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Abstract
We initiate a broad study of classical problems in the streaming model with insertions and deletions
in the setting where we allow the approximation factor α to be much larger than 1. Such algorithms
can use significantly less memory than the usual setting for which α = 1 + ϵ for an ϵ ∈ (0, 1). We
study large approximations for a number of problems in sketching and streaming, assuming that the
underlying n-dimensional vector has all coordinates bounded by M throughout the data stream:
1. For the ℓp norm/quasi-norm, 0 < p ≤ 2, we show that obtaining a poly(n)-approximation

requires the same amount of memory as obtaining an O(1)-approximation for any M = nΘ(1),
which holds even for randomly ordered streams or for streams in the bounded deletion model.

2. For estimating the ℓp norm, p > 2, we show an upper bound of O(n1−2/p(log n log M)/α2) bits
for an α-approximation, and give a matching lower bound for linear sketches.

3. For the ℓ2-heavy hitters problem, we show that the known lower bound of Ω(k log n log M)
bits for identifying (1/k)-heavy hitters holds even if we are allowed to output items that are
1/(αk)-heavy, provided the algorithm succeeds with probability 1 − O(1/n). We also obtain a
lower bound for linear sketches that is tight even for constant failure probability algorithms.

4. For estimating the number ℓ0 of distinct elements, we give an n1/t-approximation algorithm
using O(t log log M) bits of space, as well as a lower bound of Ω(t) bits, both excluding the
storage of random bits, where n is the dimension of the underlying frequency vector and M is
an upper bound on the magnitude of its coordinates.

5. For α-approximation to the Schatten-p norm, we give near-optimal Õ(n2−4/p/α4) sketching
dimension for every even integer p and every α ≥ 1, while for p not an even integer we obtain
near-optimal sketching dimension once α = Ω(n1/q−1/p), where q is the largest even integer
less than p. The latter is surprising as it is unknown what the complexity of Schatten-p norm
estimation is for constant approximation; we show once the approximation factor is at least
n1/q−1/p, we can obtain near-optimal sketching bounds.
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13:2 Streaming Algorithms with Large Approximation Factors

1 Introduction

The data stream model is an important model for analyzing massive datasets, where the
sheer size of the input imposes severe restrictions on the resources available to an algorithm.
Such algorithms have only a small amount of memory and can only make a few passes over
the data. Given a stream of elements from some universe, the algorithm maintains a short
sketch, or summary, of what it has seen. Often such sketches are linear, which has multiple
benefits, e.g., (1) the sketches can handle both insertions and deletions of items, and (2) the
sketches are mergeable, meaning that given the sketch of a stream S and the sketch of a
stream S′, the sketch of the concatenation of streams S and S′ is the sum of the two sketches.

Many streaming algorithms have been developed to study fundamental problems in
databases, such as estimating the number ℓ0 of distinct elements, which is useful for query
optimization and data mining. Among other things, this statistic can be used for selecting a
minimum cost query plan [47], the design of databases [24], OLAP [44, 48], data integration
[17, 20], and data warehousing [1]. Other important streaming problems include finding the
heavy hitters, also known as the top-k, most popular items, frequent items, elephants, or
iceberg queries. These can be used in association rules and frequent itemsets [2, 27, 28, 46, 50],
and for iceberg queries and iceberg datacubes [11, 23, 26]. Other important applications
include estimating the frequency moments Fp [3], which for p ≥ 1 correspond to the p-th
power of the ℓp norm of the vector of frequencies of items, where the frequency of an item
is its number of occurrences in the stream. For p ≥ 2, Fp indicates the degree of skew of
the data, which may determine the selection of algorithms for data partitioning [21]. The
case p = 2 is the self-join size, which is useful for algorithms involving joining a relation with
itself. The frequency moments of a vector are special cases of the Schatten-p norms of a
matrix, and there is a large body of work in the data stream model studying these intriguing
norms [42, 43, 41, 15, 16], as well as the related cascaded norms [19, 5, 31, 6].

Given that the memory of a data stream algorithm is often significantly sublinear in the
size of a stream S, such algorithms are usually both randomized and approximate, and very
often come with a guarantee that for a function f(S), the output X of the algorithm satisfies
that (1− ϵ)f(S) ≤ X ≤ (1 + ϵ)f(S), with probability at least 2/3 over the coin tosses of the
algorithm, where ϵ ∈ (0, 1) is a parameter of the algorithm. Here the 2/3 probability can
typically be amplified to 1− δ by repeating the algorithm O(log(1/δ)) times independently
and outputting the median estimate. While a large body of work in the last two decades
has resolved the space complexity of many of the aforementioned problems for ϵ ∈ (0, 1), for
certain applications the lower bounds on the space complexity may be too large to be useful.
For such applications it is therefore natural to allow for a larger approximation factor α > 1,
in the hope of obtaining a smaller amount of memory. Namely, one could instead ask for the
output X of the streaming algorithm to satisfy f(S) ≤ X ≤ α · f(S). This motivates our
main question:

What is the space complexity of classical streaming problems when the approximation factor
α is allowed to be much larger than 1?

Perhaps surprisingly, this question does not seem to be well-understood, and is in fact
open for all of the abovementioned problems in a data stream. There are a few related works,
such as [18], which studies large approximation factors for deterministically estimating the
number of distinct elements, ℓp-estimation, entropy estimation, as well as maximum matching
size in a graph stream; see also [7] for large approximation factor lower bounds for randomized
algorithms for maximum matching. Other streaming problems where large approximation
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factors were studied include dynamic time warping [14], maximum k-coverage [29] and the
p-to-q norms [37]. In contrast to [18], our focus is on tight bounds for randomized algorithms,
for which significantly less memory can be achieved than deterministic algorithms, and for a
wide range of fundamental problems in the data stream model that do not appear to have
been studied before for large approximation factors.

1.1 Our Results
A summary of our upper and lower bounds for a number of data stream problems can be
found in Tables 1 and 2.

For estimating the ℓp norm for 0 < p ≤ 2, we show that obtaining a poly(n)-approximation
requires the same amount of memory as obtaining an O(1)-approximation, under the common
assumption that M = poly(n). Namely, we show an Ω(log n) lower bound even with a random
oracle for these problems. Previously, only an Ω(1) lower bound was known for poly(n)-
approximation in this setting. Our result also holds if the stream is randomly ordered, or in
the bounded deletion model [30], in which deletions are allowed but the norm should not
drop by more than a constant factor from what it was at a previous point in time. Our
lower bound can also be extended to a wide class of statistical M -estimators. We also show
a two-pass algorithm that uses less space than the best existing one-pass algorithm.

For estimating the ℓp norm of an underlying n-dimensional vector, p > 2, we show an
upper bound of O(n1−2/p(log n log M)/α2) bits for α-approximation for any α > 1, and a
matching lower bound for almost the full range of α on the bit complexity of linear sketches,
which gives a matching streaming lower bound under the conditions of [40], though these
conditions can be restrictive, see, e.g., [34] for discussion. One important motivation for
studying such norms is to data-augmented streaming algorithms. For example, it was shown
in [32] that for estimating the ℓp norm with a so-called learned oracle, one can achieve an
O(1)-approximation using Õ(n1/2−1/p) bits of space. However, this requires a successfully
trained oracle, which could have an arbitrarily bad approximation in the worst case. By
instead running our worst-case Õ(n1/4−1/(2p))-approximation algorithm for ℓp estimation
with Õ(n1/2−1/p) bits of memory in parallel, we can ensure that we do at least as well as
the learned algorithm in the same amount of memory (up to a constant factor), but we can
ensure we never return worse than an Õ(n1/4−1/(2p))-approximation. Another important
consequence of our ℓp-estimation algorithm is that it can be used as a subroutine to obtain
large approximations for the (p, q)-cascaded-norm (p ≥ 1, q > 2) and rectangle ℓp (p > 2)
problems, showing that the previous space bounds can be reduced by an α2 factor for an
α-approximation. These results are shown in Sections E and F.

In the ℓ2-heavy hitters problem, the goal is to output a subset S of {1, 2, . . . , n} which
contains every i for which x2

i ≥ 1
k∥x∥

2
2, and no i for which x2

i < 1
2k∥x∥

2
2. It is known [8, 33]

that the space complexity of this problem is Θ(k log n log M) bits, if we are promised that
x ∈ {−M, . . . , M}n. A natural relaxation would be to instead require only that S contains
every index i for which x2

i ≥ 1
k∥x∥

2
2 and no i for which x2

i < 1
αk∥x∥

2
2. We show a strong

negative result, that for any α = O((n/k)(log log n)2/(log n)2), this problem still requires
Ω(k log n log M) bits of memory for any linear sketch, which gives a matching streaming
lower bound under the conditions of [40]. For our bit complexity lower bound we assume the
algorithm succeeds with probability 1−O(1/n), while our sketching dimension lower bound
only requires that the algorithm succeeds with constant probability. Interestingly, the proofs
of our lower bounds do not use the usual hard instances for finding ℓ2-heavy hitters [8, 33],
and instead use a hard instance for ℓp-estimation in [51].

APPROX/RANDOM 2022



13:4 Streaming Algorithms with Large Approximation Factors

For estimating the number ℓ0 of distinct elements, we show that to obtain an α = n1/t-
approximation, an upper bound of O(t log log M) bits is possible and there is a lower bound
of Ω(t) bits, where n denotes the dimension of the underlying frequency vector and M

is an upper bound on the absolute value of its coordinates. We state our results in the
random oracle model, where a public random string is known to the algorithm. Without
such a random string, a simple reduction from the Equality communication problem gives
an Ω(log n) bit lower bound for any multiplicative approximation, see, e.g., [3] for similar
arguments1. Nevertheless, our results are still interesting outside of the random oracle
model, since in the common setting of M ≤ poly(n), setting t = (log n)/ log log n gives us an
O(log n)-approximation with O(log n) bits of memory, and since O(log n) bits of randomness
is also sufficient, this matches the Ω(log n) bit lower bound from the Equality problem. The
previous best algorithm [36] required at least O(log n log log M) bits for any multiplicative
approximation factor. We also study estimating the number of distinct elements in two
and three passes, showing a separation for the problem between one and two passes and a
near-optimal three-pass algorithm.

The Schatten-p norm of an n × n input matrix A is just the ℓp-norm of the vector of
singular values of A. For α-approximation to the Schatten-p norm, we give a linear sketch of
dimension Õ(n2−4/p/α4), which is optimal up to logarithmic factors, for every even integer p

and every α ≥ 1, while for p not an even integer we obtain a near-optimal sketch dimension
of Õ(n2−4/p/α4) once α = Ω(n1/q−1/p), where q is the largest even integer less than p.
Interestingly, we obtain the first near-optimal multiplicative approximations for Schatten-p
norms for non-integer p for a wide range of non-trivial approximation factors α, whereas it is
still unknown and a major open question (see, e.g., [41] for discussion) to obtain optimal
multiplicative approximations for Schatten-p norms for non-integer p when α = O(1). Our
work highlights that surprisingly, the difficulty of this problem stems from the approximation
factor rather than the problem being hard for every approximation factor.

1.2 Our Techniques

For our lower bound for estimating ℓp-norms for 0 < p ≤ 2 (or more generally for M -
estimators), we give a reduction from the the coin problem introduced in [12] and strengthened
in [13]. Consider a sequence of independent coin flips with either a heads probability of
1/2 + β or a heads probability of 1/2− β. The coin problem asks us to distinguish between
the two cases with the fewest number of flips. Given a sequence of n coin flips, for an
underlying vector x in a stream we can perform x1 ← x1 + 1 or x1 ← x1 − 1, depending on
whether the coin is a heads or a tail. To ensure a bounded deletion stream, we initialize
x = (2nβ, 0, . . . , 0). Then, with constant probability, we have x1 = 4nβ ± O(

√
n) in one

case and x1 = ±O(
√

n) in the other, resulting in an α-factor difference in the ℓp-norm when
4nβ = Ω(α

√
n). Note that our goal is to obtain a lower bound for α = ω(1). The earlier

lower bound for the coin problem [12] instead considers β ∼ 1/
√

n, which only translates
into α = Θ(1) at best, for which we know an upper bound of O(log n) words exists. The
newer result [13] shows an O(log n) bit lower bound for β < n1/3−ε. Such a β translates
into α = nΩ(1), as desired. This is also the first application of the newer result [13] to data
streams.

1 Briefly, Alice has x ∈ {0, 1}n and inserts i for which xi = 1. Bob has y ∈ {0, 1}n and deletes i for which
yi = 1. If x = y then ℓ0 = 0, otherwise it is non-zero, and the private coin randomized communication
complexity of Equality is Ω(log n) bits.
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Table 1 Summary of previous results and the results obtained in this work. We assume that
M = poly(n) and p is constant. The reported space bounds are measured in bits except for
the Schatten-p norm, where we consider the sketching dimension. In this table, Ω̃(f) denotes
Ω(f poly log f) and, for the rectangle ℓp estimation problem, O∗(f) denotes f · poly(d, log(mn/δ)).
For the ℓ2-heavy hitters problem, both our lower bound and our upper bound for bit complexity
assume that the success probability is at least 1 − O(1/n), while for the sketching dimension results
we assume constant success probability.

Problem Large Approx. Ratio Constant Approx. Ratio

ℓp Estimation (0 < p ≤ 2) poly(n) Ω(log n) Thm 7 O(log n) [35]
Ω(log n) [35]

ℓp Estimation (p > 2) α
Õ(n1−2/p/α2) Thm 12 Õ(n1−2/p) e.g. [6]
Ω̃(n1−2/p/α2) Thm 18 Ω̃(n1−2/p) e.g. [51]

ℓ2 Heavy Hitters Õ(n/k) Ω(k log2 n) Thm 21 O(k log2 n)
Ω(k log2 n) [33]

ℓ2 Heavy Hitters
Õ(n/k) Ω(k log n) Thm 24 O(k log n)

(Sketching Dimension) Ω(k log n) [45]

Distinct Elements n1/t O(t log log n) Thm 25 O(log n log log n) [36]
Ω(t) Thm 29 Ω(log n log log n) [52]

Schatten-p Norm α
Õ(n2−4/p/α4) Thm 35, 36 O(n2−4/p) even p[41]
Ω(n2−4/p/α4) Thm 38 Ω(n2−4/p) [41]

Cascaded Norm
α

Õ(n1−2/pd1−2/q/α2) Thm 39 Õ(n1−2/pd1−2/q) [6]
(p, q > 2) Ω(n1−2/pd1−2/q/α2) Thm 40 Ω(n1−2/pd1−2/q) [31]

Cascaded Norm
α

Õ(d1−2/q/α2) Thm 39 Õ(d1−2/q) [6]
(1 ≤ p < 2, q > 2) Ω̃(d1−2/q/α2) Thm 40 Ω(d1−2/q) [31]

Rectangle Fp
α

O∗(nd(1−2/p)/α2) Thm 41 O∗(nd(1−2/p)) [49]
Estimation (p > 2) Ω(nd(1−2/p)/α2) Thm 18 Ω(nd(1−2/p)) [49]

Table 2 Summary of previous results and the results obtained in this work to obtain a (1 ± ε)-
approximation. The reported space bounds are measured in bit complexity.

Problem Type New Alg Previous 1-pass Alg

Distinct Elements
2-pass O(log n + ε−2 log log M(log(1/ε) + log log M)) O(ε−2 log n log log nM)

Theorem 30 [36]

3-pass O(log n + ε−2(log(1/ε) + log log M)) Ω(ε−2 log n log log nM)
Theorem 31 [52]

ℓp Moment (p ≤ 2) 2-pass O(log n + ε−2(log M + log 1/ε)) O(ε−2 log nM)
Theorem 32 [35]

For our upper bound for estimating ℓp-norms for p > 2, we connect the problem to an
instance of the same problem with a different parameter. Namely, suppose that q is such
that n1−2/q = Θ(n1−2/p/α2), where α is the approximation factor. Then from relationships
between norms we have ∥x∥p ≤ ∥x∥q ≤ α ∥x∥p. Hence, a constant factor approximation to
the ℓq norm actually gives an α approximation to the ℓp norm. This “self-reduction” from an
instance of the problem under one norm to an instance of the same problem under a different
norm also helps us derive our algorithm for estimating the Schatten-p norms of a matrix
when α = Ω(n1/q−1/p), where q is the largest even integer less than p. For our lower bound
for ℓp-norm estimation for p > 2, we consider the multiparty disjointness (DISJn

s ) problem in
the public-coin simultaneous message passing model, which was initially proposed in [51].
We show that the hard instance can still give a matching lower bound for α-approximation if
we set the number of players appropriately.

APPROX/RANDOM 2022



13:6 Streaming Algorithms with Large Approximation Factors

For the ℓ2 heavy hitters problem, the usual hard instances for this problem (see, e.g., [33]
and [8]) fail to give an extra log n factor for large approximations. The reason is that
when reducing from the so-called Augmented Indexing problem, to make the two cases
distinguishable for an α-approximation, one would need to partition the vector into logα(n)
levels, which for α = nΩ(1), is only O(1). In contrast, we consider the same multiparty
disjointess problem we use for the ℓp norm estimation problem and show that a similar
hard instance gives a matching lower bound for the ℓ2 heavy hitters problem with a large
approximation factor. Thus, we use a fundamentally different hard instance for this problem.

For our upper bound for estimating the number ℓ0 of distinct elements, suppose that the
approximation factor α = n1/t. We sub-sample the input coordinates into t levels, with a
geometrically decreasing sampling probability. In each level, the surviving coordinates are
hashed into a constant number of buckets. If the ℓ0 of the sub-sampled vector in a level is at
most a constant, then only a small number of these buckets will be occupied. Based on this,
we can find the specific level j∗ for which the ℓ0 norm in this level is between 0 and n1/t

and show that after rescaling it is a good estimator to the overall ℓ0 of the original vector.
To use less memory in each bucket, we choose a random prime p = poly(log M) and only
store each counter mod p. Our lower bound is based on a reduction from the Augmented
Indexing problem mentioned above, which in more detail is a two player communication
problem in which Alice holds a binary vector u ∈ {0, 1}t and asks for Bob to recover ui

given ui+1, . . . , ut. We divide the vector x into l = Θ(t) segments, where the i-th segment
has length Θ(ni/l), and fill the i-th segment with all 1s if and only if ui = 1. Then ∥x∥0
differs by a factor of Θ(n1/t) between the cases of ui = 0 and ui = 1, whence an Ω(t) lower
bound follows. Despite the fact that a log(1/ε)-factor gap remains in the upper and lower
bounds for (1 ± ε)-approximation for ℓ0 (see, e.g., [22] for discussion), we obtain a tight
Θ(log n) space bound for α = Θ(log n) approximation, for example. Our bounds also show
a separation between the estimation of the ℓp-norm (0 < p ≤ 2) and the ℓ0-norm with an
nΘ(1)-approximation factor, since we show an Ω(log n) lower bound via the coin problem for
p > 0 and nΩ(1) approximation, while we have an O(log log n) upper bound for p = 0 and
nO(1) approximation.

We also consider multi-pass algorithms for ℓ0 and ℓp (0 < p ≤ 2) estimation. For the ℓ0
estimation problem, we show that if we obtain an O(log n)-approximation in the first pass,
then we can obtain a (1±ε)-approximation in the second pass using O(ε−2 log log M(log(1/ε)+
log log M)) bits of space. This can be further reduced to O(ε−2(log(1/ε) + log log M))
bits of space using a third pass. For ℓp estimation, we show that if we can obtain a
constant approximation Z in the first pass, then in the second pass, we can sample the
coordinates with probability O(ε−2Mp/Z). Hence, we only need to generate certain p-stable
random variables used in our algorithm with precision (M/ε)O(1), from which we obtain an
O(ε−2(log M + log(1/ε))) bits of space algorithm in the second pass, which is better than
the previous result of O(ε−2 log nM) when M is small.

2 Preliminaries

Notation. For a vector x ∈ Rn, its ℓp norm is ∥x∥p = (
∑n

i=1 |xi|p)
1
p , where p ≥ 1. We also

write Fp(x) = ∥x∥p
p. We also define ∥x∥∞ = maxi |xi|. When p < 1, the quantity ∥x∥p is not

a norm though it is a well-defined quantity and ∥x∥p
p tends to the number of nonzero entries

of x as p→ 0+. In view of this limit, we denote the number of nonzero entries of x by ∥x∥0
and also refer to it as ℓ0.
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For a matrix A ∈ Rm×n, we define its Schatten-p norm to be ∥A∥p =
(
∑min{m,n}

i=1 (σi(A))p)
1
p for each p ≥ 1, where σ1(A) ≥ σ2(A) ≥ · · · are the singular val-

ues of A. We also define the (p, q)-cascaded norm of A to be ∥A∥p,q =(
∑

i(
∑

j |Ai,j |q)
p
q )

1
p

for p, q ≥ 1.

Turnstile streaming model. In the turnstile model of data streams, there is an underlying
n-dimensional vector x which is initialized to 0 and keeps receiving updates of the form
(i, ∆) ∈ [n]×R, which represents xi ← xi + ∆. Here ∆ can be either positive or negative. In
this paper we assume that the underlying vector is guaranteed to be bounded by M , i.e.,
it always holds that ∥x∥∞ ≤ M throughout the data stream. The length of the stream is
denoted by m. When the vector x is given by a stream S in the turnstile model, we abuse
notation and also write ℓp(S) for ∥x∥p.

When the input describes a matrix A ∈ Rm×n, we can view the matrix as an mn-
dimensional vector and each item in the stream updates an entry of the matrix.

A variant of the streaming model for a matrix A concerns rectangular updates. Here x is
a tensor indexed by [n]d and each update has the form (R, ∆), where R ⊆ [n]d is a rectangle,
representing the update xi ← xi + ∆ for all i ∈ R. The rectangle ℓp problem is considered
under this model (see, e.g., [49]), which asks to estimate ∥A∥p = (

∑
i∈[n]d |xi|p)1/p.

Subspace Embeddings. Suppose that A ∈ Rn×d. A matrix S ∈ Rm×n is called an (ε, δ)-
subspace-embedding for A if it holds with probability at least 1 − δ that (1 − ε) ∥Ax∥2 ≤
∥SAx∥2 ≤ (1 + ε) ∥Ax∥2 for all x ∈ Rd simultaneously. A classical construction is to
take S to be a Gaussian random matrix of i.i.d. N(0, 1/m) entries, where m = O((d +
log(1/δ)/ε2). Recall the minimax characterization of singular values of a matrix A: σi(A) =
supH infx∈H:∥x∥2=1 ∥Ax∥2, where the supremum is taken over all subspaces H such that
dim(H) = i. This implies (see e.g., Lemma 7.2 of [41]) that (1 − ε)σi(A) ≤ σi(SA) ≤
(1 + ε)σi(A) with probability at least 1− δ, for all i = 1, . . . , min{m, n}, i.e., S preserves all
singular values of A if S is an (ε, δ)-subspace-embedding for A.

3 Lower Bound for M -Estimators

We start by giving a very general lower bound for M -estimator estimation with a large
approximation factor. M -estimators can be seen as generalizations of the p-th frequency
moments of the underlying vector x. We first show this lower bound in the turnstile streaming
model and later we will show that it still holds even in the bounded deletion and random
order models.

▶ Definition 1 (M -estimator with parameter γ). Suppose G : R→ R≥0 is a function. We say
∥y∥G =

∑
i G(yi) is an M -estimator with parameter γ if G satisfies the following conditions:

G(0) = 0;
G(x) = G(−x);
G(x) is non-decreasing in |x|;
For all x, y with |y| > |x| > 0, G(y)

G(x) ≥
∣∣ y

x

∣∣γ .

We will give a reduction from the following coin problem. In [13], the authors show an
Ω(log n) lower bound even when the parameter β is allowed to be very small:

▶ Definition 2 (Coin Problem). Let X1, ..., Xn be a stream of i.i.d. random bits, which either
(1) comes from a distribution with heads probability 1

2 + β or (2) comes from a distribution
with heads probability 1

2 − β. We are asked to distinguish these two cases at the end of the
stream, with probability 2/3.

APPROX/RANDOM 2022



13:8 Streaming Algorithms with Large Approximation Factors

▶ Theorem 3 ([13]). For all constant ε > 0, any length-n Read-Once Branching Program
that solves the coin problem for bias β < n−1/3−ε, requires nΩ(ε) width.

▶ Corollary 4. For all constants ε > 0, any randomized streaming algorithm that solves the
coin problem with bias β < n−1/3−ε requires Ω(log n) space. This holds even if we give the
algorithm access to an arbitrarily long random tape.

Suppose that we are given an M -estimator with parameter γ. We define a distribution D
on the sequences of n random bits as follows: suppose that β = n−1/3−ε for a small constant
ε. Let X1, . . . , Xn be a binary sequence coming from a distribution with heads probability 1

2
or a distribution with heads probability 1

2 + β, where Xi = 1 if the i-th coin is a head and
Xi = 0 if the i-th coin is a tail. Let x be the underlying vector in the streaming algorithm.
During the stream we perform updates x1 ← x1 + 1 if Xi = 1, or x1 ← x1 − 1 otherwise.
We will show that any streaming algorithm that gives an O(n(1/6−ε)γ)-approximation for
∥x∥G can distinguish the above two distributions with large constant probability. We first
analyze the sum |

∑n
i=1 Xi| for these two distributions. The following two lemmas can be

easily proved using Chebyshev’s inequality and thus the proofs are omitted.

▶ Lemma 5. Suppose that the sequence (X1, ..., Xn) ∈ {±1}n comes from the distribution
with heads probability 1

2 . Then with probability at least 1−1/(4k), we have |
∑n

i=1 Xi| ≤
√

kn.

▶ Lemma 6. Suppose that the sequence (X1, ..., Xn) ∈ {±1}n comes from the distribution
with heads probability 1

2 + n−1/3−ε. Then with probability at least 1 − 1/(4k), we have∑n
i=1 Xi ≥ 2n2/3−ε −

√
kn.

We are now ready to give our lower bound.

▶ Theorem 7. Suppose that G is an M -estimator with parameter γ. Then any randomized
streaming algorithm which outputs an O(M (1/6−ε)γ)-approximation to ∥x∥G with probability
at least 2/3 requires Ω(log M) bits of space, excluding the storage for random bits.

Proof. Suppose that we have a streaming algorithm which outputs an O(M (1/6−ε)γ)-
approximation to ∥x∥G. We shall show that we can distinguish the two distributions
with bias β in the coin problem with large constant probability.

We initialize the vector x = (0, 0, . . . , 0). Suppose we have a stream of bits X1, . . . , XM

coming from the distribution with heads probability 1
2 or with heads probability 1

2 + β =
1
2 + M−1/3−ε. Then, during the stream, we perform the update x1 ← x1 + 1 if Xi = 1 and
x1 ← x1 − 1 otherwise.

Let x(0) be the underlying vector if the heads probability for the distribution is 1
2 and

x(1) be the underlying vector if the heads probability is 1
2 + β. From Lemmas 5 and 6

we have that with probability at least 9/10,
∣∣∣x(0)

1

∣∣∣ = O(
√

M) at the end of the stream,

while
∣∣∣x(1)

1

∣∣∣ = Ω(M2/3−ε) in the second case. It follows from the definition of γ that
∥x(1)∥

G

∥x(0)∥
G

= Ω(M (1/6−ε)γ) for the two cases. This implies that if the streaming algorithm can

output an O(n(1/6−ε)γ)-approximation to ∥x∥G, then we can distinguish the two distributions
with bias β in the coin problem. From Corollary 4, such a streaming algorithm needs
Ω(log M) bits of space. ◀

▶ Corollary 8. Any randomized streaming algorithm outputting an O(M1/6−ε)-approximation
to ∥x∥p

p requires Ω(p · log M) bits of space, excluding the storage for random bits. Moreover,
under the assumption that M = poly(n), any randomized streaming algorithm outputting a
poly(n)-approximation to ∥x∥p

p requires Ω(p · log n) bits of space.
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3.1 Lower Bound in Other Streaming Models
Bounded Deletions. Our Ω(log M) lower bound still holds even with the assumption of
bounded deletions. In this model, the updates ∆j can be positive or negative, but one is
promised that the norm ∥x∥2 never drops by more than an α-fraction of what it was at any
earlier point in the stream, for a constant parameter α. We only state the theorem below,
whose proof can be found in the full version.

▶ Theorem 9. Suppose G is an M-estimator with parameter γ. Then any randomized
streaming algorithm outputting an O(M (1/6−ε)γ)-approximation of ∥x∥G in the bounded
deletion model needs Ω(log M) bits, excluding the storage for random bits.

Random Order. In the random order model, we assume the updates ∆j come in a random
order. We note that the updates for the distribution in Theorem 7 are a sequence of random
±1 variables. Hence it satisfies the random order assumption automatically, which means we
obtain the following theorem.

▶ Theorem 10. Suppose G is an M-estimator with parameter γ. Then any randomized
streaming algorithm which outputs an O(M (1/6−ε)γ)-approximation to ∥x∥G in the random
order model requires Ω(log M) bits of space, excluding the storage for its random bits.

4 ℓp Estimation p > 2

In this section, we consider the problem of estimating ∥x∥p with a large approximation
factor when p > 2. We present an algorithm that gives an α-approximation to ∥x∥p using
Õ(n1−2/p/α2) bits of space. We will also give a matching lower bound for this problem.

Upper bound. Suppose that we want an α-approximation where n1−2/p/α2 = Ω(1)
(otherwise there is a trivial Ω(1) lower bound) and let q be the number such that
n1−2/q = Θ(n1−2/p/α2). Then we have 2 ≤ q < p. The following lemma shows that
∥x∥q is an α-approximation to ∥x∥p.

▶ Lemma 11. Suppose that p ≥ q ≥ 2 and α ≥ 1 satisfies n1−2/q = n1−2/p/α2 = Ω(1).
Then it holds that ∥x∥p ≤ ∥x∥q ≤ α ∥x∥p.

Proof. From our choice of q, we have that α = n1/q−1/p. The ℓp norm is decreasing in p,
and thus ∥x∥q ≥ ∥x∥p. By Hölder’s inequality, it also holds that ∥x∥q ≤ n1/q−1/p ∥x∥p =
α ∥x∥p ◀

The preceding lemma shows that we can use any O(1)-approximation algorithm for ℓq to
obtain an α-approximation to the ℓp norm. For example, we can use the O(n1−2/q log2 n)-bit
algorithm of [4], or the algorithm of [25]. Our theorem follows immediately.

▶ Theorem 12. Suppose that p > 2 is a constant. There is an algorithm whose output is
Z, which satisfies that ∥x∥p ≤ Z ≤ α ∥x∥p with probability at least 0.9. Furthermore, the
algorithm uses O(n1−2/p log n log M/α2) bits of space.

Application to Data-augmented Algorithm Design. One important motivation for ℓp

estimation with large approximation is worst-case guarantees for learning-augmented data
stream algorithm design. In [32], it was shown that given a heavy hitter oracle which can
decide, for each input i, whether or not |xi| ≥ n−p/2 ∥x∥p, one can estimate ∥x∥p up to

APPROX/RANDOM 2022



13:10 Streaming Algorithms with Large Approximation Factors

a constant factor with probability at least 0.9 using O(n1/2−1/p log n log M) bits of space.
In this case, we say the oracle is successful. However, when the oracle is not successful,
there is no worst-case guarantee on the quality of approximation. An observation here
is that when the oracle is not successful, the estimation will be an under-estimate with
high probability. Letting α = Θ(n1/4−1/(2p)) in the preceding theorem, we obtain an α-
approximation algorithm whose output Z satisfies 1

α ∥x∥p ≤ Z ≤ ∥x∥p with probability
at least 0.9 using the same O(n1/2−1/p log n log M) bits of space. Hence we can run our
algorithm and the oracle algorithm in parallel and take a maximum. This guarantees an
α-approximation in O(n1/2−1/p log n log M) bits of space with probability at least 0.8.

▶ Theorem 13. Assuming a successful oracle, there is a streaming algorithm which runs in
O(n1/2−1/p log M log n) bits of space, and for which the output Z satisfies ∥x∥p ≤ Z ≤ 2 ∥x∥p.
Moreover, even if the oracle is not successful, the output Z always satisfies ∥x∥p ≤ Z ≤
n1/4−1/(2p) ∥x∥p.

Lower Bound. We next show an Ω(n1−2/p(log(M) log(1/δ))/α2) lower bound for obtaining
an α-approximation to ∥x∥p, or, equivalently, an Ω(n1−2/p(log(M) log(1/δ))/α2/p) lower
bound for obtaining an α-approximation of Fp(x). We first note that it is easy to get an
Ω(n1−2/p/α2/p) lower bound from the following ℓk

∞ communication problem in [9]: there are
two parties, Alice and Bob, holding vectors x, y ∈ Zn respectively, and their goal is to decide
if ∥x− y∥∞ ≤ 1 or ∥x− y∥∞ ≥ k. This problem requires Ω(n/k2) bits of communication [9].
Let k = 21/pα1/pn1/p. For the case where ∥x− y∥∞ ≤ 1, we have ∥x− y∥p

p ≤ n. For the
case where ∥x− y∥∞ ≥ k, we have ∥x− y∥p

p ≥ kp = 2αn. Suppose there is an algorithm A
which can output a number Z such that ∥x∥p ≤ Z ≤ α ∥x∥p with probability at least 2/3.
Then Alice can perform the update x to the algorithm A and send the memory contents
of A to Bob. Bob then performs the update −y to A. From the discussion above, Bob can
determine which of the two cases it is with probability at least 2/3.

To obtain a stronger lower bound, we consider the following version of multiparty
disjointness (DISJn

s ), coupled with an input distribution, in the public-coin simultaneous
message passing model of communication (SMP), as proposed in [51]. In this setting, there
are s players, each of whom has a bit string Xi ∈ {0, 1}n (i ∈ [s]) as input. The inputs are
generated according to the following distribution η.

▶ Definition 14 (Distribution η). The distribution η is the joint distribution of (X1, . . . , Xs) ∈
({0, 1}n)s, generated as follows.

For each i ∈ [n], j ∈ [s], set Xj,i ∼ B(1/s) independently at random.
Pick a uniformly random coordinate I ∈ [n].
Pick a Z ∈ {0, 1}. If Z = 1, set Xj,I = 1 for all j ∈ [s]. (If Z = 0, keep all coordinates
as before.)

We call the instance of the inputs {Xi}i∈[s] a “YES” instance when Z = 1, and a “NO”
instance when Z = 0.

The players simultaneously send a message Mi(Xi, R) to a referee, where R de-
notes the public coins shared among the players. The referee then decides, based on
M1(X1, R) . . . , Ms(Xs, R) and R, whether {Xi}i∈[s] forms a YES instance or a NO instance.
As observed in [51], if X ∼ Bin(s, 1/s), then Pr[X > ℓ] ≤ (e/ℓ)ℓ. Hence, by a union bound
for all coordinates i ∈ [n], it holds in a NO instance, with probability at least 1− 1/ poly(n),
that

∑s
j=1 Xj,i ≤ c log n/(log log n) for all i ∈ [n]. On the other hand, in a YES instance

it always holds that
∑s

j=1 Xj,I = s. Thus, YES and NO instances are distinguishable for
s = Ω(log n/ log log n).
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The following is an augmented version of this problem.

▶ Definition 15 (Aug-DISJ(r, s, δ)). The augmented disjointness problem Aug-DISJ(r, s, δ)
is the following s-party communication problem. The players receive r instances of
DISJn

s (X1
1, . . . , X1

s), (X2
1, . . . , X2

s), . . . , (Xr
1, . . . , Xr

s) and the referee, in addition, receives
an index T ∈ [r] which is unknown to the players, along with the last (r − T ) inputs
{(Xt

1, . . . , Xt
s)}r

t=T +1. The inputs are generated according to the following distribution:
(i) T is chosen uniformly at random from [r];
(ii) (XT

1 , . . . , XT
s ) ∼ η;

(iii) For each t ̸= T , (Xt
1, . . . , Xt

s) ∼ η0 independently, where η0 is the conditional distribu-
tion of η given Z = 0.

At the end of the protocol, the referee should output whether the T -th instance (XT
1 , . . . , XT

s )
is a YES or a NO instance, i.e., the players need to solve DISJn

s (XT
1 , ..., XT

s ), with probability
1− δ.

▶ Theorem 16 ([51]). Suppose that δ ≥ n · 2−s. Any deterministic protocol that solves
Aug-DISJ(r, s, δ) (as defined in Definition 15) requires Ω(rn min(log 1

δ , log s)/s) bits of total
communication.

A Reduction to Streaming: To lower bound the space complexity of a streaming algorithm
we need a way of relating it to the communication cost of a protocol for this communication
problem. In [51], the authors use a result of [40], showing under certain conditions that any
streaming algorithm A which solves the problem P with probability at least 1− δ can be
converted to a “path-independent” streaming algorithm B which solves P with probability at
least 1−7δ, and which uses the same space up to an additive (log n+log log m+log 1/δ) factor.
The latter then gives a protocol for the Aug-DISJ(r, s, δ) problem. Here path-independence
means that the output of the algorithm only depends on the initial state and the underlying
frequency vector. In other words, the order of the updates of the same frequency vector will
not cause different outputs to such an algorithm. We now assume that the algorithm A we
have enjoys this path-independence property. For a more detailed discussion, we refer the
readers to Section 5 in [51].

Suppose there is a path-indepedent 1-pass streaming algorithm A which gives an α-
approximation to ∥x∥p

p with probability 1− δ. We shall use this to solve the Aug-DISJ(r, s, δ)
problem for s = Θ(α1/pn1/p) and r = log(M/s), from which a space lower bound of Ω(n1−2/p

log(M) log(1/δ)/α2/p) bits follows if M = Ω((nα)1/p+O(1)).
We design the following protocol π between the players and the referee. For each i ∈ [s],

player i has r instances (X1
i , X2

i , . . . , Xr
i ). Player i performs the update 10j−1 · Xj

i to
the algorithm A, for each j ∈ [r], and sends the memory contents of A to the referee.
Under the path-independence assumption, the referee can determine an equivalent frequency
vector (i.e., leading to the same state of the algorithm) from each player and then add up
the corresponding updates itself. After receiving T and {(Xt

1, . . . , Xt
s)}r

t=T +1, the referee
performs the update −10j−1 · (

∑s
i=1 Xj

i ) to the algorithm A, for each j ≥ T + 1. Suppose
that A outputs a set S. The referee will output YES is |S| = 1 and NO if S = ∅.

Next we analyze correctness of the above protocol π. We recall that the referee needs
to output the answer to the T -th instance. For simplicity, we define Yj =

∑s
i=1 Xj

i for the
j-th instance. After taking a union bound, for every instance j,

∥∥Yj
∥∥

∞ ≤ c log n/ log log n

if it is a NO instance. Also from a Chernoff bound, it is easy to see that
∥∥Yj

∥∥2
2 = Ω(n) for

all j with probability at least 1 − e−Ω(n). Note that the actual underlying vector that A
maintains has the same output as the frequency vector Y =

∑T
t=1 10t−1Yt after the referee

performs the updates. We need the following concentration bounds for Y [51]. We note an
omission in the proof in that paper and included a corrected one in Appendix A.
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▶ Lemma 17 ([51]). Let σr(∥Y−I∥p
p) = (E[| ∥Y−I∥p

p − E[∥Y−I∥p
p]|r])1/r. It holds that

E[∥Y−I∥p
p] ≤ Kp

1 ppn · 10pT , (1)

σr(∥Y−I∥p
p) ≤ Kp

2 pp r

ln r
max{2p

√
n, rpn1/r} · 10pT , (2)

where r ≥ 2 is arbitrary and K1, K2 > 0 are absolute constants.

Taking r = 3 ln n in (2) gives that

Pr[| ∥Y−I∥p
p − E[∥Y−I∥p

p]| > 0.1n · 10pT ]

≤ Pr[| ∥Y−I∥p
p − E[∥Y−I∥p

p]| > 2σℓ(∥Y−I∥p
p)]

≤ 2−r ≤ 1/n2.

(3)

We condition on all of the events above. Notice that in all cases, the value ∥x∥∞ of the un-
derlying vector x the algorithm A maintains is less than

(∑r−1
i=1 10i−1 · log n

log log n + 10r−1 · s
)

<

10r · s = O(M) for r = log(M/α1/pn1/p).
We first consider the case for which the T -th instance is a YES instance. In this case,

YT
I = s and thus, ∥Y∥p

p ≥ 10(T −1)p · s = Ω(10(T −1)p · αn).
Next consider the case in which the T -th instance is a NO instance. In this case, we have

from (1) and (3) that ∥Y∥p
p = ∥Y−I∥p

p + Yp
I ≤ Kp · 10pT n + 10pT ( log n

log log n )p ≤ 1.1Kp · 10pT n,
where Kp is a constant that depends only on p.

From the same argument in Section 5 we know that if there is an algorithm that can output
a Z such that ∥x∥p

p ≤ Z ≤ K ′
pα ∥x∥p

p, we can use this algorithm to solve the Aug-DISJ(r, s, δ)
problem. From Theorem 16, we obtain the following theorem.

▶ Theorem 18. Suppose that p is a constant and M = Ω((αn)1/p+O(1)). Then, for δ ≥
2−Θ((nα)1/p), any one-pass streaming algorithm which outputs a number Z for which ∥x∥p

p ≤
Z ≤ α ∥x∥p

p with probability at least 1 − δ requires Ω(n1−2/p log(M) log(1/δ)/α2/p) bits
of space. In particular, when δ = Θ(1/n), any one-pass streaming algorithm requires
Ω(n1−2/p log(M) log(n)/α2/p) bits of space.

5 ℓ2 Heavy Hitters

In the heavy hitters problem, we want to find a set S ∈ [n] of indices for the underlying
vector x such that:

(i) S contains every i such that |xi|2 ≥ 1
k ∥x∥

2
2;

(ii) S does not contain any i such that |xi|2 < 1
2k ∥x∥

2
2.

We call S a (1/k)-heavy set of x if S satisfies the above conditions. Using the classical
Count-Sketch, we can solve the above problem in O(k log n log M) bits of space with high
probability.

▶ Lemma 19. There is a randomized one-pass streaming algorithm which can be implemented
in O(k log n log M) bits of space such that with probability 1 − 1/ poly(n), it can output a
1
k -heavy set S of x.

In this section, we consider the following relaxation of the heavy hitters problem, where
we want to find a set S of indices such that:

(i) S contains every i such that |xi|2 ≥ 1
k ∥x∥

2
2;

(ii) S does not contain any i such that |xi|2 < 1
αk ∥x∥

2
2.
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We call such a set S a ( 1
k , α)-heavy set of S. Our result is negative, where we show that any

one-pass streaming algorithm outputting a ( 1
k , α)-heavy set of x with probability at least

1− 1/n still requires Ω(k log n log M) bits of space if α = O((n/k)(log log n)2/(log n)2).
We will consider the augmented disjointness problem Aug-DISJ(r, s, δ) defined in Defini-

tion 15.
Suppose that there is a path-indepedent one-pass streaming algorithm A which can

solve the ( 1
k , α)-heavy hitters problem with probability 1 − O(1/n), where α = O(n/k ·

(log log n/ log n)2). Then we can use it to solve the Aug-DISJ(r, s, δ) problem for r =
log(M/n1/2), s = Θ(

√
n/k), δ = 1/n, from which a space lower bound of Ω(k log n log M)

bits follows if M = Ω(n1/2+O(1)).
We design the following protocol π between the players and referee. For each i ∈ [s],

player i has the r instances (X1
i , X2

i , . . . , Xr
i ). Player i then performs the update 10j−1 ·Xj

i

to the algorithm A for each j ∈ [r] and sends the memory of A to the referee. Under the
path-independence assumption, the referee can determine an equivalent frequency vector
(i.e., leading to the same state of the algorithm) from each player and then add up the
corresponding updates. After receiving T and {(Xt

1, . . . , Xt
s)}r

t=T +1, the referee performs the
update −10j−1 · (

∑s
i=1 Xj

i ) to the algorithm A for each j ≥ T + 1. Suppose that A outputs
a set S. The referee will output YES if |S| = 1 and NO if S = ∅.

Now we analyze the correctness of the above protocol π. We recall that the referee needs
to output the answer to the T -th instance. For simplicity, we define Yj =

∑s
i=1 Xj

i for
the j-th instance. Recall that after taking a union bound, for every instance j,

∥∥Yj
∥∥

∞ ≤
c log n/ log log n if it is a NO instance. Also from a Chernoff bound, it is easy to see that∥∥Yj

∥∥2
2 = Ω(n) for all j with probability at least 1− e−Ω(n). Note that the actual underlying

vector that algorithm A maintains has the same output as the frequency vector Y =∑T
t=1 10t−1Yt after the referee performs the updates. We need the following concentration

bounds, which are a special case of Lemma 17 with p = 2.

▶ Lemma 20 ([51], special case of Claim 6.2). It holds that

E
[
∥Y−I∥2

2

]
≤ K1n · 102T , (4)

σℓ

(
∥Y−I∥2

2

)
≤ K2

ℓ

ln ℓ
max{4

√
n, ℓ2n1/ℓ} · 102T , ∀ℓ ≥ 2, (5)

where K1, K2 > 0 are absolute constants.

Taking ℓ = 3 ln n in (5) gives that

Pr
[∣∣∣∥Y−I∥2

2 − E
[
∥Y−I∥2

2

]∣∣∣ > 0.1n · 102T
]

≤ Pr
[∣∣∣∥Y−I∥2

2 − E
[
∥Y−I∥2

2

]∣∣∣ > 2σℓ

(
∥Y−I∥2

2

)]
≤ 2−ℓ ≤ 1/n2.

(6)

Condition on all of the events above occurring. In all cases, the value
∥x∥∞ of the underlying vector x that algorithm A maintains is less than(∑r−1

i=1 10i−1 · log n
log log n + 10r−1 ·

√
n/k

)
< 10r ·

√
n = O(M) for r = log(M/n1/2).

We first consider the case in which the T -th instance is a YES instance. In this case,
YT

I = s, and thus

YI ≥ 10T −1 · s.
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Meanwhile, for all j ̸= I,

Yj ≤ c

T∑
t=1

10t−1 log n

log log n
< c · 10T log n

log log n
. (7)

It follows from (4) and (6) that

Ω(102T · n) ≤ ∥Y∥2
2 = ∥Y−I∥2

2 + Y2
I ≤ (K1 + 0.1)n · 102T + s2.

It thus holds that Y2
I ≥ (1/k) ∥Y∥2

2, or equivalently, s2/100 ≥ s2/k + (K1 + 0.1)n/k

when k > 100 and s = Ω(
√

n/k). Furthermore, for j ̸= I, Y2
j ≤ ∥Y∥

2
2 /(αk) when

α = O((n/k)(log log n/ log n)2). Therefore, our choices of k, s and α imply that the set
S = {I}.

Now we consider the case when the T -th instance is a NO instance. In this case, (7) holds
for all j ∈ [n]. Since ∥Y∥2

2 ≥ Ω(102T · n), it follows that Y2
j ≤ ∥Y∥

2
2 /(αk) for all j, provided

that α = O((n/k)(log log n/ log n)2). It follows that S = ∅.
To conclude, we have proved the following theorem.

▶ Theorem 21. Suppose that k = Ω(1), α = O
(

n
k ( log log n

log n )2)
and M = Ω(n1/2+O(1)). Then,

any one-pass streaming algorithm that solves the (1/k, α)-heavy hitters problem with failure
probability O(1/n) requires Ω(k log n log M) bits of space, where the algorithm can store any
number of random bits.

Sketching dimension lower bound. One limitation of the above theorem is that it requires
the algorithm A to succeed with high probability. Below we show that any algorithm A
using a linear sketch to solve the (1/k, α)-heavy hitters problem with constant probability
requires the sketching dimension to be O(k log(n/k)) if α = O(n/(k log n)).

We will consider the following communication game in [45]. Let F ⊂ {S ⊂ [n] | |S| = k/2}
be a family of k-sparse supports such that:
|S∆S′| ≥ k for S ̸= S′ ∈ F ,
PrS∈F [i ∈ S] = k/(2n) for all i ∈ [n], and
log |F| = Ω(k log(n/k)).

Let X = {x ∈ {0,±2
√

n/k}n | supp(x) ∈ F}. Let w ∼ N (0, In). Consider the following
process. First, Alice chooses S ∈ F uniformly at random. Then x ∈ X is uniformly at random
subject to supp(x) = S, and then w ∼ N (0, In). Then, Alice computes y = Az = A(x + w),
where A ∈ Rm×n is the sketching matrix in A, and Alice sends y to Bob. Then Bob needs
to recover S from y.

▶ Theorem 22 ([45]). Suppose that Bob can recover S with probability at least 2/3. Then
m = Ω(k log(n/k)).

Next we will show that Alice and Bob an use a ( 1
k , α)-heavy hitters algorithm to solve

the communication game above if α = O(n/(k log n)). To show correctness, we need the
following bounds for w.

▶ Lemma 23 (folklore). Suppose that w ∼ N (0, In). Then with probability 9/10 we have the
following:

(i) 0.9n ≤ ∥w∥2
2 ≤ 1.1n;

(ii) ∥w∥∞ ≤ c ·
√

log n.
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Condition on the events above. For each i ∈ [n], we have

zi ≥ 2
√

n/k − c
√

log n ≥ 1.9
√

n/k, i ∈ S,

zi ≤ c
√

log n, i ̸∈ S.

We also have from Lemma 23 that

0.9n < ∥w∥2
2 < ∥z∥2

2 ≤ ∥w∥
2
2 + ∥x∥2

2 + 4ck
√

log n
√

n/k < 4n .

It follows that any ( 1
k , α)-heavy set T will exactly be the support set S if α = O(n/(k log n)).

The following theorem is immediate.

▶ Theorem 24. Suppose that α = O(n/(k log n)). Then, any linear sketching algorithm
that solves the (1/k, α)-heavy hitters problem with constant probability requires a sketching
dimension of Ω(k log(n/k)).

6 Additional Results

We present improved one-pass and multipass algorithms for the ℓ0 estimation problem in
Section B.1, our two-pass algorithm for the Fp estimation (0 < p ≤ 2) problem in Section C,
our results for Schatten-p norm estimation in Section D, and finally, our results for cascaded
norms and rectangle-efficient Fp estimation in Section E and Section F, respectively. All
proofs are omitted and can be found in the full version of this paper.
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A Proof of Lemma 17

The first result, Equation (1), was proved in [51]. Now we prove the second result.
By a standard symmetrization technique (see, e.g., [39, p153]),

(
E

∣∣∣∥Y−I∥p
p − E

[
∥Y−I∥p

p

]∣∣∣r) 1
r

=

E

∣∣∣∣∣∣
∑
i ̸=I

(Yp
i − EYp

i )

∣∣∣∣∣∣
r

1
r

≤ 2

E

∣∣∣∣∣∣
∑
i̸=I

εiYp
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r

1
r

, (8)

multline where the εi are independent Rademacher variables.
By Latała’s inequality ([38, Corollary 3]), it holds for r ≥ 2 thatE

∣∣∣∣∣∣
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εiYp
i
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1
r
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 1
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,
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Yrp
i

 1
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 , (9)

where K1 > 0 is an absolute constant.
It was shown in [51, Lemma 6.3] that

EYp
i ≤ Kp

2 pp10T p, p ≥ 1,

for some absolute constant K2 > 0. It then follows thatE
∑
i̸=I

Yrp
i

 1
r

≤ Kp
2 (rp)pn1/r10pT (10)

The result follows from combining (8), (9) and (10).

Remark. We note an omission in [51]. In that paper, the proof of the second result, i.e.,
Equation (5), assumes that the larger term in (9) is (E

∑
i̸=I Y2r

i )1/p, which is not necessarily
the case. Lemma 2.5 in that paper is also an incorrect citation from [38], since the conclusion
should be max{∆1(X), ∆ℓ(X)} for nonnegative variables X, but this would be too large
for the proof. Hence we first symmetrize the variables, which allows for a better bound on
max{∆2(X), ∆ℓ(X)}.

B ℓ0 Estimation

B.1 One-pass Algorithm
We describe a randomized algorithm which gives an n1/t-approximation with constant
probability using O(t log log M)) bits of space, excluding the storage for random bits. We
assume that n1/t ≥ c2 for some constant c2, otherwise an optimal algorithm is known [35].

The algorithm is presented in Algorithm 1. The idea behind the algorithm is to subsample
the coordinates at t levels, with a geometrically decreasing sampling probability. In each
level, the surviving coordinates are hashed into a constant number of buckets. If the ℓ0 of
the subvector (which is the vector of surviving coordinates) at a level is at most a constant,
then only a small number of these buckets will be occupied. Otherwise, all the buckets will
be occupied with high probability. Based on this, we design a criterion to determine the
occupancy of these buckets to infer the ℓ0 of the subvector at a level. Finally, we find the
specific level J such that the ℓ0 in level J is between 0 and at most n1/t, and then it can
shown that nJ/t is a good estimator to the overall ℓ0.
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Algorithm 1 n1/t-approximator for ℓ0.

1 Initialize cKt counters C1,1,1, . . . , Ct,K,c to 0;
2 c1 ← β

√
c;

3 Initialize pairwise independent hash functions h : [n]→ [n], g : [n]→ [c];
4 Initialize K 4-wise independent hash functions si : [n]→ {−1, 1};
5 Pick a prime p ∈ Θ(c3 log2 M);
6 foreach (x, v) in the data stream do
7 b← the largest j such that h(x) mod ⌊n1/t⌋j = 0;
8 for i← 1 to b do
9 for j ← 1 to K do

10 Ci,j,g(x) ← (Ci,j,g(x) + v · sj(x)) mod p;
11 end
12 end
13 end
14 if there exists j such that |{k | ∃l, Cj,l,k ̸= 0}| > c1 then
15 J ← the largest j such that |{k | ∃l, Cj,l,k ̸= 0}| > c1;
16 else
17 J ← 0;
18 end
19 return c2nJ/t;

▶ Theorem 25. Algorithm 1 outputs Z, which with probability at least 0.9 satisfies that
ℓ0/n1/t ≤ Z ≤ L0n1/t. Furthermore, Algorithm 1 uses O(t log log M) bits of space, excluding
its random tape.

▶ Remark 26. Algorithm 1 uses O(log n) random bits since the hash functions h, g are
pairwise independent and the si are 4-wise independent.

B.2 Lower Bound
We now prove a space lower bound of Ω(t) bits for estimating ℓ0 up to an n1/t-approximation
factor. Our lower bound holds even if the algorithm has access to an arbitrarily long random
tape, which we do not charge for in its space. We reduce the ℓ0 estimation problem to the
Augmented Indexing communication problem, in the one-way public coin model, which we
now define. We assume that t = O(log n).

▶ Definition 27 (Augmented Indexing). Alice has a string u ∈ {0, 1}l, Bob has an index
i∗ ∈ [l] and ui∗+1, . . . , ul. Alice is allowed to send a single message to Bob, and Bob wants
to learn ui∗ from Alice with probability at least 2/3.

▶ Lemma 28 ([10]). The one-way communication complexity of Augmented Indexing is Ω(l)
in the public coin model.

Assume we have a streaming algorithm A. Alice runs A on her stream s(a), then sends
the state of A to Bob. Bob feeds his stream s(b) into A and obtains an estimate of ℓ0. We
show how to design s(a) and s(b) so that Bob can solve the Augmented Indexing problem.

Without loss of generality, we assume that t is divisible by 8. Let u be the vector in an
instance of the Augmented Indexing problem with l = t/8. We shall create an input vector x

for the ℓ0 estimation problem.
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▶ Theorem 29. Estimating ℓ0 with approximation factor n1/t requires Ω(t) bits, even if the
algorithm has an arbitrarily long random tape.

B.3 Multi-pass ℓ0 Estimation
We state our results for two-pass and three-pass algorithms below.

▶ Theorem 30. There exists an absolute constant ε0 and a two-pass algorithm such that the
following holds. For all ε ∈ (0, ε0), the algorithm outputs Z satisfying (1−ε)ℓ0 ≤ Z ≤ (1+ε)ℓ0
with probability at least 0.8. The algorithm uses O(log n+ε−2 log log M(log(1/ε)+log log M))
bits of space.

▶ Theorem 31. There exists an absolute constant ε0 and a three-pass algorithm such that the
following holds. For all ε ∈ (0, ε0), the algorithm outputs Z satisfying (1−ε)ℓ0 ≤ Z ≤ (1+ε)ℓ0
with probability at least 0.75. Furthermore, the algorithm uses O(log n + ε−2(log(1/ε) +
log log M)) bits of space.

C Two-Pass Algorithm for Fp (0 < p ≤ 2)

As we have shown in the previous section, for the ∥x∥p
p estimation problem, even a large

approximation also requires Ω(log n) bits of space. In this section, we will show that after
obtaining a constant approximation to ∥x∥p

p in the first pass using O(log n) bits, we can
obtain a (1 ± ε)-approximation to ∥x∥p

p using O(log n + ε−2(log M + log 1
ε )) bits. This is

better than the previous O(ε−2 log nM) space bound in one-pass if M is small.

▶ Theorem 32. Suppose that 0 < p ≤ 2. There is a two-pass streaming algorithm which
can be implemented in O(log n + ε−2(log M + log 1

ε )) bits of space and which outputs a
(1± ε)-approximation to ∥x∥p

p with probability at least 9/10.

D Schatten-p Norm Estimation

In this section, we consider approximating the Schatten-p norm ∥A∥p of a given matrix A

with large approximation factor α, where σi(A) is the i-th singular value of A. We assume
A ∈ Rn×n here because for a general matrix A ∈ Rn×d, we can first apply a subspace
embedding to the left or to the right of A to preserve each of its singular values up to a
constant factor and then pad with zero rows or columns (see, e.g., Appendix C of [40] for the
details of this argument). As in the majority of previous work on Schatten norm estimation,
we focus on the sketching dimension complexity.

Upper Bound. We will show that for an even integer p and an arbitrary α = Ω(1), there
is an O(n2−4/p/α4) dimension sketching algorithm, while for p not an even integer, the
O(n2−4/p/α4) dimension bound still holds if α is not too small. Our algorithm is based on a
constant approximation algorithm for ∥A∥p when p is an even integer.

▶ Lemma 33 (Theorem 8.2, [41]). Suppose that p is an even integer. There is a sketch-
ing algorithm whose output Z satisfies ∥A∥p ≤ Z ≤ 2 ∥A∥p with probability at least 2/3.
Furthermore, the sketching dimension of this algorithm is O(n2−4/p).

Our algorithm is given in Algorithm 2. For an even integer p, we maintain the matrix
GAHT where G and H are defined in algorithm 2 and use the constant approximation
algorithm Aq to estimate the Schatten-q norm of GAHT . The following lemma shows that
∥GA∥q can be an α-approximation to ∥A∥p.
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Algorithm 2 α-approximation for ∥A∥p.

1 Set q = p if p ∈ 2Z, or to be the largest even integer less than p otherwise;
2 Let Aq be a streaming algorithm that can output a constant-factor approximation to
∥A∥q;

3 Set t = (n1/2−1/p/α)1/(1/2−1/q) ;
4 Let G be an r = t poly log(n/t)× n matrix with i.i.d N (0, 1/r) entries (these are i.i.d.

normal random variables with mean 0 and variance 1/r) and let H be an
independent r = O(t)× n matrix with i.i.d N (0, 1/r) entries.

5 foreach ∆i,j in the data stream do
6 Compute the matrix G∆i,jHT ;
7 Add G∆i,jHT to the input stream for Aq;
8 end
9 Let Z be the output from Aq;

10 return Z ;

▶ Lemma 34 (rewording of Theorem 22, [43]). Suppose that p ≥ q ≥ 2, q is an even integer,
and t = O(n). Let G be an r × n matrix with i.i.d. N (0, 1/r) entries, where r = O(t) when
q = 2 and r = O(t log1/(1/2−1/q)(n/t)) when q ≥ 4. Then, with probability at least 1−exp(c′t),
we have ∥A∥p ≤ ∥γGA∥q ≤ (n1/2−1/p)/(t1/2−1/q) ∥A∥p , where γ is an appropriate scaling
factor.

If H is a (1/2)-subspace embedding of GA, then the singular values of GAHT are different
from those of GA by at most a constant factor (see Section 2), and thus

∥∥GAHT
∥∥

q
is a constant

approximation to ∥GA∥q. Recall that our sketch is a matrix of dimensions r ×O(t), where
r = t poly(log t), so the sketching dimension of our algorithm is Õ(t2−4/p) = Õ(n2−4/p/α4).

▶ Theorem 35. Suppose that p ≥ 2 is an even integer. Then there is a sketching algorithm
whose output Z satisfies ∥A∥p ≤ Z ≤ α ∥A∥p with probability at least 2/3. Furthermore, the
sketching dimension of this algorithm is Õ(n2−4/p/α4).

When p is not an even integer (and could even be a non-integer), let q be the largest
even integer that is smaller then p. Then our choice of t still satisfies that t = O(n) if
α = Ω(n1/p−1/q). Our arguments above continue to hold and we obtain the following theorem.

▶ Theorem 36. Suppose that p ≥ 2 is not an even integer. Let q be the largest even integer
less than p and α = Ω(n1/q−1/p). Then there is a sketching algorithm whose output Z satisfies
∥A∥p ≤ Z ≤ α ∥A∥p with probability at least 2/3. Furthermore, the sketching dimension of
this algorithm is Õ(n2−4/p/α4).

Lower Bound. Below we show that our upper bound is optimal up to polylog(n) factors.
In [41], the authors give the following n2/α4 lower bound for α-approximating ∥A∥op.

▶ Lemma 37 (Corollary 3.3, [41]). Suppose that α ≥ 1 + c where c is an arbitrarily small
constant. Then, any sketching algorithm estimating ∥A∥op within a factor α with failure
probability smaller than 1/6 requires sketching dimension n2/α4.

Since ∥x∥∞ ≤ ∥x∥p ≤ n1/p ∥x∥∞, an α-approximation of ∥A∥p implies an αn1/p approx-
imation to ∥A∥∞ = σ1(A). The following lower bound follows.
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▶ Theorem 38. Suppose that α ≥ 1 + c, where c > 0 is an arbitrarily small constant. Then,
any sketching algorithm estimating ∥A∥p within a factor α with failure probability smaller
than 1/6 requires sketching dimension O(n2−4/p/α4).

E Cascaded Norms

In this section, we consider approximating the cascaded (p, q)-norm of a matrix X, defined as
∥X∥p,q = (

∑
i(

∑
j |xij |q)p/q)1/p, for a large approximation factor α, when p ≥ 1 and q > 2.

We have the following upper bound and show it is tight up to poly(log n) factors.

▶ Theorem 39. Suppose that α ≥ 8. Then there is an algorithm whose output is Z,
which satisfies that ∥X∥p,q ≤ Z ≤ α ∥X∥p,q with probability at least 2/3. Furthermore,
the algorithm uses O(n1−2/pd1−2/q · (pq log n)O(1)/α2) bits of space when p, q > 2 and uses
O(d1−2/q · (q log n)O(1)/α2) bits of space when 1 ≤ p < 2 and q > 2.

▶ Theorem 40. For the case that p, q > 2, any one-pass streaming algorithm which out-
puts a number Z such that ∥X∥p,q ≤ Z ≤ α ∥X∥p,q with probability at least 2/3 requires
Ω(n1−2/pd1−2/q/α2) bits of space. For the case that 1 ≤ p < 2 and q > 2, any one-pass
streaming algorithm which outputs a Z such that ∥X∥p,q ≤ Z ≤ α ∥X∥p,q with probability at
least 1− δ requires Ω(d1−2/q log(M) log(1/δ)/α2) bits of space.

F Rectangle Fp (p > 2)

In this section, we consider the rectangle Fp problem. A rectangle-efficient algorithm was
proposed in [49]. Instead of updating the counter in each coordinate inside a rectangle, they
develop a rectangle-efficient data structure called RectangleCountSketch. We follow
their notation that O∗(f) denotes a function of the form f · poly(log(mn/δ)) for constant
rectangle dimension d.

▶ Theorem 41. Suppose that p > 2. There is a rectangle-efficient one-pass streaming
algorithm which outputs a number Z that is an α-approximation to ∥x∥p

p, i.e., ∥x∥p
p ≤

Z ≤ α ∥x∥p
p, with probability at least 1 − δ. It uses O∗(nd(1−2/p)/α2/p) bits of space and

O∗(nd(1−2/p)/α2/p) time to process each rectangle in the stream.
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