≥ 1 ∀S ⊊ V, |S ∩ Y | = odd (5)

x ≥ 0 (6)

It is known that (BD-Y -join LP) is integral.

▶ Theorem 8 (Theorem 36.8 in [16]). (BD-Y -join LP) is integral, if and only if, bv is odd
if v ∈ Y and even otherwise for all v ∈ V .

The above result is a corollary of Theorem 36.8 in [16] but it is not trivial to see at the
first sight. So for the sake of completeness, we present a self-contained proof of Theorem 8
in Appendix C. Our proof is based on the iterative rounding technique which is different and
simpler than the proof stated in [16] for Theorem 36.8, as we are trying to prove a special
case of Theorem 36.8.

Also note that (BD-Y -join LP) admits a polynomial-time separation oracle since the
odd-cut constraints can be separated just like with the classic Y -join polyhedron (eg. by using
Gomory-Hu trees). So we can find a minimum-cost degree-bounded Y -join in polynomial
time or determine one does not exist.

3 Bounded-Degree TSP (Warm Up!)

We quickly present the simple result for BDTSP in order to warm the reader up to how we
use the results cited in the last section. Fix an instance of BDTSP: G = (V, E), edge cost
ce ≥ 0 for all e ∈ E, even degree bound bv ≥ 0 for all v ∈ V . The following is a natrual LP
formulation for this problem. For each edge e, there is a variable xe indicating whether e is
in the solution or not. Note that in an optimal solution for the problem, we might need to
pick an edge twice but not more than twice since, otherwise, one can reduce its occurrence
by two and retain connectivity.

minimize:
∑
e∈E

ce · xe (BDTSP-LP)

subject to: x(δ(S)) ≥ 2 ∀ ∅ ̸= S ⊊ V (7)
x(δ(v)) ≤ bv ∀ v ∈ V (8)
0 ≤ xe ≤ 2 ∀ e ∈ E (9)

One can separate the constraints using a minimum-cut algorithm, so we can find an
optimal solution (or determine (BDTSP-LP) is infeasible) in polynomial time. If the LP is
infeasible, we report there is no feasible solution and terminate. Otherwise, we proceed as
follows.

The algorithm is very similar to Wolsey’s analysis of Christofides-Serdyukov algorithm.
First we compute at spanning tree T using an optimal solution to (BDTSP-LP) and then
we fix the degree parities using the odd(T )-join polytope. However, we need to respect
(approximately) the degree bounds. For a node v, let b′(v, T ) be the smallest integer at least
bv

2 whose parity is the same as |dT (v)|: note b′(v, T ) ∈ { bv

2 , bv

2 + 1}.

ISAAC 2022
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Algorithm 1 (3/2, +4)-approximation algorithm for BDTSP.
Input: Graph G = (V, E) with edge costs ce ≥ 0 for every e ∈ E and even degree bounds bv

for every v ∈ V .
Output: A tour that spans V .

Let T be a Steiner tree (in this case spanning tree) obtained from applying Theorem 6
with input G = (V, E), edge cost ce for e ∈ E, X := V and degree bounds bv

2 for every
v ∈ V .
Let odd(T ) be the set of vertices with odd degrees with respect to T . Compute an
odd(T )-join J in G using Theorem 8 with degree bounds b′(v, T ) for all v ∈ V .
Output a closed spanning walk in T ∪ J .

We show Algorithm 1 works correctly and this proves Theorem 1.

Proof of Theorem 1. Let x∗ be an optimal solution to (BDTSP-LP). Note that x̄ := x∗

2
is feasible for (SNDP-LP) where X := V and degree bounds bv

2 for every v ∈ V . Hence, by
Theorem 6 we have cost(T ) ≤ 2 · cost(x̄) = cost(x∗) ≤ opt. Furthermore, dT (v) ≤ bv

2 + 3.
Consider vertex v in the graph, note that x̄(δ(v)) ≤ bv

2 . By using degree bounds b′(T, v)
for v ∈ V , we ensure (BD-Y -join LP) is integral and that x̄ is a feasible solution. Thus,
a minimum-cost degree-bounded odd(T )-join J has cost at most cost(x̄) = cost(x∗

2 ) and
dJ(v) ≤ bv

2 + 1 for every v ∈ V .
Putting the bounds on T and J together we have an Eulerian subgraph T ∪ J with cost

3
2 · cost(x∗) and dT ∪J(v) ≤ bv + 4. ◀

4 Bounded-Degree Subset TSP

In this section, we prove our main results, i.e., Theorems 3, 4 and 5. Fix an instance of
BDSTSP: G = (V, E), a edge cost ce ≥ 0 for each e ∈ E, a set of terminals X ⊆ V , and an
even integer degree bound bv ≥ 0 on each vertex v ∈ V . We refer to vertices in V \X as
Steiner nodes.

The algorithm for BDSTSP is to find a “good” Steiner tree T that spans the terminals
and then fix the degree parity using odd(T )-join. However, finding a “good” odd(T )-join is
not as trivial as it was for BDTSP since x∗

2 may no longer be feasible for odd(T )-join polytope
since some cuts S involving only Steiner nodes may have very low x∗(δ(S)). Nevertheless,
for all the approximation factors in this section, we show combining x∗ and T itself with
appropriate ratios is sufficient to construct a “good” (fractional) solution for the odd(T )-join
polytope with degree constraints. We start with a simple application of this idea by proving
Theorem 3.

We begin with the natural LP for BDSTSP. As before, we assume the LP has an optimal
solution, otherwise the BTSTSP instance has no feasible solution.

minimize:
∑
e∈E

ce · xe (BDSTSP-Natural-LP)

subject to: x(δ(S)) ≥ 2 ∀S ̸= X, S ∩X ̸= ∅ (10)
x(δ(v)) ≤ bv ∀v ∈ V (11)
0 ≤ xe ≤ 2 ∀e ∈ E (12)
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Proof of Theorem 3. Let x∗ be an optimal solution to (BDSTSP-Natural-LP). Since
x∗

2 is feasible for (SNDP-LP) where degree bounds are bv

2 for every v ∈ V , we can obtain
a Steiner tree T of cost at most 2 · cost(x∗

2 ) ≤ opt and dT (v) ≤ bv

2 + 3, see Corollary 7.
Furthermore, we iteratively prune leaf nodes that are Steiner nodes so all leaves of T are
terminals. With abuse of notation, we denote the resulting tree by T .

Next, we show that ȳ := χT

3 + x∗

3 is feasible for (BD-Y -join LP) when odd(T ) is the set
of odd degree vertices and the RHS of degree constraint is either bv

2 + 1 or bv

2 + 2 (whichever
has the same parity as dT (v)). Note that by definition of ȳ, and the fact that dT (v) ≤ bv

2 + 3,
ȳ respects the degree constraints in (BD-Y -join LP). Now consider a cut S that contains a
terminal. Then T crosses the cut at least once and x∗(δ(S)) ≥ 2 so ȳ(δ(S)) ≥ 1.

Now consider an odd cut S, i.e. |S ∩ odd(T )| = odd, that contains only Steiner nodes.
Since

∑
v∈S

d(v) = 2 · |ET [S]| + |δT (S)| and
∑

v∈V

d(v) is odd, we must have |δT (S)| = odd.

We claim that |δT (S)| > 1, otherwise |δT (S)| = 1 means S contains a leaf node which is
impossible since (the pruned version) of T has only terminals as leaf nodes. Therefore,
|δT (S)| ≥ 3 and by definition of ȳ we have ȳ(δ(S)) ≥ 1, as desired.

So we have proved ȳ is feasible for (BD-Y -join LP). By Theorem 8, there is an odd(T )-
join J of cost at most cost(ȳ) = 1

3 ·cost(T )+ 1
3 ·cost(x∗) ≤ 2

3 ·opt and dJ (v) ≤ bv

2 +2 for all v ∈ V .
Finally we output a closed walk in subgraph Q := T ∪J . Note cost(Q) ≤ (1+ 2

3 ) ·opt = 5
3 ·opt

and dQ(v) ≤ bv + 5 for all v ∈ V . Since Q is an Eulerian graph and bv’s are even, it must be
that dQ(v) ≤ bv + 4 for all v ∈ V . This finishes the proof of Theorem 3. ◀

To improve on the approximation factor of Theorem 3, i.e. the results in Theorem 4 & 5,
we consider a slight strengthening of (BDSTSP-Natural-LP) for BDSTSP. We first make
an observation about the structure of an optimal solution and then we add a constraint
based on this observation.

We use the following definition throughout this section. Let v be a Steiner node, we say
S is a v, X-cut if v ∈ S ⊆ V \X.

▶ Lemma 9. There exists an optimal solution Q∗ such that for any Steiner node v̄ and any
v̄, X-cut S, we have |δQ∗(S)| ≥ dQ∗(v̄).

Proof. Among all optimal solutions, let Q∗ be one with the minimum number of edges.
For this proof, every degree or cut is with respect to Q∗ unless stated otherwise. We show
|δQ∗(S)| ≥ dQ∗(v̄) for every v̄ and any v̄, X-cut S. Suppose otherwise, that for v̄ there is
some v̄, X-cut S with |δQ∗(S)| < dQ∗(v̄). We take S to be a minimum-cardinality v̄, X-cut.

Let k := |δ(S)|. Note
∑

v∈S

d(v) = 2 · |EQ∗ [S]| + |δ(S)| and since all vertices have even

degree, k must be even. We say u ∈ S is a boundary node with respect to S if δ(u)∩ δ(S) ̸= ∅.
Contract V \ S to a single vertex and call it t. Since S is a minimum cardinality v̄, t-cut,

there are k edge-disjoint simple paths P1, ..., Pk from v̄ to t, in particular, for every boundary
node u ∈ S, |δ(u) ∩ δ(S)| of the paths P1, ..., Pk have u as their second-last node (just
before t).

Construct a graph G′ obtained from Q∗ as follows: remove all the edges in EQ∗ [S]\∪k
i=1Pi

which is non-empty as we assumed dQ∗(v) > k and then remove all the isolated vertices.
Note that dG′(v̄) = k which is even. Also for every boundary vertex u ∈ S, |δ(u) ∩ δ(S)|
of Pi’s contains u, so the degree of boundary vertices is even. The vertices inside S except
v̄ and the boundary vertices are internal vertices of some paths so their degrees are even.
Finally, degree of the vertices outside of S did not change, so their degree is even as well.
Hence, G′ is Eulerian.

ISAAC 2022
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We claim G′ connects all the terminals, which would contradict the minimality of Q∗.
Hence, |δQ∗(S)| ≥ dQ∗(v̄), as desired. It is easy to prove the claim. Consider two terminals x

and x′. If a x− x′ path in Q∗ does not use any vertices in S then this path exists in E(G′).
So suppose every x − x′ paths in Q∗ crosses S, let u and u′ (possibly u = u′) be the two
boundary vertices (with respect to S) on a x − x′ path in Q∗. Note that there is a path
between u and v̄, and a path between u′ and v̄ in E(G′). Therefore, x and x′ are connected
in E(G′). ◀

We use Lemma 9 to get a slightly stronger LP relaxation for BDSTSP.

minimize:
∑
e∈E

ce · xe (BDSTSP-LP)

subject to: x(δ(S)) ≥ 2 ∀S ̸= X, S ∩X ̸= ∅ (13)
x(δ(v)) ≤ bv ∀v ∈ V (14)
x(δ(v)) ≤ x(δ(S)) ∀S ⊆ V \X,∀v ∈ S (15)
0 ≤ xe ≤ 2 ∀e ∈ E (16)

Constraint (15) is valid because there is an optimal solution that has this property
according to Lemma 9. Furthermore, this constraint can be separated by computing a
minimum weight v, X-cut (with respect to weight x on the edges) for every Steiner node v.
Let x∗ be an optimal solution to this LP.

Now we are ready to discuss how to get a more well-structured Steiner “tree”2 T using a
slightly modified version of the algorithm in [11] for computing a degree-bounded Steiner
tree, which in turn, results in a cheaper odd(T )-join.

The tweak in the algorithm of [11] for BDSTP is to completely “split off” a predetermined
subset of Steiner nodes when the algorithm decides to drop the degree constraint corresponding
to these Steiner nodes. This will ensure that we get a feasible solution for BDSTP (not
necessarily a tree) such that all the Steiner nodes in the predetermined subset have even
degree (counting with multiplicities). First we explain the splitting-off procedure and then
present the tweak in the algorithm for BDSTP.

Splitting-off procedure. We begin with some definition. Fix a multigraph G = (V, E). We
say edge e is a cut-edge if there is a set S such that δ(S) contains only e. We denote the
minimum cardinality of a u, v-cut by λG(u, v). We say a pair of edges (su, sv) is an splittable
pair if in G′ =

(
V ∪ {s}, (E \ {su, sv})∪ {uv}

)
, we have λG(u, v) = λG′(u, v) for all u, v ∈ V .

In other words, removing su, sv and adding an edge between u and v preserves the minimum
u, v-cut value for all u, v ∈ V . This process is called splitting off pair (su, sv). Recall a
classical splitting-off result by Mader.

▶ Theorem 10 (Mader, [14, 3]). Let G = (V ∪ {s}, E) be a connected graph, perhaps with
parallel edges. Assume there is no cut-edge incident to s and d(s) is even. Then, there is a
splittable pair (su, sv) for some u, v (possibly u = v) adjacent to s.

When we remove all the splittable pairs so that there is no incident edge to s, we say we
completely split off s. Since after applying Mader’s theorem, the conditions of the theorem
still holds for s, one can repeatedly apply Mader’s theorem to completely split off s while
preserving the local connectivities between any pair of vertices in V .

2 We put tree in the quotation as we will see later that T might contain cycles to allow the degree parity
of some Steiner nodes to be even, so T might not be a proper tree.
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The following is the result that allows us to tweak the iterative rounding algorithm of [11]
for BDSTP to ensure Steiner nodes with small fractional degree have even degree in the
resulting tree. The proof uses Mader theorem as the subroutine. However, just applying
Mader theorem repeatedly when the connectivities are based on weighted edges does not
run in polynomial time. Here we use the idea used by Post and Swamy [15] to make the
complete splitting off procedure polytime. In [15] they work with the directed version of
Mader theorem. Although everything will be translated to our setting in a straightforward
fashion, we present the proof in Appendix A for completeness.

▶ Lemma 11. Let I =
(
G = (V, E), X, c, b

)
be an instance of the BDSTP and let x̄ be a

feasible solution for (SNDP-LP) of this instance. Let s ∈ V be a Steiner node. Then, in
polynomial time, one can obtain an instance of BDSTP I ′ =

(
G′ = (V \ {s}, E′), X, c′, b

)
and a feasible solution x′ for (SNDP-LP) of this instance such that
1. costc′(x′) ≤ costc(x).
2. An integral solution T ′ for I ′ can be transformed to an integral solution T for I whose

cost is at most costc′(T ′), dT (s) is even, and dT (v) = dT ′(v) for all v ∈ V \ s.

Next, we modify one step of (2, +3)-approximation of [11] for BDSTP. For the sake of
space, we only sketch the adaptation and defer the full description to Appendix B.

The iterative rounding algorithm for BDSTP. Consider an instance
(
G = (V, E), X, c, b

)
of BDSTP and a subset of Steiner nodes A ⊆ V \ X where bv = 1 for all v ∈ A. The
goal is to find a minimum cost solution T for this instance such that dT (v) is even for all
v ∈ A while violating the degree bounds by a small additive constant for these vertices, and
dT (v) ≤ bv for all v ∈ V \ A (see Lemma below). In the context of our BDSTSP, A will
be the set of all Steiner nodes with “small” fractional degree (with respect to an optimal
solution of (BDSTSP-LP)). Then, this more structured Steiner tree T helps us to find a
cheaper odd(T )-join.

In the iterative rounding algorithm for BDSTP whenever we drop the degree constraints
corresponding to a Steiner node v in A, we completely split off v as well. After the tree is
constructed, we restore any edges produced by the splitting off procedure to the original set
of edges and further prune some edges if necessary (i.e., if their multiplicity is > 2 after this
restoration step)3. Again, see Appendix B for the full description of this algorithm.

Putting together Corollary 7 and Lemma 11 we have the following result for BDSTP. It is
important to note that while we use the letter T to denote the solution, it is not necessarily
a tree because we cannot necessarily drop edges from cycles while preserving the parity of
nodes in A.

▶ Lemma 12. Given an instance
(
G = (V, E), X, c, b

)
of BDSTP, a feasible solution x̄ of

(SNDP-LP) and a set A ⊆ V \X where bv = 1 for all v ∈ A, there is a polynomial time
algorithm that computes a feasible solution T of BDSTP such that
1. cost(T ) ≤ 2 · cost(x̄).
2. dT (v) ≤ bv + 3 for all v ∈ V \A.
3. dT (v) ≤ bv + 7 for all v ∈ A.
4. dT (v) is even for all v ∈ A.
5. |δT (S)| is even for any S ⊆ A.

3 Note we might have edges with multiplicity 2 in this solution but nevertheless we call the solution a
Steiner tree.
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6. Let T (m) be a minimal (inclusion-wise) subset of edges of T such that T (m) is still a feasible
solution for the BDSTP instance. Then, T (m) satisfies property 1 and dT (v) ≤ bv + 3 for
all v ∈ V .

Proof. We run the (2, +3)-approximation of [11] with the above mentioned tweak, see
Algorithm 3 and apply Lemma 11 (property 2) repeatedly to obtain a feasible solution T for
BDSTP on G.

Properties 1 and 2 are trivial because of the approximation factor of Algorithm 3 and
Lemma 11.

Property 3: we completely split off a Steiner node s ∈ A in Algorithm 3 when the algorithm
decides to drop the degree constraint corresponding to s (see step b in Algorithm 3). Hence,
we must have d(s) ≤ bs + 3 ≤ 4 in the current graph in that iteration. Once we apply
Lemma 11 (property 2) to obtain a solution for the current instance of BDSTP (i.e., by
putting s back) we might use these (up to) four edges incident to s multiple times; however,
we do not need to use any edge more than twice (otherwise we can drop two copies of the
edge and preserve both connectivity and parities) so the degree of s in the solution will be at
most 8 = bv + 7 since bv = 1 for v ∈ A. This proves property 3.

Property 4: the degree of a node v ∈ A that was split off in our iterative rounding
algorithm is even simply because each edge used in T that was produced in the splitting
off procedure is then subdivided to re-integrate v so the degree of v is even. Further, any
parallel edges that were pruned maintain the parity of the degree of v.

Property 5: for any set S ⊆ V we have∑
v∈S

dT (v) = 2 · |ET [S]|+ |δT (S)|. (17)

If S ⊆ A, by property 4 the LHS of (17) is even and therefore |δT (S)| must be even.
Property 6: by property 2, for all v ∈ V \A we have dT (v) ≤ bv + 3. In T (m) we keep only

one copy of each parallel edge so dT (v) ≤ bv +3 for all v ∈ A (see the argument for property 3)
and the resulting solution is still feasible which implies the last property for T (m). ◀

Finally, we can present our (13/8, +6)-approximation for BDSTSP, see Algorithm 2.

Algorithm 2 (13/8, +6)-approximation algorithm for BDSTSP.

Input: Graph
(
G = (V, E), X, c, b

)
.

Output: A closed walk Q in G that spans X.
(a) Compute an optimal solution x∗ of (BDSTSP-LP). Let A := {v ∈ V \X : x∗(δ(v)) <

2}, and let b′
v := bv

2 if v /∈ A and b′
v := 1 if v ∈ A.

(b) Apply Lemma 12 with instance
(
G = (V, E), X, c, b′), feasible solution x̄ := x∗

2 , and
set A to obtain a Steiner tree T with properties 1-5 in the lemma.
(c) Compute a Steiner tree T (m) using T according to property 6 of Lemma 12.
(d) Compute a minimum cost odd(T (m))-join J such that dJ (v) ≤ b′

v + 3 for all v ∈ V (cf.
Lemma 13).
(e) Output a closed walk Q in T (m) ∪ J that spans all the terminals.

Analysis. For the rest of this section, let x∗ be an optimal solution for (BDSTSP-LP)
computed in step (a) and x̄ := x∗

2 . Let A be the subset of Steiner nodes and b′
v’s the

degree bounds constructed based on x∗ in step (a). Also let T and T (m) be the Steiner trees
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computed in steps (b) and (c) of the algorithm, respectively. Note that x̄ is feasible for
(SNDP-LP) when the degree bounds are according to b′. Combining this fact and Lemma
12 we have:

cost(T (m)) ≤ cost(T ) ≤ 2 · cost(x̄) = cost(x∗). (18)

▶ Lemma 13. There is an odd(T (m))-join J with cost at most 5
8 · opt and dJ(v) ≤ bv

2 + 3
for all v ∈ V .

Proof. We claim y := χT

4 + 3·x∗

8 is feasible for (BD-Y -join LP) when the set of odd degree
vertices is odd(T (m)) and the RHS of degree constraint is at most b′

v + 3 for all v ∈ V (in fact
this fractional solution is feasible when degree bounds are bv

2 + 2 but similar to the proof of
Theorems 1 and 3, we might need to consider bv

2 + 3 for some vertices as (BD-Y -join LP)
is integral if and only if the parity of the degree bounds match the parity of the degree of
vertices in an integral solution). We prove the claim after we show how the lemma follows
from this claim. By Theorem 8, there is an integral odd(T (m))-join J whose cost is at most

cost(y) = cost(1
4 · χT ) + cost(3

8 · x
∗) ≤ 1

4 · cost(x∗) + 3
8 · cost(x∗) ≤ 5

8 · opt,

where the first inequality follows from (18). Furthermore, dJ(v) ≤ b′
v + 3 ≤ bv

2 + 3.
So it remains to prove the claim. As (19) shows, y satisfies the degree constraints of

(BD-Y -join LP) when the degree bound is at most b′
v + 3 for all v ∈ V .

y(δ(v)) = 1
4 · dT (v) + 3

8 · x
∗(δ(v)) ≤ 1

4 · (b
′
v + 7) + 3

8 · bv ≤
bv

2 + 3, (19)

where the first inequality follows from properties 2 & 3 of Lemma 12.
Next we show cut constraints (5) in (BD-Y -join LP) hold under solution y. Consider a

subset S ⊆ V such that |S ∩ odd(T (m))| = odd. There are three cases to consider:
Case 1: If S ∩X ̸= ∅. Then, x∗(δ(S)) ≥ 2 and since T is connected we have |δT (S)| ≥ 1
which implies y(δ(S)) ≥ 1.
Case 2: If S ∩X = ∅ and S ∩ (V \A) ̸= ∅. Then, there is a Steiner node s ∈ S such that
s /∈ A. By definition of set A we have x∗(δ(s)) ≥ 2. By constraint (15) in (BDSTSP-LP)
this implies x∗(δ(S)) ≥ 2 as well. Again since T is a connected so |δT (S)| ≥ 1 and this
implies y(δ(S)) ≥ 1.
Case 3: If S ⊆ A. Since (17) holds for any subset of vertices and |S ∩ odd(T (m))| = odd,
the LHS of (17) is odd and so is |δT (m)(S)|. Furthermore, if |δT (m)(S)| = 1 then we can
remove S from T (m) and still have a feasible solution, contradicting the inclusion-wise
minimality of T (m). Hence |δT (m)(S)| ≥ 3. So we have

|δT (S)| ≥ |δT (m)(S)| ≥ 3.

On the other hand, since S ⊆ A, by property 5 Lemma 12 we have |δT (S)| = even;
together with above inequality we get |δT (S)| ≥ 4. Therefore, y(δ(S)) ≥ 1 in this case as
well. ◀

Now the proof of Theorem 4 follows easily.

Proof of Theorem 4. Since T (m) ∪ J is an Eulerian subgraph, there is a closed walk Q in it
that spans X. By (18) we have cost(T (m)) ≤ cost(x∗). By Lemma 13 cost(J) ≤ 5

8 · opt and
this implies cost(T (m) ∪ J) ≤ (1 + 5

8 ) · opt = 13
8 · opt, as desired.

By property 6 of Lemma 12, dT (m)(v) ≤ b′
v + 3 ≤ bv

2 + 3 and by Lemma 13 we have
dJ(v) ≤ bv

2 + 3. So dT (m)∪J(v) ≤ bv + 6 for all v ∈ V , as desired. ◀
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To prove Theorem 5, we modify Algorithm 2 slightly as follows: remove step (c), in
step (d) compute a minimum cost odd(T )-join J (instead of odd(T (m))-join) and in step (e)
output a closed walk in T ∪ J that spans all the terminals. Similar to Lemma 13, we have
the following bound on the bounded-degree odd(T )-join LP.

▶ Lemma 14. There is an odd(T )-join J with cost at most opt
2 and dJ(v) ≤ bv

2 + 1 for all
v ∈ V .

Proof. We just need to show x∗

2 is feasible for degree-bounded odd(T )-join polytope when
the degree bound is bv

2 for all v ∈ V . Then, whenever necessary we replace bv

2 by bv

2 + 1 for
v ∈ V so that Theorem 8 to be applicable. It is trivial that the degree constraints hold. So
we show constraints (5) in (BD-Y -join LP) holds. Let S ⊊ V such that |S ∩ odd(T )| = odd.

Case 1: If S ∩X ̸= ∅. Then, x∗(δ(S)) ≥ 2 which implies x∗

2 (δ(S)) ≥ 1.
Case 2: If S ∩X = ∅ and S ∩ (V \A) ̸= ∅. Then, there is a Steiner node s ∈ S such that
s /∈ A. By definition of set A we have x∗(δ(s)) ≥ 2. By constraint (15) in (BDSTSP-LP)
this implies x∗(δ(S)) ≥ 2 as well which implies x∗

2 (δ(S)) ≥ 1.
Case 3: If S ⊆ A. Thus, we have S ⊆ A and note that dT (v) is even for all v ∈ A by
property 4 of Lemma 12. This is a contradiction because we assumed |S ∩ odd(T )| is odd.
So the constraints for S ⊆ A are not present in the LP. ◀

Proof of Theorem 5. By (18) we have cost(T ) ≤ cost(x∗) ≤ opt and by Lemma 14 we have
cost(J) ≤ cost(x∗)

2 ≤ opt
2 which implies cost(T ∪ J) ≤ 3

2 · opt.
By properties 2 and 3 of Lemma 12, we have dT (v) ≤ bv

2 + 7 and by Lemma 14 we have
dJ(v) ≤ bv

2 + 1 for all v ∈ V . Thus, dT ∪J(v) ≤ bv + 8, as desired. ◀

5 Conclusion

We gave a (5/3, +4), a (13/8, +6) and a (3/2, +8) approximations for BDSTSP. It would be
interesting to see if there is any O(1)-approximation that violates the degree bounds by at
most +2. On the other hand, a demonstration that any LP-based O(1)-approximation requires
a +4 violation would be interesting as well. Though, we suspect an O(1)-approximation with
+2 violation is possible. Further improvements to our 13

8 -approximation for low violations
(e.g. +4 or +6) would also be interesting. For example, perhaps a best-of-many Christofides
approach could help to show that, on average, the Y -join can be constructed more cheaply
than in our analysis. As a starting point, we note it is possible to extend the bounded-degree
Steiner tree iterated rounding result to show that for feasible BDST solution x∗, 2 · x∗

dominates a convex combination of trees each of which violates degree bounds by +3.
Finally, we did not consider edge bounds be because if we even allow a +1 violation

it becomes quite trivial: no BDSTSP solution will use any edge more than twice because
we could remove two copies of any edge used more than twice. So what about satisfying
edge bounds exactly? Obviously cut edges in the original graph that have Steiner nodes on
both sides of the cut must be used twice. Even if there are no cut edges it is still hard to
find a spanning Eulerian tour that uses each edge at most once: This would still model the
Hamiltonian cycle problem in cubic graphs. Still, is there some interesting extent to which
we could bound the use of some edges and still expect some approximation algorithm to
respect most of these bounds?
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A Proof of Lemma 11

Here we present the proof of Lemma 11.
Recall x̄ is an optimal solution to (SNDP-LP) and s is a Steiner node such that

x̄(δ(s)) ≤ 1. First we show how to obtain x′ and c′ with an easy application of Mader’s
theorem but the running time of this procedure might be exponential and then at the end
we show how to turn this procedure to run in polynomial time.
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Since x̄ is rational and the number bits needed to represent it is polynomial in the size of
the input, there is a positive integer ∆ such that ∆ · x̄e is an even integer for all e ∈ E. We
replace each edge e, with ∆ · xe copies of parallel edges. Note that degree of s is even and
there is no cut-edge in the graph. By applying Mader’s theorem repeatedly, we can split off
s completely. Denote the resulting graph by G′ = (V \ {s}, E′). Finally, we define a new
solution x′ for the resulting graph as follows: x′

e = # copies of e
∆ for all e ∈ E′. Note that

by construction, x′ respects the degree bounds and we preserve the connectivity between
each pairs of nodes (except s), hence x′ is feasible for (SNDP-LP) corresponding to G′.
Next, we define the cost function c′. It is defined naturally, i.e., for the existed edges in G, c

and c′ agree with each other and for a new introduced edge uv we set c′
uv := csu + csv. Let

I ′ := (G′, X, c′, b) be the resulting instance.
We show that costc′(x′) ≤ costc(x̄). This follows from the fact that if we introduce a

new edge uv, then its cost is csu + csv and we decrease the LP weight on su and sv by the
same amount we increase the LP value on uv. If uv exists in G we claim that csu + csv > cuv

because otherwise one can increase the LP value on su and sv and decrease the LP value on
uv by the same amount and get a cheaper feasible solution, contradicting the fact that x̄ is
optimal.

Finally, for any integral solution T ′ for I ′ we construct an integral solution T for I by
replacing every edge uv in T ′ that is not in G with the two edges su and sv (keep the edges
with multiplicities). Note we might have more than 2 copies of an edge e incident to s in T .
In this case, we reduce the occurrences of e as much as possible so that the resulting solution
is feasible for I AND the parity of the degree of the endpoints of e does not change. By
definition of c′ we have costc(T ) ≤ costc′(T ′).

Here we show by a straightforward adaptation of techniques in [15], we can construct x′

and c′ that satisfy the property of the lemma efficiently.
Let x̄ be the LP weight on the edges. Splitting off a pair (su, sv) to the extent of α > 0

means reducing x̄sv and x̄sv by α, and increasing x̄uv by α such that all the connectivities
between any pair of nodes (except pairs involving s) are preserved (the connectivity between
two nodes u and v is defined as the minimum weight u − v cut when edges have weight
according to x̄). We say we split of (su, sv) to the maximum extent if value α above is the
maximum value possible.

Note that by the first procedure we explained earlier, there exists always a pair (su, sv)
and value α > 0 such that we can split of (su, sv) to the extent of α. We can find such pairs
by brute force (O(n2) pairs) and find α by binary search. Note that it is possible u = v

which in that case it means reducing xsu by α.
The algorithm is simple, we find a pair of edges (su, sv) and a value α > 0 and split off

(su, sv) to the extent of α and repeat this procedure.
In the next claim, we show if we split off a pair of edges to the maximum extent, that pair

never becomes splittable again which in turn implies a polynomial running time of above
procedure.

▷ Claim 15. Consider an splittable pair (su, sv) according to Mader theorem (Theorem 10).
If we split off (su, sv) to the maximum extent, then (su, sv) will not become splittable again.

Proof of Claim 15. This follows from Claim 3.1 in [3] which states the following:

▷ Claim 16 (Claim 3.1 in [3]). A pair (su, sv) is splittable if and only if there is no set
Y such that u, v ∈ Y , s /∈ Y , and there are two nodes w ∈ Y , s ≠ z /∈ Y such that
|δG(Y )| ≤ λG(w, z) + 1.
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Multiply x̄ by a suitable integer ∆ such that ∆ · x̄e is even for all e ∈ E. Replace each edge
e by ∆ · x̄e many parallel edges in G.

Suppose we split as much copy of (su, sv) as possible. Then, there must be a set Y that
satisfies the properties of Claim 16. Now assume we split of a pair of edges (e, f) incident to
s and let G′ be the resulting graph. We show that Y still satisfies the properties of Claim 16;
hence, non of the copy of (su, sv) are splittable after splitting off (e, f).

Note s /∈ Y so |δG′(Y )| ≤ |δG(Y )|. Furthermore, since (e, f) is a splittable pair we have
λG′(w, z) = λG(w, z). Therefore, |δG′(Y )| ≤ |δG(Y )| ≤ λG(w, z) = λG′(w, z) + 1. Hence, Y

satisfies the properties of Claim 16 in G′ as well so (e, f) is not splittable in G′. ◁

B Iterative Rounding Algorithm for BDSTP

Algorithm 3 Iterative rounding algorithm of [11] for BDTSP with small change in step (b).

Input: Graph
(
G = (V, E), X, c, b

)
, a subset of Steiner nodes A where bv = 1 for all v ∈ A.

Output: A connected subgraph T of G that spans X such that dT (v) ≤ bv + 7 is even for all
v ∈ A and dT (v) ≤ bv +3 for all v ∈ V \A.

Initialize T ′ ← ∅ and W ← V (W is the set of vertices with degree constraints present in
the LP formulation).
while T ′ is not a feasible solution for BDSTP do

(a) Compute an optimal extreme point solution x of (SNDP-LP) and remove every
edge e with xe = 0.
(b, with modification). Removing a degree constraint: For every v ∈W with degree
at most bv + 3 in G, remove v from W . Furthermore, if v ∈ A, completely split off v and
compute an optimal solution for the resulting instance (cf. Lemma 11). Redefine G to
be this new graph and x to be the new optimal solution after splitting off procedure.
(c) Picking 1-edge: For each edge e = uv with xe = 1, add e to T , remove e from G,
and decrease bu, bv by 1.
(d) Picking a heavy edge with no degree constraints: For each edge e = uv with xe ≥ 1

2
and u, v /∈W , add e to T ′ and remove e from G.
Updating the connectivity requirements: For every set S ̸= X, S ∩X ≠ ∅ update the
RHS of constraint (2) in (SNDP-LP) to be max{1− |δ′

T (S)|, 0}.
Let T be the resulting Steiner tree obtained from T ′ by applying Lemma 11 repeatedly.

Note that the algorithm works correctly for any subset A of Steiner nodes (i.e., A does
not need to contain only Steiner nodes v with bv = 1). The performance guarantee of this
algorithm follows from [11] and the fact that after splitting off a Steiner node, by Lemma 11
we still have a feasible solution for the (SNDP-LP) of the resulting instance with cost at most
the cost of the original LP. So T ′ is a Steiner tree for the instance

(
G′ = (V \A, E′), X, c′, b

)
.

The fact that the Steiner tree T for the original instance obtained from T ′ has the desired
properties of Lemma 12 follows from Lemma 11.

C Iterative Rounding Algorithm for BD Y-join

In this section, we prove Theorem 8 using an iterative rounding algorithm. The algorithm
and its analysis are a simple adaptation of the iterative rounding algorithm for maximum
matching in [10].
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Algorithm 4 An iterative algorithm for bounded-degree Y -join problem.
Input: Undirected graph G = (V, E) with edge costs ce ≥ 0, e ∈ E, degree bounds bv, v ∈ V ,
and Y ⊆ V where |Y | = even.
Output: A Y -join.

J ← ∅
while E ̸= ∅ do

Find an optimal extreme point solution x to BD-Y -join LP defined on G = (V, E).
Find an edge e = uv with either xe = 0 or xe = 1 (cf. Lemma 18). In the former case
remove e, and in the latter case add e to J and do the following:
Update Y ← Y ∆{u, v}. Update E ← E \ {e}. Update b(v) ← b(v) − 1, and b(u) ←
b(u)− 1.

output J .

We only need to show that there is always an edge with LP value 0 or 1. This shows the
LP is integral. To do this, we state some properties of an extreme point solution to BD-
Y -join LP which follows from rank lemma (Lemma 2.1.4 in [10]) and standard uncrossing
techniques.

▶ Lemma 17 (Properties of an extreme point). Consider an extreme point x and suppose
0 < xe < 1 for all e ∈ E. Then, there exists a laminar family L of Y -odd sets and W ⊆ V

such that
(i) For any S ∈ L we have x(δ(S)) = 1 and for any v ∈W we have x(δ(v)) = b(v).
(ii) The vectors in {χ(δ(S)) : S ∈ L} ∪ {χ(δ(v)) : v ∈W} are linearly independent.
(iii) |L|+ |W | = |E|.
(iv) E[S] is connected for each S ∈ L.

Proof. Properties (i), (ii), and (iii) follow from a standard application of uncrossing technique
and Rank Lemma in polyhedral theory.

We show that one can further modify the laminar family to obtain (iv). Consider S ∈ L
and suppose E[S] is not connected. Since |S∩Y | = odd, there must be a connected component
C of E[S] such that |C ∩ Y | = odd. Since x(δ(C)) ≥ 1 and the fact that S is a tight set we
have χ(δ(C)) = χ(δ(S)) and C is a tight set. By property (ii) C /∈ L. Now consider the
laminar family (L \ {S})∪ {C}. Repeating this procedure until there is no set in the laminar
family that violates (iv) finishes the proof. ◀

▶ Lemma 18. Given any extreme point x of BD-Y -join LP there must exist an edge e with
xe = 0 or xe = 1.

Proof. Suppose not. So we have 0 < xe < 1 for each e ∈ E. Let L be a laminar family and
let W be a subset of V that satisfy properties (i)-(iv) in Lemma 17. We show a contradiction
with property (iii) using a token-based argument. Let L′ := L ∪W be the extended laminar
family. We assign one token to each edge in the support of x. Then we distribute the tokens
inductively among the sets in the laminar family such that each member of L′ receives at
least one token and we show there are some extra tokens left which shows the contradiction
with the fact that |E| = |L′|.

We use the natural forest structure that the laminar family L′ imposes, recall that each
component of this forest is a rooted tree. We use the following claim to redistribute the
tokens of E[S] among the laminar sets inside S. We use GS to denote the graph after
contracting the children of S in G[S]. We label the contracted vertices with the same label
as the contracted set, i.e., if Ri is a child of S then we call the contracted vertex of Ri by Ri

as well.
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▷ Claim 19. For any rooted subtree of L′ with root S, the tokens of edges in E[S] can be
distributed such that for every S′ ∈ L′ where S′ ⊊ S receives at least one token.

Proof. We prove this by induction. If S ∈ W the claim holds vacuously. So let S ∈ L and
let R1, ..., Rk be the children of S. We call a child of S good if a token is already (before
considering S) assigned to it and call it bad otherwise. Note that none of the tokens in E(GS)
is assigned to any sets yet because of the way the inductive procedure works.

By property (iv) of Lemma 17, GS is a connected graph and if it is not a tree then
E(GS) ≥ k and we can assign the tokens of these (at least) k edges in E(GS) to R1, ..., Rk

and we are done. So suppose GS is a tree. If one of R1, ..., Rk is a good child then again we
have enough tokens in E(GS) to assign to bad children of S. So from now on we assume all
the children of S are bad.

Since |S ∩ Y | = odd and the fact that if x(δ(Ri)) = odd then |Ri ∩ Y | = odd, we
conclude the number of children of S that have an odd fractional degree is odd. Therefore,

k∑
i=1

x(δ(Ri)) = odd.

Since GS is a tree so it is a bipartite graph. Let V1 and V2 be the two parts of GS and

since
k∑

i=1
x(δ(Ri)) = odd, wlog, we can assume

∑
Ri∈V1

x(δ(Ri)) ≤

k∑
i=1

x(δ(Ri))−1

2 . From this

inequality and the fact that x(δ(S)) = 1 we get
k∑

i=1
x(δ(Ri))− 1

2 = x(E(GS)) ≤
∑

Ri∈V1

x(δ(Ri)) ≤

k∑
i=1

x(δ(Ri))− 1

2 . (20)

So all the inequalities in (20) must hold as equality. Therefore, x(E(GS)) =

k∑
i=1

x(δ(Ri))−1

2
which implies χ(δ(S)) =

∑
Ri∈V2

χ(δ(Ri)) −
∑

Ri∈V1

χ(δ(Ri)) and this contradicts the linear

independence of the characteristic vectors in L′. This finishes the proof of the claim. ◁

We continue the proof of Lemma 18. By Claim 19 every non-root vertices of the forest
(obtained from L′) is assigned a token. Let S1, ..., Sk be the root nodes of the forest. Denote
by GR the graph obtained from contracting Si’s. Note that none of the tokens of edges in
E(GR) is assigned to any member of L′ by our token assignment given in Claim 19. Since
xe < 1, |δ(Si)| ≥ 2. We show that at least one root node has degree at least 3. But first let
us show if this holds then the lemma follows. Since one non-root node has degree at least
3, we have |E(GR)| ≥ k + 1 which implies we can assign one token to each root node and
still have at least one token left unassigned. This implies |E(G)| > |L′|, a contradiction with
property (iii) of Lemma 17. Therefore, there must be an edge e with xe = 0 or xe = 1.

Now it remains to prove at least one root node has degree at least 3. Suppose not.
Then, every vertex in GR has degree 2 and so GR is a collection of cycles. Consider a cycle
component C of GR. Note |C| cannot be odd otherwise there should be at lest fractionally
one edge going outside of the nodes in C. So let S1, ..., Sl be the vertices of C and note l

is even. Then we have
l∑

i=1
(−1)iχ(δ(Si)) = 0 which contradicts the linear independence of

characteristic vectors in L′.
We finish the proof by showing GR itself cannot be a cycle. Note x(δ(Si)) = 1 for

1 ≤ i ≤ k which implies |Si ∩ Y | = odd and so the number of vertices in GR is even. And
if GR forms a cycle, then the same argument as the previous paragraph shows a linear
dependence of characteristic vectors in L′. ◀
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