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Abstract
Fast mixing of random walks on hypergraphs (simplicial complexes) has recently led to myriad
breakthroughs throughout theoretical computer science. Many important applications, however, (e.g.
to LTCs, 2-2 games) rely on a more general class of underlying structures called posets, and crucially
take advantage of non-simplicial structure. These works make it clear that the global expansion
properties of posets depend strongly on their underlying architecture (e.g. simplicial, cubical, linear
algebraic), but the overall phenomenon remains poorly understood. In this work, we quantify the
advantage of different poset architectures in both a spectral and combinatorial sense, highlighting
how regularity controls the spectral decay and edge-expansion of corresponding random walks.

We show that the spectra of walks on expanding posets (Dikstein, Dinur, Filmus, Harsha
APPROX-RANDOM 2018) concentrate in strips around a small number of approximate eigenvalues
controlled by the regularity of the underlying poset. This gives a simple condition to identify poset
architectures (e.g. the Grassmann) that exhibit strong (even exponential) decay of eigenvalues,
versus architectures like hypergraphs whose eigenvalues decay linearly – a crucial distinction in
applications to hardness of approximation and agreement testing such as the recent proof of the
2-2 Games Conjecture (Khot, Minzer, Safra FOCS 2018). We show these results lead to a tight
characterization of edge-expansion on expanding posets in the ℓ2-regime (generalizing recent work of
Bafna, Hopkins, Kaufman, and Lovett (SODA 2022)), and pay special attention to the case of the
Grassmann where we show our results are tight for a natural set of sparsifications of the Grassmann
graphs. We note for clarity that our results do not recover the characterization of expansion used in
the proof of the 2-2 Games Conjecture which relies on ℓ8 rather than ℓ2-structure.
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1 Introduction

Random walks on high dimensional expanders (HDX) have been the object of intense study
in theoretical computer science in recent years. Starting with their original formulation by
Kaufman and Mass [31], a series of works on the spectral structure of these walks [33, 16, 2]
led to significant breakthroughs in approximate sampling [4, 2, 3, 12, 13, 11, 22, 28, 41, 9],
CSP-approximation [1, 6], error-correcting codes [29, 30], agreement testing [19, 15, 32], and
more. Most of these works focus on the structure of expansion in hypergraphs (also called
simplicial complexes). However, hypergraphs are not always the appropriate object – recent
breakthroughs in locally testable [17] and quantum LDPC codes [42, 40, 39] rely crucially on
cubical structure not seen in hypergraphs, while many agreement testing results like the proof
of the 2-2 Games Conjecture [44] relies on linear algebraic rather than simplicial structure.

In this work, we study a generalized notion of HDX on partially ordered sets (posets)
introduced by Dikstein, Dinur, Filmus, and Harsha (DDFH) [16] called expanding posets
(eposets). Random walks on eposets capture a broad range of structures beyond their
hypergraph analogs, including natural sparsifications of the Grassmann graphs recently
crucial to the resolution of the 2-2 Games Conjecture [44, 37, 21, 20, 8, 36]. While originally
a global notion of expansion, Kaufman and Tessler (KT) [34] recently extended the study of
eposets by introducing local-to-global analysis to the setting and by identifying regularity as
a key parameter controlling expansion. The authors strengthened local-to-global theorems
for strongly regular posets like the Grassmann, giving the first general formulation for
characterizing expansion based on an eposet’s underlying architecture.

While analysis of the second eigenvalue is certainly important, a deeper understanding of
the spectral structure of eposets is required for applications like the proof of the 2-2 Games
Conjecture. Our main focus in this work lies in characterizing the spectral and combinatorial
behavior of walks on eposets beyond the second eigenvalue. Strengthening DDFH and work of
Bafna, Hopkins, Kaufman, and Lovett (BHKL) [6], we prove that at a coarse level (walks on)
eposets exhibit the same spectral and combinatorial characteristics as expanding hypergraphs
(e.g. spectral stripping, expansion of pseudorandom sets). On the other hand, as in KT,
we show that the finer-grained properties of these objects are controlled by the underlying
poset’s regularity, including the rate of decay of the spectrum and combinatorial expansion of
associated random walks. This gives a strong separation between structures like hypergraphs
with weak (linear) eigenvalue decay, and Grassmann-based eposets with strong (exponential)
decay (a crucial property in the proof of the 2-2 Games Conjecture [44]).

1.1 Background
We briefly overview the theory of expanding posets and higher order random walks (see
Section 2 for details). A d-dimensional graded poset is a set X equipped with a partial
order “<” and a ranking function r : X Ñ rds that respects “<” and partitions X into levels
Xp0q Y . . . Y Xpdq. When x ă y and rpyq “ rpxq ` 1, we write x Ì y. We assume throughout
this work that our posets are downward regular : there exists a regularity function Rpk, iq

such that every k-dimensional element is greater than exactly Rpk, iq i-dimensional elements.
Graded posets come equipped with a natural set of operators called the up and down

operators that lift or lower functions f : Xpiq Ñ R by averaging:

Uifpxq “ E
yÌx

rfpyqs Difpyq “ E
xÍy

rfpxqs.

Composing the averaging operators leads to a natural notion of random walks on the
underlying poset called higher order random walks (HD-walks). The simplest example is the
upper (lower) walk Di`1Ui (Ui´1Di) which moves between elements x, x1 P Xpiq via a common
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element y P Xpi ` 1q (Xi´1) with y ą x, x1 (y ă x, x1). We also consider longer variants of
the upper and lower walks called canonical walks pN i

k “ Dk`1 ˝ . . . ˝ Dk`i ˝ Uk`i´1 ˝ . . . ˝ Uk

and qN i
k “ Uk ˝ . . . ˝ Uk´i ˝ Dk´i`1 ˝ . . . ˝ Dk which similarly walk between k-dimensional

elements in Xpkq via a shared element in Xpk ` iq or Xpk ´ iq respectively.
Following DDFH [16], we call a poset a pδ, γq-expander for δ P r0, 1sd´1 and γ P R` if the

upper and lower walks are spectrally similar up to a laziness factor:

∥Di`1Ui ´ p1 ´ δiqI ´ δiUi´1Di∥ ď γ.

This generalizes standard spectral expansion which can be equivalently defined as looking at
the spectral norm of AG ´ U0D1, where AG (the adjacency matrix) is exactly the non-lazy
upper walk.1 While most of our results hold in general, we assume a weak non-laziness
condition on our underlying posets that holds in most cases of interest (see Definition 13).

1.2 Results
We now give an overview of our results, splitting this section into three parts for readability:
spectral stripping, characterizing edge expansion, and applications to the Grassmann.

Eigenstripping. We start with our generalized spectral stripping theorem.

▶ Theorem 1 (Spectrum of HD-Walks (informal Corollary 20)). Let M be an HD-walk on the
kth level of a pδ, γq-eposet. Then the spectrum of M is highly concentrated in k ` 1 strips:

SpecpMq P t1u Y

k
ď

i“1
rλipMq ´ e, λipMq ` es

where e ď Ok,δpγq. Moreover, the span of eigenvectors in the ith strip approximately
correspond to functions lifted from Xpiq to Xpkq.

This substantially simplifies and improves an analogous result of BHKL [6] on expanding
hypergraphs, which had sub-optimal error dependence of Okpγ1{2q. The main improvement
stems from an optimal spectral stripping result for arbitrary inner product spaces of independ-
ent interest. Theorem 1 follows by showing that the HD-Level-Set Decomposition, a natural
basis on eposets introduced by DDFH [16], gives such an approximate eigendecomposition.

In full generality, the approximate eigenvalues in Theorem 1 depend on the eposet
parameters δ, and can be fairly difficult to interpret. However, we show that under weak
assumptions (see Section 2) the eigenvalues can be associated with the regularity of the
underlying poset. We state the result just for lower walks for simplicity:

▶ Theorem 2 (Regularity Controls Spectral Decay (informal Theorem 22)). The approximate
eigenvalues of the lower walk qNk´i

k on a pδ, γq-eposet are controlled by the poset’s regularity
function: λjp qNk´i

k q P
Rpi,jq

Rpk,jq
˘ Ok,δpγq.

This generalizes work of Kaufman and Tessler [34] on the second eigenvalue, and reveals a
major distinction among poset architectures: posets with higher regularity enjoy faster decay
of eigenvalues.2 Theorem 2 gives a new method of identifying poset architectures exhibiting

1 For a broad range of posets, this is equivalent (up to constants) to local-spectral expansion, a notion of
high dimensional expansion introduced by Dinur and Kaufman [19], as originally proved for simplicial
complexes by DDFH [16], and later extended to a larger class of posets by Kaufman and Tessler [34].

2 We note that Theorem 1 can also be obtained by combining our spectral stripping result with recent
independent work of Dikstein, Dinur, Filmus, and Harsha [16, Section 8.4.1].

APPROX/RANDOM 2022
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strong spectral decay in the sense that for any δ ą 0, the lower walk only contains Oδp1q

approximate eigenvalues larger than δ. This property is crucial for both the run-time of
approximation algorithms on HDX [6] and the proof of the 2-2 Games Conjecture [44].

Characterizing Edge Expansion. Much of our motivation for studying the spectrum of
HD-walks is to understand the edge expansion of subsets S, denoted ΦpSq (see Section 5 for
formal definition). Characterizing edge-expansion in HD-walks has recently proven crucial to
understanding both algorithms for [5, 6] and hardness of unique games [44]. On expanding
hypergraphs, it is known that links give the canonical example of small non-expanding sets.

▶ Definition 3 (Link). Let X be a d-dimensional graded poset. The k-dimensional link,
called a “k-link,” of an element σ P X is the set of rank k elements greater than σ3, i.e.
Xk

σ “ ty P Xpkq : y ą σu. When k is clear from context, we write Xσ for Xk
σ for simplicity.

BHKL [6] proved that on hypergraphs, the expansion of links is exactly controlled by their
corresponding spectral strip. While their proof of this fact relied crucially on simplicial
structure, we show via a more general analysis that the result can be recovered for eposets.

▶ Theorem 4 (Expansion of Links (informal Theorem 29)). Let X be a pδ, γq-eposet and M an
HD-walk on Xpkq. Then for all 0 ď i ď k and τ P Xpiq, ΦpXτ q “ 1 ´ λipMq ˘ OM,k,δpγq.

Conversely one might ask: are all non-expanding sets explained by links? Following BHKL [6],
given a set S, consider the function defined on a link τ P Xpiq by LS,ipτq :“ E

Xτ

r1Ss ´ Er1Ss.
Two standard formulations of “non-expansion is explained by links” correspond to LS,i having
noticeable ℓ2 or ℓ8-norm for a non-expanding set S. Thus, we say S is pseudorandom if LS,i

is small with respect to one of these norms for all i ď ℓ (see Section 4 for precise definitions).
We prove that pseudorandom sets expand near-optimally.

▶ Theorem 5 (Pseudorandom Sets Expand (informal Theorem 33)). Let X be a pδ, γq-eposet
and M a walk on Xpkq. Then the expansion of any pε, iq-pseudorandom set S is at least:

ΦpSq ě 1 ´ λi`1 ´ OδpRpk, iqεq ´ Ok,δ,M pγq.

The main technical component behind Theorem 5 is a result called a “level-i” inequality
(cf. Theorem 26) which asserts that pseudorandomness controls the projection of the indicator
of a subset S onto eigenstrips. This strictly generalizes the result for simplicial complexes
in [6] where Rpk, iq “

`

k
i

˘

, and is tight for other important settings such as the Grassmann
(discussed below). Theorem 5 and Theorem 26 can also be viewed as another separation
between eposet architectures, this time in terms of combinatorial properties.

Applications: q-Eposets and the Grassmann Graphs. We conclude with applications of our
results to a particularly important class of eposets called “q-eposets.” Just like standard high
dimensional expanders arise from expanding subsets of the complete complex (hypergraph),
q-eposets arise from expanding subsets of the Grassmann Poset:

▶ Definition 6 (Grassmann Poset). The Grassmann Poset is a graded poset pX, ăq where X

is the set of all subspaces of Fn
q of dimension at most d, the partial ordering “ă” is given by

inclusion, and the rank function is given by dimension.

3 In the literature, a link is often defined to be all such elements, not just those of rank k. We adopt this
notation since we are mostly interested in working at a fixed level of the complex.
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We call a (downward-closed) subset of the Grassmann poset a q-simplicial complex, and
an expanding q-simplicial complex a q-eposet (see Section 2 for exact details). Using our
machinery for general eposets, we prove a tight level-i inequality for pε, ℓq-pseudorandom
sets S Ď Xpkq (see Theorem 37): for all 1 ď i ď ℓ,

|x1S ,1S,iy| ď

˜

ˆ

k

i

˙

q

ε ` Oq,kpγq

¸

x1S ,1Sy,

where 1S,i is the ith level of the HD-Level-Set Decomposition and
`

k
i

˘

q
“

p1´qk
q¨¨¨p1´qk´i`1

q

p1´qiq¨¨¨p1´qq

is the Gaussian binomial coefficient. We also prove this bound cannot be improved by any
constant factor, even in the ℓ8-regime. Furthermore, it is well known the dependence on k is
necessary [37], even if one is willing to suffer a worse dependence on the pseudorandomness ε.
This differs from simplicial complexes where the dependence can be removed in the ℓ8-regime
[36, 7, 25]. Still, it is possible that the dependence on k can be removed by changing the
definition of pseudorandomness, as was done on the Grassmann poset via finer-grained local
structure called “zoom-in zoom-outs” [44]. The existence of a notion of locality based on the
underlying poset structure that gives rise to k-independent bounds in the ℓ8-regime is an
interesting open problem.

Finally, we give applications of these results to edge-expansion in an important class of
walks that give rise to the well-studied Grassmann graphs.

▶ Definition 7 (Grassmann Graphs). The Grassmann Graph Jqpn, k, tq is the graph on
k-dimensional subspaces of Fn

q where pV, W q P E exactly when dimpV X W q “ t.

Note that non-lazy upper walk on the Grassmann poset is exactly the Grassmann graph
Jqpn, k, k ´ 1q. In Section 6, we show how to express any Jqpn, k, tq (in fact, for any q-
simplicial complex) as a sum of standard higher order random walks. This leads to a set
of natural sparsifications of the Grassmann graphs that may be of independent interest
for agreement testing, PCPs, and hardness of approximation. For simplicity, on a given
q-simplicial complex X, we refer to these “sparsified” Grassmann graphs as JX,qpn, k, tq for
the moment. The level-i inequality then implies for a pε, ℓq-pseudorandom set S Ď Xpkq

(Corollary 40):

ΦpSq ě 1 ´ Er1Ss ´ ε
ℓ
ÿ

i“1

ˆ

t

i

˙

q

´ q´pℓ`1qj ´ Oq,kpγq.

In practice, t is generally thought of as being Ωpkq (or even k ´ Op1q), which results in a
k-dependent bound. It remains an open problem whether a k-independent version can be
proved for any q-eposet beyond the Grassmann poset itself.

1.3 Related Work
Higher Order Random Walks. Higher order random walks were introduced in 2016 by
Kaufman and Mass [31]. Their spectral structure was later elucidated in a series of works
by Kaufman and Oppenheim [33], DDFH [16], Alev, Jeronimo, and Tulsiani [1], Alev and
Lau [2], and finally BHKL [6]. With the exception of DDFH, all of these works focused
on hypergraphs rather than general posets. Our spectral stripping theorem for eposets
essentially follows from combining eposet machinery developed by DDFH with our improved
variant of BHKL’s general spectral stripping theorem.

APPROX/RANDOM 2022
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Among the myriad applications of higher order random walks described above, our work
is closest to that of Bafna, Barak, Kothari, Schramm, and Steurer [5], and BHKL [6], who
used the spectral and combinatorial structure of HD-walks to build new algorithms for unique
games. The analysis in this paper also lends itself to the algorithmic techniques developed in
those works, but we are unaware of interesting examples beyond those in BHKL.

High Dimensional Expansion Beyond Hypergraphs. Most works listed above focus only on
the setting of hypergraphs. However, recent years have also seen the nascent development and
application of expansion beyond this setting [18, 42, 40, 39, 26], including the seminal work of
DDFH [16] on expanding posets as well as more recent breakthroughs on locally testable and
quantum codes [17, 42]. While DDFH largely viewed eposets as having similar structure, we
strengthen the case that different underlying poset architectures exhibit different properties.
This complements the results of Kaufman and Tessler [34], who showed that expanding posets
with strong regularity conditions such as the Grassmann exhibit more favorable properties
with respect to the second eigenvalue. Our results provide a statement of the same flavor
looking at the entire spectrum, along with additional separations in more combinatorial
settings. A related connection between poset regularity and the approximate spectrum of
walks was independently developed by DDFH in a recent update of their seminal work [16].

Expansion and Unique Games. One motivation behind this work is towards building a
more general framework for understanding the structure underlying the Unique Games
Conjecture [35], a standard hardness assumption in complexity for many combinatorial
optimization problems (see e.g. Khot’s survey [38]). In 2018, Khot, Minzer, and Safra [44]
made a major breakthrough towards the UGC in proving the weaker 2-2 Games Conjecture,
completing a long line of work in this direction [37, 21, 20, 8, 36, 44]. The key to the proof
is the “Grassmann expansion hypothesis,” which states that any non-expanding set in the
Grassmann graph Jqpd, k, k ´ 1q is non-trivially concentrated inside a local-structure called
“zoom-in zoom-outs.” As noted in the previous section, this result differs from our analysis in
two key ways: it lies in the ℓ8-regime, and must be totally independent of dimension.

Unfortunately, little progress has been made towards the UGC since, as KMS’ proof
of the Grassmann expansion hypothesis is quite complicated and highly tailored to the
exact structure of the Grassmann, making it difficult to generalize to related conjectures [8].
However, just as the ℓ2-regime analysis of DDFH and BHKL recently lead to a dimension
independent bound in the ℓ8-regime for standard HDX [7, 25], we expect the groundwork
laid in this paper will be important for proving generalized dimension independent expansion
hypotheses in the ℓ8-regime beyond the special case of the Grassmann graphs.

2 Preliminaries

Graded Posets. A partially ordered set (poset) P “ pX, ăq is a set of elements X endowed
with a partial order “ă”. A graded poset has a rank function r : X Ñ N satisfying:
1. r preserves “ă”: if y ă x, then rpyq ă rpxq.
2. r preserves cover relations: if x is the smallest element greater than y, then rpxq “ rpyq`1.
The function r partitions X into subsets by rank Xp0q Y . . .YXpdq, where maxXprq “ d, and
Xpiq “ r´1piq. We refer to a poset with maximum rank d as “d-dimensional”, and elements
in Xpiq as “i-faces”. Throughout this work, we consider d-dimensional graded posets that:
(i) have a unique minimal element, and (ii) are “pure”: all maximal elements have rank d.
Many graded posets of interest, like pure simplicial complexes and the Grassmann poset,
satisfy certain regularity conditions which will be crucial to our analysis.
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▶ Definition 8 (Regularity). A d-dimensional graded poset is downward regular if for all
i ď d there exists some constant Rpiq such that every element x P Xpiq covers exactly Rpiq

elements y P Xpi ´ 1q.
A d-dimensional graded poset is middle-regular if for all 0 ď i ď k ď d, there exists a

constant mpk, iq such that for any xk P Xpkq and xi P Xpiq satisfying xk ą xi, there are
exactly mpk, iq chains4 of elements xk ą xk´1 ą . . . ą xi`1 ą xi where each xj P Xpjq.

A poset is regular if it is both downward and middle regular.

We will assume all posets we discuss in this work are regular from this point forward. Regular
posets also have the nice property that for any dimensions i ă k, there exists a higher order
regularity function Rpk, iq such that any x P Xpkq is greater than exactly Rpk, iq elements in
Xpiq (see Appendix A). We define Rpi, iq “ 1 and Rpj, iq “ 0 whenever j ă i for convenience.

Measured Posets and The Random Walk Operators. A measured poset is a graded poset
X endowed with a distribution Π “ pπ0, . . . , πdq, where each marginal πi is a distribution
over Xpiq. We focus on the case where Π is induced entirely from πd. That is, @ 0 ď i ă d:

πipxq “
1

Rpi ` 1, iq

ÿ

yÍx

πi`1pyq.

In other words, each lower dimensional distribution πi may be induced through the following
process: an element y P Xpi ` 1q is selected with respect to πi`1, and an element x P Xpiq

such that x ă y is then chosen uniformly at random.
The averaging operators U and D are defined analogously to their notions on simplicial

complexes, with the main change being the use of the general regularity function Rpi ` 1, iq:

Uifpyq “
1

Rpi ` 1, iq

ÿ

xÌy

fpxq Di`1fpxq “
1

πi`1pXxq

ÿ

yÍx

πi`1pyqfpyq,

where for i ă k and x P Xpiq, the appropriate normalization factor is

πkpXxq “
ÿ

yPXpkq:yąx

πkpyq “ Rpk, iqπipxq.

In Appendix A, we show that the up operators compose nicely, and in particular that:

Uk
i fpyq :“ Uk´1 ˝ . . . ˝ Uifpyq “

1
Rpk, iq

ÿ

xPXpiq:xăy

fpxq.

As with simplicial complexes, the down and up operators are adjoint with respect to the
standard inner product on measured posets: for any f : Xpkq Ñ R and g : Xpk ´ 1q Ñ R,

xf, Uk´1gyXpkq “ xDkf, gyXpk´1q, where xf, gyXpkq “
ÿ

τPXpkq

πkpτqfpτqgpτq.

We omit Xpkq from the notation when clear from context. This useful fact allows us to define
basic self-adjoint notions of higher order random walks just like on simplicial complexes.

4 Such objects are sometimes called flags, e.g. in the case of the Grassmann poset.

APPROX/RANDOM 2022
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Higher Order Random Walks. Let Ck denote the set of functions f : Xpkq Ñ R. Following
prior work, we define natural sets of random walk operators via the averaging operators.

▶ Definition 9 (Walk Operators [31, 16, 1]). Given a measured poset pX, Πq, a k-dimensional
pure walk Y : Ck Ñ Ck on pX, Πq (of height hpY q) is a composition Y “ Z2hpY q ˝ ¨ ¨ ¨ ˝ Z1,

where each Zi is a copy of D or U , and there are hpY q of each type.
Let Y be a family of pure walks Y : Ck Ñ Ck on pX, Πq. We call an affine combination

M “
ř

Y PY
αY Y a k-dimensional HD-walk on pX, Πq if it is stochastic and self-adjoint. The

height of M , denoted hpMq, is the maximum height of any pure Y P Y with a non-zero
coefficient. The weight of M , denoted wpMq, is |α|1.

▶ Definition 10 (Canonical Walk). Given a d-dimensional measured poset pX, Πq and para-
meters k ` j ď d, the upper canonical walk is pN j

k :“ Dk`j
k Uk`j

k , while for j ď k the lower
canonical walk is qN j

k :“ Uk
k´jDk

k´j , where Uk
ℓ “ Uk´1 . . . Uℓ, and Dk

ℓ “ Dℓ`1 . . . Dk.

Since the non-zero spectrum of pN j
k and qN j

k`j are equivalent (c.f. [2]), we focus in this work
mostly on the upper walks which we write simply as N j

k .
For certain specially structured posets, we will also study an important class of HD-walks

known as (partial) swap walks. We will introduce these well-studied walks momentarily.

Expanding Posets and the HD-Level-Set Decomposition. DDFH [16] observed that one
can use the averaging operators to define an extension of spectral expansion to graded posets:

▶ Definition 11 (Eposet [16]). Let pX, Πq be a measured poset, δ P r0, 1sd´1, and γ ă 1. X

is an pδ, γq-eposet if for all 1 ď i ď d ´ 1:

∥Di`1Ui ´ p1 ´ δiqI ´ δiUi´1Di∥ ď γ.

Much of our analysis in this work will be based off of an elegant approximate Fourier
decomposition for eposets introduced by DDFH [16].

▶ Theorem 12 (HD-Level-Set Decomposition, Theorem 8.2 [16]). Let pX, Πq be a d-dimensional
pδ, γq-eposet with γ sufficiently small. For all 0 ď k ď d, let H0 “ C0, Hi “ KerpDiq, V i

k “

Uk
i Hi. Then Ck “ V 0

k ‘ . . . ‘ V k
k . In other words, every f P Ck has a unique decomposition

f “ f0 ` . . . ` fk such that fi “ Uk
i gi for gi P KerpDiq.

It is well known that the HD-Level-Set Decomposition is approximately an eigenbasis for
HD-walks on simplicial complex [16, 1, 6]. We will show this statement extends to all eposets
(extending DDFH’s similar analysis of the upper walk N1

k ).
We will further assume for simplicity throughout this work an additional property of

eposets we called (approximate) non-laziness.

▶ Definition 13 (β-Non-Lazy Eposets). Let pX, Πq be a d-dimensional measured poset. We
call pX, Πq β-non-lazy if for all 1 ď i ď d, maxσPXpiqt1T

σ Ui´1Di1σu ď β.

This condition asserts that no element in the poset carries too much weight, even upon
conditioning. All of our results hold for general eposets,5 but their form is significantly more
interpretable when the poset is additionally non-lazy. In fact, most γ-eposets of interest are
Opγq-non-lazy. It is easy to see for instance that any “γ-local-spectral” expander satisfies
this condition, an equivalent notion of expansion to γ-eposets under suitable regularity
conditions [34]. We discuss this further in Appendix A.

5 The one exception is the lower bound of Theorem 4.
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The Grassmann Poset and q-Eposets. At the moment, there are only two known families
of expanding posets of significant interest in the literature: those based on pure simplicial
complexes (the downward closure of a k-uniform hypergraph), and pure q-simplicial complexes
(the analogous notion over subspaces). The ℓ2-structure of the former is studied in detail
in [6]; we focus on the latter which is less-studied, but responsible for a number of important
results including the resolution of the 2-to-2 Games Conjecture [44].

▶ Definition 14 (q-Simplicial Complex). Let Gqpn, dq denote the d-dimensional subspaces
of Fn

q . A weighted, pure q-simplicial complex pX, Πq is given by a family of subspaces
X Ď Gqpn, dq and a distribution Π over X. We will usually consider the downward closure
Xp0q Y . . . Y Xpdq, where Xpiq Ď Gqpn, iq consists of all i-dimensional subspaces contained in
some element in X “ Xpdq. Further, on each level Xpiq, Π induces a natural distribution πi:

@V P Xpiq : πipV q “
1

`

d
i

˘

q

ÿ

W PXpdq:W ĄV

πdpW q,

where πd “ Π and
`

d
i

˘

q
“

p1´qd
q¨¨¨p1´qd´i`1

q

p1´qiq¨¨¨p1´qq
is the Gaussian binomial coefficient.

Taking X “ Gqpn, dq yields the Grassmann poset, the q-analog of the complete simplicial
complex. The Grassmann poset is well known to be a expander in this sense (see e.g. [43]) –
in fact it is a 0-eposet with parameters

δi “
pqi ´ 1qpqn´i`1 ´ 1q

pqi`1 ´ 1qpqn´i ´ 1q
, (1)

the q-analog of the eposet parameters for the complete complex [16]. With this in mind, let’s
define a special class of eposets based on q-simplicial complexes.

▶ Definition 15 (γ-q-Eposet [16]). A pure, d-dimensional weighted q-simplicial complex
pX, Πq is a γ-q-eposet if it is a pδ, γq-eposet satisfying δi “ q qi

´1
qi`1´1 for all 1 ď i ď d ´ 1.

Constructing bounded-degree q-eposets (a problem proposed by DDFH [16]) remains an
interesting open problem. Kaufman and Tessler [34] recently made some progress in this
direction, but the expansion parameter of their construction is fairly poor (around 1{2).

Finally, in our applications to the Grassmann we consider a particularly important class
of walks called partial-swap walks, which are non-lazy variants of the upper canonical walks.

▶ Definition 16 (Partial-Swap Walk). Let pX, Πq be a weighted, d-dimensional q-simplicial
complex. The partial-swap walk Sj

k is the restriction of the canonical walk N j
k to faces whose

intersection has dimension k ´ j. In other words, if |V X W | ą k ´ j then Sj
kpV, W q “ 0,

and otherwise Sj
kpV, W q 9 N j

kpV, W q.

When applied to the Grassmann poset itself, it is clear by symmetry that the partial-swap
walk Sj

k returns exactly the Grassmann graph Jqpd, k, k ´ jq. On the other hand, it is not
immediately obvious these objects are even HD-walks when applied to a generic q-simplicial
complex. We prove this is the case in Section 6.

3 Eigenstripping and the Spectra of HD-Walks

We now discuss HD-walks’ spectral structure. It turns out that on expanding posets, these
walks exhibit almost exactly the same properties as on the special case of simplicial complexes
studied in [33, 16, 1, 6]: a walk’s spectrum lies concentrated in strips corresponding to levels
of the HD-Level-Set Decomposition. The key to proving this lies in a more general theorem
characterizing the spectral structure of any inner product space admitting an “approximate
eigendecomposition” [6]. We prove a significantly simpler, tight variant of this result.

APPROX/RANDOM 2022
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▶ Theorem 17 (Eigenstripping). Let M be a self-adjoint operator over an inner product
space V , and suppose V “ V 1 ‘ . . . ‘ V k satisfies }Mf ´ λif} ď ci}f} for all f P V i for
parameters λ1 ě . . . ě λn and ci ě 0. Then as long as ci ` ci`1 ă λi ´ λi`1, the spectrum
of M is concentrated around each λi:

SpecpMq Ď

k
ď

i“1
rλi ´ ci, λi ` cis

Proof. For each i, consider the (self-adjoint) operator M2
i “ pM ´ λiIq2. We claim it is

enough to show that M2
i has exactly dimpV iq eigenvalues less than c2

i in absolute value. To
see why, observe that the eigenvalues of M2

i are exactly pµ ´ λiq
2 for each µ in SpecpMq

(with matching multiplicities), and therefore that any eigenvalue µi P SpecpM2
i q less than c2

i

implies the existence of a corresponding eigenvalue of M in rλi ˘ cis. If each M2
i has dimpV iq

eigenvalues less than c2
i , then M has at least dimpV iq eigenvalues in each interval rλi ˘ cis.

Moreover, since these intervals are disjoint by assumption and
ř

dimpV iq “ dimpV q, this
must account for all eigenvalues of M .

To prove the claim, we apply the Courant-Fischer theorem [23], which asserts that the
kth smallest eigenvalue of self-adjoint operator A is

λn´k`1 “ min
U

"

max
fPU

"

xf, Afy

xf, fy

*
ˇ

ˇ

ˇ

ˇ

dimpUq “ k

*

.

Taking U “ V i, A “ M2
i and k “ dimpV iq (noting that xf, M2

i fy “ }pM ´ λiIqf}2 by
self-adjointness) with the approximate eigendecomposition assumption yields the claim. ◀

Note that this result is also trivially tight for any true eigendecomposition. We remark that
similar strategies have been used in the numerical analysis literature (see e.g. [27]).

Thus it is enough to prove that the HD-Level-Set Decomposition is an approximate
eigenbasis. This follows similarly as for local-spectral expanders [6], though somewhat more
care is required to deal with general eposet parameters. First, an inductive application
of [16, Claim 8.8] (itself a repeated application of Definition 11) shows that functions in the
HD-Level-Set Decomposition are close to being eigenvectors (see full version for details).

▶ Proposition 18. Let pX, Πq be a pδ, γq-eposet, and Y the pure balanced walk of height j,
with down operators at positions pi1, . . . , ijq. For 1 ď ℓ ď k, let fℓ “ Uk

ℓ gℓ for some gℓ P Hℓ,
and let

δk
j “

k
ź

i“k´j

δi, γk
j “ γ

j´1
ÿ

i“´1
δk

i ,

where δk
i “ 1 for any i ă 0 for notational convenience. Then fℓ is an approximate eigenvector

of Y :∥∥∥∥∥Y fℓ ´

j
ź

s“1

´

1 ´ δk´2s`is
k´2s`is´ℓ

¯

fℓ

∥∥∥∥∥ ď ∥gℓ∥
j
ÿ

s“1

γk´2s`is
k´2s`is´ℓ

s´1
ź

t“1

´

1 ´ δk´2t`it
k´2t`it´ℓ

¯

ď pj ` kqjγ ∥gℓ∥ .

When γ “ 0, this implies that the HD-Level-Set decomposition is a true eigendecomposition.
Since balanced walks are simply affine combinations of pure walks, this immediately implies
a similar result for the more general case.

Before proceeding, for a d-dimensional pδ, γq-eposet, and 0 ď ℓ ď k ă d, define:

ρk
ℓ “

k´ℓ
ź

i“1

`

1 ´ δk´i
k´ℓ´i

˘

, ρmin “ min
0ďℓďk

tρk
ℓ u. (2)
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The parameter ρk
ℓ arises throughout much of our work, and while it is difficult to interpret

on general eposets, we prove it has a very natural form as long as non-laziness holds.

▷ Claim 19 (ρk
ℓ for Regular Eposets). Let pX, Πq be a regular, γ-non-lazy6 d-dimensional

pδ, γq-eposet. Then for any i ď k ă d, we have:

ρk
i P

1
Rpk, iq

˘ err,

where err ď O
´

i3k2Rmax
δip1´δi´1q

γ
¯

. Likewise as long as γ ď O
´

maxitδip1´δi´1qu

i3k2R2
max

¯

we have ρ´1
min ď

OpRmaxq, where Rmax :“ max0ďiďktRpk, iqu.

This gives a nice generalization of the interpretation of ρk
i on hypergraphs, where ρk

i “
`

k
i

˘´1

[16]. We prove this claim in Appendix A. For simplicity, we will assume throughout the rest
of this work that our eposets are γ-non-lazy, which is true for most cases of interest (see
Appendix A). All results hold in the more general case using ρk

i unless otherwise noted.
Combining Proposition 18 and [16, Lemma 8.11] immediately implies that the HD-Level-

Set Decomposition is an approximate eigendecomposition:

▶ Corollary 20. Let pX, Πq be a pδ, γq-eposet and let M “
ř

Y PY
αY Y be an HD-walk. For

1 ď ℓ ď k, if fℓ “ Uk
ℓ gℓ for some gℓ P Hℓ, then for γ ď O

´

maxitδip1´δi´1qu

k5R2
max

¯

:∥∥∥∥∥Mfℓ ´

˜

ÿ

Y PY
αY λY,δ,ℓ

¸

fℓ

∥∥∥∥∥ ď cγ ∥fℓ∥ ,

where λY,δ,ℓ is the corresponding eigenvalues of the pure balanced walk Y on a pδ, 0q-eposet
(the form of which are given in Proposition 18), and c ď O pphpMq ` kqhpMqRpk, ℓqwpMqq.

Theorem 17 then immediately implies that for any self-adjoint walk (e.g. canonical or swap
walk), the true spectrum is concentrated around these approximate eigenvalues.

A straightforward, but useful example application of Corollary 20 immediately yields the
approximate spectrum of a basic higher order random walk.

▶ Corollary 21 (Spectrum of Lower Canonical Walks). Let pX, Πq be a pδ, γq-eposet. The
approximate eigenvalues of the canonical lower walk qNk´ℓ

k are:

λjp qNk´ℓ
k q “

k´ℓ
ź

s“1
p1 ´ δk´s

k´s´jq.

Similar to the case of ρk
i , while this is difficult to interpret in the general setting, the

eigenvalues have a very natural form on non-lazy eposets given by the regularity parameters.

▶ Theorem 22. Let pX, Πq be a γ-non-lazy pδ, γq-eposet. The approximate eigenvalues of
the canonical lower walk qNk´i

k are λjp qNk´i
k q P

Rpi,jq

Rpk,jq
˘ cγ, where c ď O

´

i4k2Rmax
δip1´δi´1q

γ
¯

.

The proof requires machinery developed in Section 5 and is given in Appendix A.

6 One can prove this claim more generally for any β-non-laziness, but most γ-eposets of interest are
additionally γ-non-lazy, so this simplified version is generally sufficient.
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4 Pseudorandomness and the HD-Level-Set Decomposition

Now that we know the spectral structure of HD-walks, we shift to studying their combinatorial
structure. In particular, we will focus on how natural notions of pseudorandomness control
the projection of functions onto the HD-Level-Set Decomposition. As much of this theory
generalizes arguments of BHKL, we defer the proofs in this section to the full version.

We start with the definition of pseudorandomness in the ℓ2-regime, which measures the
variance of a set across links.

▶ Definition 23 (ℓ2-Pseudorandom Functions [6]). A function f P Ck is pε1, . . . , εℓq-ℓ2-
pseudorandom if its variance across i-links is small for all 1 ď i ď ℓ:

VarpDk
i fq ď εi|Erf s|.

In their work on simplicial complexes, BHKL [6] observed a close connection between ℓ2-
pseudorandomness, the HD-Level-Set Decomposition, and the spectra of the lower canonical
walks. Using the approximate eigendecomposition developed in the previous section in
Corollary 21, it turns out that the same connection holds in general for eposets.

▶ Theorem 24. Let pX, Πq be a pδ, γq-eposet with γ ď O
´

maxitδip1´δi´1qu

k5R2
max

¯

. If f P Ck has
HD-Level-Set Decomposition f “ f0 ` . . . ` fk, then for any ℓ ď k, VarpDk

ℓ fq is controlled
by its projection onto V 0

k ‘ . . . ‘ V ℓ
k in the following sense:

VarpDk
ℓ fq P

ℓ
ÿ

j“1
λjp qNk´ℓ

k qxf, fjy ˘ ckγ}f}2,

where ck ď Opk5{2Rmaxq and λjp qNk´ℓ
k q “

śk´ℓ
s“1p1 ´ δk´s

k´s´jq.

While ℓ2-pseudorandomness is useful in its own right (e.g. for local-to-global algorithms
for unique games [5, 6]), there is also significant interest in a stronger ℓ8-variant in the
hardness of approximation literature [36, 44].

▶ Definition 25 (ℓ8-Pseudorandom Functions [6]). A function f P Ck is pε1, . . . , εℓq-ℓ8-
pseudorandom if for all 1 ď i ď ℓ its local expectation is close to its global expectation:

›

›Dk
i f ´ Erf s

›

›

8
ď εi.

In their recent work on ℓ2-structure of expanding simplicial complexes, BHKL prove a basic
reduction from ℓ8 to ℓ2-pseudorandomness that allows for an analogous level-i inequality
for this notion as well. We show the same result holds for general eposets by applying
Theorem 24 with Claim 19 to obtain a level-i inequality for pseudorandom sets (see the full
version for the more general version). The key idea is to lower bound the variance of Dk

i by
the ith component in the expansion of variance given by Theorem 24.

▶ Theorem 26. Let pX, Πq be a pδ, γq-eposet with γ ď O
´

maxitδip1´δi´1qu

k5R2
max

¯

and suppose
that for S Ď Xpkq, 1S is pε1, . . . , εℓq-ℓ8 pseudorandom. Then 1S is also pε1, . . . , εℓq-ℓ2
pseudorandom, and for all 1 ď i ď ℓ:

|x1S ,1S,iy| ď pRpk, iqεi ` cγqEr1Ss,

where c ď O
´

k5R2
max

maxitδip1´δi´1qu

¯

.

This recovers the tight inequality for simplicial complexes given in [6] where Rpk, iq “
`

k
i

˘

,
as well as providing the natural q-analog for q-simplicial complexes where Rpk, iq “

`

k
i

˘

q
.
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5 Expansion of HD-walks

It is well known that higher order random walks on simplicial complexes are not small-set
expanders. BHKL gave an exact characterization of this phenomenon for local-spectral
expanders: they showed that the expansion of any i-link with respect to an HD-walk M is
almost exactly 1 ´ λipMq. Moreover, using the level-i inequality from the previous section,
BHKL proved a tight converse to this result in an ℓ2-sense: any non-expanding set must have
high variance across links. This gave a complete ℓ2-characterization of non-expanding sets on
local-spectral expanders, and lay the structural groundwork for new algorithms for unique
games over HD-walks. In this section, we extend these results to general expanding posets.

▶ Definition 27 (Weighted Edge Expansion). Let M be a k-dimensional HD-Walk on a
graded poset pX, Πq. Let Mpv, XpkqzSq “

ř

yPXpkqzS

Mpv, yq where Mpv, yq is the transition

probability from v to y. The weighted edge expansion of a subset S Ă Xpkq with respect to
M is

ΦpSq “ E
v„πk|S

rMpv, XpkqzSqs .

Before we prove the strong connections between links and expansion, we need to introduce
an important property of HD-walks, monotonic eigenvalue decay.

▶ Definition 28 (Monotonic HD-walk). Let pX, Πq be a pδ, γq-eposet. We call an HD-walk M

monotonic if its approximate eigenvalues λipMq (given in Corollary 20) are non-increasing.

Most HD-walks of interest (e.g. pure walks, partial-swap walks on simplicial or q-simplicial
complexes, etc.) are monotonic. This property will be crucial to understanding expansion.
To start, let’s see how it allows us to upper bound the expansion of links.

▶ Theorem 29 (Local Expansion vs Global Spectra). Let pX, Πq be a pδ, γq-eposet and M be
a k-dimensional monotonic HD-walk. Then for all 0 ď i ď k and τ P Xpiq, it holds that

ΦpXτ q P 1 ´ λipMq ˘ cγ, where c ď O

ˆ

k5R2
maxphpMq`kqhpMqwpMq

δk
k´i

p1´δi´1q

˙

.

The key to proving Theorem 29 is to show that the weight of an i-link lies almost entirely
on level i of the HD-Level-Set Decomposition. To show this, we rely on another connection
between regularity and eposet parameters for non-lazy posets.

▷ Claim 30. Let pX, Πq be a d-dimensional pδ, γq-eposet. Then for every 1 ď k ď d and
0 ď i ď k, the following relation between the eposet and regularity parameters holds:

λipN
1
k q P

Rpk, iq

Rpk ` 1, iq
˘
`

γk
k´i ` Rpk, iqδk

k´iγ
˘

.

We prove this relation in Appendix A. With this in hand, we can show links project mostly
onto their corresponding level. We defer the proof to the full version, but the key idea is to
express the (non)-expansion of the link both directly using the regularity parameters and
using the approximate eigenvalues in the HD-Level-Set decomposition to argue that the only
way these quantities can be equal is if the desired conclusion holds.

▶ Lemma 31. Let pX, Πq be a d-dimensional pδ, γq-eposet with γ ď O
´

maxitδip1´δi´1qu

k5R2
max

¯

.
Then for all 0 ď i ď k ă d and τ P Xpiq, for all j ‰ i:

ˇ

ˇ

ˇ

ˇ

x1Xτ ,i,1Xτ ,jy

x1Xτ
,1Xτ

y

ˇ

ˇ

ˇ

ˇ

ď O

˜

k3Rmax

δk
k´ip1 ´ δi´1q

γ

¸

.
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We note that the above is the only result in our work that truly relies on non-laziness (it
is used only to replace ρ with regularity in all other results). It is possible to recover the
upper bound in Theorem 29 for general eposets via arguments used in [6], but the lower
bound remains open for concentrated posets. With that in mind, we now prove Theorem 29.

Proof of Theorem 29. By the previous lemma, we have
ˇ

ˇ

ˇ

ˇ

x1Xτ ,1Xτ ,jy

x1Xτ
,1Xτ

y

ˇ

ˇ

ˇ

ˇ

ď O

˜

1
δk

k´ip1 ´ δi´1q
¨

ˆ

k3

ρmin
γ ` Rpk, iqγ

˙

¸

.

Expanding out Φ̄p1Xτ
q then gives:

Φ̄p1Xτ q “
1

x1Xτ ,1Xτ y

i
ÿ

j“0
x1Xτ , M1Xτ ,jy

ď
1

x1Xτ
,1Xτ

y

i
ÿ

j“0
λipMqx1Xτ ,1Xτ ,jy ` c2γ

ď λipMq
x1Xτ ,1Xτ ,iy

x1Xτ
,1Xτ

y
` err1

ď λipMq ` err2.

where c2, err1, err2 ď O

ˆ

k
δk

k´i
p1´δi´1q

´

k2
phpMq`kqhpMqwpMq

ρmin
γ ` Rpk, iqγ

¯

˙

and the last step

follows from the previous lemma. The conclusion then follows from applying Claim 19. ◀

Thus, for sufficiently nice expanding posets, the expansion of any i-link with respect to an
HD-walk is almost exactly 1 ´ λipMq. As HD-walks are generally poor expanders (have large
λ1pMq), Theorem 29 implies that links are examples of small, non-expanding sets. Following
BHKL, we now prove a converse to this result: any non-expanding set must be explained by
some structure inside links. To give a precise statement, we need the following definition:

▶ Definition 32 (Stripped Threshold Rank [6]). Let pX, Πq be a pδ, γq-eposet and M a
k-dimensional HD-walk with γ small enough that the HD-Level-Set Decomposition has a
corresponding decomposition of disjoint eigenstrips Ck “

À

W i
k. The ST-Rank of M with

respect to η is the number of strips containing an eigenvector with eigenvalue at least η:

RηpMq “ |tW i
k : Df P V i, Mf “ λf, λ ą ηu|.

With this definition, we provide a converse to Theorem 29 in both ℓ2 and ℓ8 senses:

▶ Theorem 33. Let pX, Πq pδ, γq-eposet, M a k-dimensional, monotonic HD-walk, and γ

small enough that the eigenstrip intervals of Theorem 17 are disjoint. For any η ą 0, let
r “ RηpMq ´ 1. Then the expansion of a set S Ă Xpkq of density α is at least:

ΦpSq ě 1 ´ α ´ p1 ´ αqη ´

r
ÿ

i“1
pλipMq ´ ηqRpk, iqεi ´ cγ

where S is pε1, . . . , εrq-pseudorandom and c ď O
´

k5R2
maxphpMq`kqhpMqwpMq

maxitδip1´δi´1qu

¯

.

The argument is similar to [6] for simplicial complexes and relies on similar manipulations
to Theorem 29, so we defer the proof to the full version. Theorem 33 recovers the analogous
result for simplicial complex in [6] with the appropriate value Rpk, iq “

`

k
i

˘

. BHKL also
prove this special case is tight in multiple senses; see the discussion there for more details.
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6 The Grassmann and q-eposets

In this section, we specialize to expanding subsets of the Grassmann poset. We will show
that our analysis is tight in this regime.

Spectra. We start by examining the spectrum of HD-walks on the Grassmann and q-eposets,
focusing on the most widely used walks in the literature, the canonical and partial-swap
walks. To start, recall that the Grassmann poset itself is a 0-eposet. Plugging the parameters
in Equation (1) into Proposition 18, along with an analogous calculation for q-eposets, gives
a nice exact form for the spectra of canonical walks.

▶ Corollary 34 (N j
k Spectra). Let X “ Gqpn, dq be the Grassmann Poset, k ` j ď d, and

fℓ “ Uk
ℓ gℓ for some gℓ P Hℓ. Then N j

kfℓ “ λℓfℓ, where

λℓ “ qℓj

`

k`j´ℓ
j

˘

q
`

k`j
j

˘

q

`

n´k´ℓ
j

˘

q
`

n´k
j

˘

q

« q´ℓj .

Similarly, let pX, Πq be a d-dimensional γ-q-eposet with γ ď q´Ωpk2
q, k ` j ď d, and

fℓ “ Uk´1
ℓ gℓ for some gℓ P Hℓ. Then:∥∥∥∥∥∥N j
kfℓ ´

`

k`j´ℓ
j

˘

q
`

k`j
j

˘

q

fℓ

∥∥∥∥∥∥ ď O

˜

jpj ` kq

ˆ

k

ℓ

˙

q

¸

γ ∥fℓ∥

The first equation above recovers a very simple proof of classical results to this effect (see
e.g. [14]). Note that for small enough γ, Theorem 17 implies that the true spectra is then
concentrated around these values as well. These eigenvalues are, as one would expect, the
natural q-analog of the corresponding eigenvalues on simplicial complexes.

Moreover, this carries over to the class of partial-swap walks, which were originally
analyzed by AJT on simplicial complexes [1]. To see this, we first need to show (in Appendix B)
these walks are indeed HD-walks, which follows from the q-analog of statements in AJT [1].

▶ Lemma 35. Let pX, Πq be a pure, measured q-simplicial complex. Then:

N j
k “

j
ÿ

i“0
qi2

`

j
i

˘

q

`

k
k´i

˘

q
`

k`j
k

˘

q

Si
k, and Sj

k “
1

qj2` k
k´j

˘

q

j
ÿ

i“0
p´1qj´iqpj´i

2 q

ˆ

j

i

˙

q

ˆ

k ` i

i

˙

q

N i
k.

This is unsurprisingly the q-analog of the analogous statement on simplicial complexes (see
[1, Corollary 4.13]). Finally, combining the previous result with Corollary 20 and Corollary 34,
it is possible to show that the eigenvalues of partial-swap walks on q-simplicial complexes are
given by the natural q-analog of the simplicial complex case (see the full version for details):

▶ Corollary 36. Let pX, Πq be a d-dimensional γ-q-eposet with γ sufficiently small, k ` j ď d,
and fℓ “ Uk

ℓ gℓ for some gℓ P Hℓ. Then:∥∥∥∥∥Sj
kfℓ ´

`

k´j
ℓ

˘

q
`

k
ℓ

˘

q

fℓ

∥∥∥∥∥ ď O

˜

ˆ

q

q ´ 1

˙minpj,k´jq`2
k2
ˆ

k

ℓ

˙

q

¸

γ ∥fℓ∥

Again, since the swap walks are self-adjoint Theorem 17 implies that for small enough γ

the true spectra is closely concentrated around these values as well.

APPROX/RANDOM 2022
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Pseudorandom Functions and Small Set Expansion. With an understanding of the spectra
of HD-walks on q-simplicial complexes, we move to studying its combinatorial structure. By
direct computation, it is not hard to show that on q-eposets, ρk

ℓ “
`

k
ℓ

˘´1
q

(Claim 19 would
only imply this is approximately true). As a result, we get a level-i inequality for q-simplicial
complexes that is the natural q-analog of BHKL’s inequality for basic simplicial complexes.

▶ Theorem 37. Let pX, Πq be a γ-q-eposet with γ ď q´Ωpk2
q and let S Ď Xpkq. If 1S is

pε1, . . . , εℓq-ℓ8-pseudorandom, then for c ď qOpk2
q,

|x1S ,1S,iy| ď

˜

ˆ

k

i

˙

q

εi ` cγ

¸

Er1Ss @ 1 ď i ď ℓ.

For large enough q, γ´1, this result is exactly tight. The key to showing this fact is to
examine a local structure unique to the Grassmann called co-links. The co-link of an element
W P Xpk1q, is all of the subspaces contained in W , i.e. X̄W “ tV P Xpkq : V Ď W u. Just
like links, it turns out that co-links of dimension i (that is k1 “ d ´ i) also come through
levels 0 through i of the complex, although this is somewhat trickier to see. The essential
observation is that co-links satisfy enough symmetries to explicitly construct a function in Ci

whose image under Uk
i yields the desired function; see the full version for the construction.

▶ Lemma 38 (HD-Level-Set Decomposition of Co-Links). Let X “ Gqpd, kq and S “ XW be
a co-link of dimension i for W P Xpd ´ iq. Then, we have 1S P V 0

k ‘ ¨ ¨ ¨ ‘ V i
k .

Using this fact, we can show that our level-i inequality is exactly tight on co-links,
deferring the proof to Appendix B.

▶ Proposition 39. Let X “ Gqpd, kq be the Grassmann poset. For any i ď k P N and c ă 1,
there exist large enough q, d and a pi, εiq-pseudorandom set S Ă Xpkq such that

x1S ,1S,iy ą c

ˆ

k

i

˙

q

εix1S ,1Sy.

Finally, Theorem 37 directly implies that for the canonical and partial-swap walks,
sufficiently pseudorandom functions expand near perfectly.

▶ Corollary 40 (q-Eposets Edge-Expansion). Let pX, Πq be a d-dimensional γ-q-eposet, S Ă

Xpkq a subset whose indicator function 1S is pε1, . . . , εℓq-pseudorandom. Then the edge
expansion of S with respect to the canonical walk N j

k is bounded by:

Φπk
pN j

k , Sq ě 1 ´ Er1Ss ´

ℓ
ÿ

i“1

`

k`j´i
j

˘

q
`

k`j
j

˘

q

ˆ

k

i

˙

q

εi ´ q´pℓ`1qj ´ qOpk2
qγ.

Further, the edge expansion of S with respect to the partial-swap walk Sj
k is bounded by:

Φπk
pSj

k, Sq ě 1 ´ Er1Ss ´

ℓ
ÿ

i“1

ˆ

k ´ j

i

˙

q

εi ´ q´pℓ`1qj ´ qOpk2
qγ.

Note that Sj
k on q-eposets is a generalization of the Grassmann Graphs (and are equivalent

when X is the Grassmann Poset). While our definition of pseudorandomness is weaker than
that of [44] and therefore necessarily depends on the dimension k, we take the above as
evidence that the framework of expanding posets may be important for making further
progress on the Unique Games Conjecture. In particular, combined with recent works
removing this k-dependence on simplicial complexes [7, 25], it seems plausible that the
framework of expanding posets may lead to a more general understanding of the structure
underlying the Unique Games Conjecture.
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A Eposet Parameters and Regularity

In this section, we discuss connections between notions of regularity, the averaging operators,
and eposet parameters. To start, we’ll show that downward and middle regularity (which
are defined only on adjacent levels of the poset) imply extended regularity between any two
levels.

▶ Proposition 41. Let pX, Πq be a d-dimensional regular measured poset. Then for any
i ă k ď d, there exist regularity constant Rpk, iq such that for any xk P Xpkq, there are
exactly Rpk, iq elements xi P Xpiq such that xk ą xi.

Proof. Given any element xk P Xpkq, downward regularity promises there are exactly
śk

j“i`1 Rpjq unique chains xk ă xk´1 ă . . . ă xi`1 ă xi. By middle regularity, any fixed
xi P Xpiq which appears in this fashion appears in exactly mpk, iq chains. Noting that
xi ă xk if and only if xi appears in such a chain, the total number of xi ă xk must be exactly
Rpk, iq “

śk
j“i`1 Rpjq

mpk,iq
. ◀

A similar argument shows that regularity allows the up operators to compose in the natural
way.

▶ Proposition 42. Let pX, Πq be a d-dimensional regular measured poset. Then for any
i ă k ď d we have:

Uk
i fpxkq “

1
Rpk, iq

ÿ

xiăxk

fpxiq

Proof. Expanding out Uk
i fpyq gives:

Uk
i fpxkq “

1
k
ś

j“i`1
Rpjq

ÿ

xk´1ăxk

. . .
ÿ

xiăxi`1

fpxiq

The number of times each xi appears in this sum is exactly the number of chains starting at
xk and ending at xi, so by middle regularity:

1
k
ś

j“i`1
Rpjq

ÿ

xk´1ăxk

. . .
ÿ

xi`1ăxi

fpxiq “
mpk, iq
k
ś

j“i`1
Rpjq

ÿ

xiăxk

fpxiq

“
1

Rpk, iq

ÿ

xiăxk

fpxiq. ◀

APPROX/RANDOM 2022

http://arxiv.org/abs/2201.11369
http://arxiv.org/abs/2103.11609
http://arxiv.org/abs/2111.03654


16:20 Eigenstripping, Spectral Decay, and Edge-Expansion on Posets

We’ll now take a look at the connection between eposet parameters and regularity. It is
convenient to first start with a lemma stating that non-laziness is equivalent to bounding the
maximum transition probability of the lower walk.

▶ Lemma 43. Let pX, Πq be a d-dimensional measured poset. Then for any 0 ă i ď d, the
maximum laziness of the lower walk is also the maximum transition probability:

max
σPXpiq

␣

1
T
σ Ui´1Di1σ

(

“ max
σ,τPXpiq

␣

1
T
σ Ui´1Di1τ

(

.

Proof. Assume that τ ‰ σ. Then the transition probability from τ to σ is exactly

1
T
σ Ui´1Di1τ “

πτ pσzτq

Rpi, i ´ 1q

ď
1

Rpi, i ´ 1q

ÿ

τÌσ

πτ pσzτq

“ 1
τ
σUi´1Di1σ,

which implies the result. ◀

We now prove our two claims relating the eposet parameters to regularity.

▷ Claim 44. Let pX, Πq be a d-dimensional pδ, γq-eposet. Then for every 1 ď k ď d and
0 ď i ď k, the following approximate relation between the eposet and regularity parameters
holds:

λipN
1
k q P

Rpk, iq

Rpk ` 1, iq
˘
`

γk
k´i ` Rpk, iqδk

k´iγ
˘

where we recall λipN
1
k q “ 1 ´

k
ś

j“i

δj .

Proof. We require a refinement of [16, Claim 8.8] given in [6, Lemma A.1]:7

Dk`1Uk`1
i “ p1 ´ δk

k´iqU
k
i ` δk

k´iU
k
i´1Di `

k´i´1
ÿ

j“´1
Uk

k´j´1ΓjUk´j´1
i (3)

where
ř

∥Γj∥ ď γk
k´i. The idea is now to examine the “laziness” of the two sides of this

equality. In other words, given a starting k-face τ , what is the probability that the resulting
i-face σ satisfies σ ă τ?

To start, we’ll argue that the laziness of the lefthand side is exactly Rpk,iq

Rpk`1,iq
. This follows

from noting that there are Rpk, iq i-faces σ satisfying σ ă τ , and Rpk ` 1, iq options after
taking the initial up-step of the walk to τ 1 ą τ . After the down-steps, the resulting i-face is
uniformly distributed over these Rpk ` 1, iq options σ ă τ 1, and since every σ ă τ ă τ 1, all
original Rpk, iq lazy options are still viable after the up-step to τ 1.

Analyzing the right-hand side is a bit trickier. The initial term p1 ´ δk
k´iqU

k
i is completely

lazy, so it contributes exactly p1 ´ δk
k´iq “ λipN

1
k q. We’ll break the second term into two

steps: walking from Xpkq to Xpiq via Uk
i , then from Xpiq to Xpiq via the lower walk Ui´1Di.

Starting at a k-face τ , notice that after applying the down step Uk
i we are uniformly spread

over σ ă τ . Computing the laziness then amounts to asking what the probability of staying

7 Formally the result is only stated for simplicial complexes in [6], but the same proof holds for eposets.
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in this set is after the application of UD, which one can naively bound by the maximum
transition probability times the set size Rpk, iq. By non-laziness, the maximum transition
probability is at most γ (see Lemma 43).

The third term can be handled similarly. The first down step Uk
k´j´1 spreads τ evenly

across σ ă τ in Xpk ´ j ´ 1q. The resulting i-face σ1 after applying ΓjUk´j´1
i is less than

τ if and only if the intermediary pk ´ j ´ 1q-face after applying Γj is less than τ , which is
bounded by the spectral norm ∥Γj∥.8

Putting everything together, since both sides of Equation (3) must have equivalent
laziness, we get that λipN

1
k q must be within

ř

∥Γj∥ ` δk
k´iRpk, iqγ as desired. ◁

Claim 19 and Theorem 22 can both be proving an analogous theorem for the upper walk.

▷ Claim 45 (Regularity and Upper Walk Spectrum). Let pX, Πq be a d-dimensional pδ, γq-eposet.
Then for any j ď i ď k ă d, we have:

λjpNk´i
i q P

Rpi, jq

Rpk, iq
˘ err,

where err ď O
´

i4k2Rmax
δip1´δi´1q

γ
¯

.

Proof. This follows almost immediately from the fact that i-links lie almost entirely on the
ith eigenstrip (Lemma 31). In particular, it is enough to examine the expansion of i-links
with respect to the upper canonical walk Nk´i

i . On the one hand, for any j ď i and τ P Xpjq

we have:

Φ̄pXi
τ q “

x1Xi
τ
, Nk´i

i 1Xi
τ
y

x1Xi
τ
,1Xi

τ
y

“
xUk

j 1τ , Uk
j 1τ y

xU i
j1τ , U i

j1τ y

“
Rpi, jq2

Rpk, iq2
x1Xk

τ
,1Xk

τ
y

x1Xi
τ
,1Xi

τ
y

“
Rpi, jq

Rpk, iq

x1τ ,1τ y

x1τ ,1τ y

“
Rpi, jq

Rpk, iq
.

where we have applied the fact that xXℓ
τ , Xℓ

τ y “ Rpℓ, jqx1τ ,1τ y. On the other hand, by
Lemma 31 we also have that:

Φ̄p1Xi
τ
q “

1
x1Xi

τ
,1Xi

τ
y

i
ÿ

ℓ“0
x1Xi

τ
, Nk´i

i 1Xi
τ ,ℓy

P
1

x1τ ,1τ y

i
ÿ

ℓ“0
λjpNk´i

i qx1Xi
τ
,1Xi

τ ,ℓy ` cγ

P λjpNk´i
i q

x1τ ,1τ,jy

x1τ ,1τ y
`

i
ÿ

j“0
err1

P λjpNk´i
i q ` err2

where as in the proof of Theorem 29, c, err1, err2 ď O
´

i4k2Rmax
δi

i´j
p1´δj´1q

γ
¯

. ◁

8 We note that Γj is not stochastic, but it is self-adjoint and an easy exercise to see that the analogous
reasoning still holds.
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Claim 19 follows immediately from observing that ρk
i “ λipN

k´i
i q (by Proposition 18). The-

orem 22 follows from observing that pNk´i
i and qNk´i

k have the same approximate eigenvalues
(similarly by Proposition 18).

Finally we close out the section by discussing the connection between non-laziness and a
variant of eposets called local-spectral expanders [34].

▶ Definition 46 (Local-Spectral Expander [19, 34]). A d-dimensional measured poset pX, Πq

is a γ-local-spectral expander if the graph underlying every link9 of dimension at most d ´ 2
is a γ-spectral expander.10

Under suitable regularity conditions (see [34]), local-spectral expansion is equivalent to the
notion of expanding posets used in this work. A simple argument shows that γ-local-spectral
expanders are γ-non-lazy.

▶ Lemma 47. Let pX, Πq be a d-dimensional γ-local-spectral expander, and 0 ă i ă d. The
laziness of the lower walk on level i is at most:

max
σPXpiq

"

x1σ, Ui´1Di1σy

x1σ,1σy

*

ď γ.

Proof. Through direct computation, the laziness probability of the lower walk at σ P Xpiq is
exactly

x1σ, Ui´1Di1σy

x1σ,1σy
“

1
Rpi, i ´ 1q

ÿ

τÌσ

πτ pσzτq

It is therefore enough to argue that πτ pσzτq ď γ, as the graph underlying the link Xτ is a
γ-spectral expander. Recall that an equivalent formulation of this definition states that:

∥Aτ ´ UDτ ∥ ď γ,

where Aτ is the standard (non-lazy upper) walk and UDτ is the lower walk on the graph
underlying Xτ . This implies that the weight of any vertex v in the graph is at most γ, as:

x1v, UDτ1vy

x1v,1vy
“

x1v, pUDτ ´ Aτ q1vy

x1v,1vy
ď ∥Aτ ´ UDτ ∥ ď γ

where we have used the fact that Aτ is non-lazy by definition. Since πτ pσzτq is exactly the
weight of the vertex σzτ in Xτ , this completes the proof. ◀

B Deferred Proofs

Proof of Lemma 35. We follow the structure and notation of [1, Lemma 4.11]. Assume
that the canonical walk starts at a subspace V P Xpkq, and walks up to W P Xpk ` jq. We
wish to analyze the probability that upon walking back down to level k, a subspace V 1 with
intersection k ´ i is chosen, i.e. dimpV X V 1q “ k ´ i. Let such an event be denoted EipW q.
It follows from elementary q-combinatorics (see e.g. [10, Lemma 9.3.2]) that

Pr
V 1ĂW

rEipW q | W s “ qi2

`

j
i

˘

q

`

k
k´i

˘

q
`

k`j
k

˘

q

,

9 Here the link of τ is not just its top level faces, but the complex given by taking this set, removing τ
from each face, and downward closing.

10 A graph is a γ-spectral expander if its weighted adjacency matrix has no non-trivial eigenvalues greater
than γ in absolute value.
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where V 1 P Xpkq is drawn uniformly from the k-dimensional subspaces of W . To relate this
process to the swap walk Si

k, note that while the swap walk (as defined) only walks up to
Xpk ` iq, walking up to Xpk ` jq and conditioning on intersection i, a process called the i-
swapping j-walk by [1], is exactly the same due to symmetry (via the regularity condition, see
[Proposition 4.9 of [1]] for a more detailed explanation). Thus consider the i-swapping j-walk,
and let T 1

i denote the variable standing for the subspace chosen by the walk. Conditioned on
picking the same W as the canonical walk in its ascent, we may relate T 1

i to the canonical
walk:

PrrT 1
i “ T | W s “ PrrV 1 “ T | W and EipW qs

We may now decompose the canonical walk by intersection size:

N j
kpV, T q “

j
ÿ

i“0

ÿ

W PXpk`jq

PrrW s PrrEipW q | W s PrrV 1 “ T | W and EipW qs

“

j
ÿ

i“0

ÿ

W PXpk`jq

qi2

`

j
i

˘

q

`

k
k´i

˘

q
`

k`j
k

˘

q

E
W ĄV

rPrrV 1 “ T | W and EipW qss

“

j
ÿ

i“0

ÿ

W PXpk`jq

qi2

`

j
i

˘

q

`

k
k´i

˘

q
`

k`j
k

˘

q

E
W ĄV

rPrrT 1
i “ T | W ss

“

j
ÿ

i“0

ÿ

W PXpk`jq

qi2

`

j
i

˘

q

`

k
k´i

˘

q
`

k`j
k

˘

q

PrrT 1
i “ T s

“

j
ÿ

i“0

ÿ

W PXpk`jq

qi2

`

j
i

˘

q

`

k
k´i

˘

q
`

k`j
k

˘

q

Si
kpV, T q.

From this point, the claim can be obtained by applying a q-binomial inversion theorem
(Theorem 2.1 of [45]), see the full version for details. ◀

Proof of Proposition 39. For W P Xpd ´ iq, consider the co-link X̄W “ tV P Xpkq : V Ă

W u. For simplicity, let S :“ X̄W . The density of S in any j-link XV is:

αj “
pqd´i´j ´ 1q . . . pqd´k`1´i ´ 1q

pqd´j ´ 1q . . . pqd´k`1 ´ 1q
“ q´ipk´jq ` oq,dp1q.

The idea is now to examine the (non)-expansion of the co-link with respect to the lower
walk Uk´1Dk. By direct computation, the probability of returning to X̄W after moving to a
pk ´ 1q-dimensional subspace is exactly:

Φ̄pX̄W q “
qd´i ´ qk´1

qd ´ qk´1 “ q´i ˘ q´Ωpdq (4)

By Proposition 18, the approximate eigenvalues of the lower walk are

λj “
qk´j ´ 1
qk ´ 1 “ q´j ´ Opq´kq

Since a dimension-i co-link has no projection onto levels i ` 1 through k, it also holds that:

Φ̄pX̄W q “
1

x1S ,1Sy

i
ÿ

j“0
q´jx1S ,1S,jy ´ Opq´kq

APPROX/RANDOM 2022
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for large enough q, d. Combined with Equation (4), there exists a universal constant c1 such
that for large enough q and d, 1X̄W

cannot have more than a c1

q fraction of its mass on levels
1 through i ´ 1. Finally, noticing that

`

k
i

˘

q
αi “ 1 ` oqp1q, we obtain

x1S ,1S,iy

x1S ,1Sy
ě

q ´ c1

q
ě c

ˆ

k

i

˙

q

αi

since the latter is strictly bounded away from 1 for large enough q. This completes the result
since X̄W is pαi, iq-pseudorandom. ◀
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