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Abstract
We consider variants of the restricted assignment problem where a set of jobs has to be assigned
to a set of machines, for each job a size and a set of eligible machines is given, and the jobs may
only be assigned to eligible machines with the goal of makespan minimization. For the variant with
interval restrictions, where the machines can be arranged on a path such that each job is eligible on a
subpath, we present the first better than 2-approximation and an improved inapproximability result.
In particular, we give a (2 − 1

24 )-approximation and show that no better than 9/8-approximation is
possible, unless P=NP. Furthermore, we consider restricted assignment with R resource restrictions
and rank D unrelated scheduling. In the former problem, a machine may process a job if it can
meet its resource requirements regarding R (renewable) resources. In the latter, the size of a job is
dependent on the machine it is assigned to and the corresponding processing time matrix has rank
at most D. The problem with interval restrictions includes the 1 resource variant, is encompassed by
the 2 resource variant, and regarding approximation the R resource variant is essentially a special
case of the rank R + 1 problem. We show that no better than 3/2, 8/7, and 3/2-approximation is
possible (unless P=NP) for the 3 resource, 2 resource, and rank 3 variant, respectively. Both the
approximation result for the interval case and the inapproximability result for the rank 3 variant are
solutions to open challenges stated in previous works. Lastly, we also consider the reverse objective,
that is, maximizing the minimal load any machine receives, and achieve similar results.
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1 Introduction

Makespan minimization on unrelated parallel machines, or unrelated scheduling for short, is
considered a fundamental problem in approximation and scheduling theory. In this problem,
a set J of jobs has to be assigned to a set M of machines via a schedule σ : J → M. Each
job j has a processing time pij depending on the machine i it is assigned to and the goal
is to minimize the makespan Cmax(σ) = maxi∈M

∑
j∈σ−1(i) pij . In 1990, Lenstra, Shmoys,

and Tardos [10] presented a 2-approximation for this problem and further showed that no
better than 1.5-approximation can be achieved (unless P=NP) already for the restricted
assignment problem, where each job j has a size pj and pij ∈ {pj ,∞} for each machine i.
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For each job j we denote its set of eligible machines by M(j) = {i ∈ M | pij = pj}. Closing
or narrowing the gap between 2-approximation and 1.5-inapproximability is a famous open
problem in approximation [18] and scheduling theory [15]. The present paper deals with
certain subproblems of both unrelated scheduling and restricted assignment.

Interval Restrictions. In the variant of restricted assignment with interval restrictions,
denoted as RAI in the following, there is a total order of the machines and each job j

is eligible on a discrete interval of machines, i.e., M = {M1,M2, . . . ,Mm} and M(j) =
{Mℓ,Mℓ+1, . . .Mr} for some ℓ, r ∈ [m]. There are several variants and special cases of
this problem that are known to admit a polynomial time approximation scheme (PTAS),
see [6, 8, 9, 11,14,16], the most prominent of which is probably the hierarchical case [11] in
which each job is eligible on an interval of the form {M1,M2, . . .Mr}, i.e., the first machine
is eligible for each job. For RAI, on the other hand, there is an (1 + δ)-inapproximability
result for some small but constant δ > 0 [12]. Furthermore, Schwarz [16] designed a
(2 − 2/(maxj∈J pj))-approximation (assuming integral processing times); and Wang and
Sitters [17] studied an LP formulation that provides an optimal solution for the special case
with two distinct processing times and some additional assumption.

Resource Restrictions. In the restricted assignment problem with R resource restrictions,
or RAR(R), a set R of R (renewable) resources is given, each machine i has a resource
capacity cr(i) and each job j has a resource demand dr(j) for each r ∈ R. The eligible
machines are determined by the corresponding resource constraints, i.e., M(j) =

{
i ∈

M
∣∣ ∀r ∈ R : dr(j) ≤ cr(i)

}
for each job j. It is easy to see, that RAR(1) corresponds to the

mentioned hierarchical case which admits a PTAS [11]. On the other hand, there can be
no approximation algorithm with ratios smaller than 48/47 ≈ 1.02 or 1.5 for RAR(2) and
RAR(4), respectively, unless P=NP, see [12]. The same paper also points out that the case
with one resource is a special case of the interval case which in turn is a special case of the
two resource case, i.e., RAR(1) ⊂ RAI ⊂ RAR(2). While the hierarchical case, i.e. RAR(1),
has been studied extensively before, RAR(R) was first introduced in a work by Bhaskara et
al. [1], who mentioned it as a special case of the next problem that we consider.

Low Rank Scheduling. In the rank D version of unrelated scheduling, or LRS(D), the
processing time matrix (pij) has a rank of at most D. Alternatively (see [3]), we can assume
that each job j has a D dimensional size vector s(j) and each machine i a D dimensional speed
vector v(i) such that pij =

∑D
k=1 sk(j)vk(i). Now, LRS(1) is exactly makespan minimization

on uniformly related parallel machines, which is well known to admit a PTAS [7]. Bhaskara
et al. [1], who introduced LRS(D), presented a QPTAS for LRS(2) along with some initial
inapproximability results for D > 2. Subsequently, Chen et al. [4] showed that there can
be no better than 1.5-approximation for LRS(4) unless P=NP, and for LRS(3) the same
authors together with Marx [3] ruled out a PTAS. On an intuitive level, resource restrictions
can be seen as a restricted assignment version of low rank scheduling. However, there is a
more direct relationship between the two problems: for each RAR(R) instance there exist
LRS(R + 1) instances that are arbitrarily good approximations of the former (see [12]).
Hence, any approximation algorithm for LRS(R + 1) can also be used for RAR(R), and any
inapproximability result for RAR(R) carries over to LRS(R+ 1). In fact many (but not all)
inapproximability results for low rank scheduling essentially have this form.

Results. We present improved approximation and inapproximability results for this family
of problems. In particular:
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An approximation algorithm for RAI with ratio 2 − 1
24 ≈ 1.96 presented in Section 2;

a reduction that rules out a better than 1.5 approximation unless P=NP, i.e., a 1.5-
inapproximability result, for RAR(3) presented in Section 3.1;
a 8/7-inapproximability result for RAR(2) not included in this version of the paper;
a 9/8-inapproximability result for RAI presented in Section 3.2;
and a 1.5-inapproximability result for LRS(3) not included in this version of the paper.

All the missing proofs and results can be found in the long version of the paper. The
positive result for RAI can be considered the first of the two main contributions of this
paper. Finding a better than 2-approximation for RAI was posed as an open challenge
in previous works [8, 16, 17]. When considering the respective results in [17] and [16], in
particular, it seems highly probable that the actual goal of the research was to address exactly
that challenge. The presented approximation algorithm follows the approach of solving and
rounding a relaxed linear programming formulation of the problem, which has been used in
the classical work by Lenstra et al. [10] and many of the results thereafter. In particular,
we extend the so called assignment LP due to Lenstra et al. [10] and design a customized
rounding approach. Both the linear programming extension and the rounding approach
utilize extensions and refinements of ideas from [16] and [17]. Our result joins the relatively
short list of special cases of the restricted assignment problem that do not allow a PTAS
and for which an approximation algorithm with rate smaller than 2 is known. Other notable
entries are the restricted assignment problem with only two processing times [2] and the
so-called graph balancing case [5], where each job is eligible on at most two machines.

The inapproximability results directly build upon the results presented in the paper [12],
which in turn utilizes many of the previously published ideas, e.g., from [1,3–5,10]. We use
the satisfiability problem presented in [12] as the starting point for all of our reductions.
For the RAI result in particular, we refine and restructure the respective results from [12]
aiming for a significantly better ratio. The respective reduction involves a sorting process
and curiously the main improvement in the reduction involves changing a sorting process
resembling insertion sort into one resembling bubble sort. Due to this change, the construction
becomes locally less complex enabling the use of smaller processing times and hence a stronger
inapproximability result. Furthermore, the simplified construction in the result enables us
to use the basic structure of the reduction as a starting point for the second main result of
the paper, namely, the 1.5-inapproximability result for RAR(3). For this reduction several
additional considerations and gadgets are needed, arguably making it the most elaborate of
the presented results. The search for an inapproximability result with a reasonably big ratio
for RAR(3) was stated as an open challenge in the long version of [3]. Adding the new result
yields a very clear picture regarding the approximability of low rank makespan minimization:
There is a PTAS for LRS(1), a QPTAS for LRS(2), and a 1.5-inapproximability result for
LRS(D) with D ≥ 3. The last two reductions regarding RAR(2) and RAR(3) yield much
improved inapproximability results for the respective problems using comparatively simple
and elegant reductions. The result regarding RAR(3), in particular, closes a gap in the
results of [12] and also yields an (arguably) easier, alternative proof for the result of [4].
Finally, we note that all of the inapproximability results regarding restricted assignment with
resource restrictions can be directly applied to the so called fair allocation or santa claus
versions of the problems. In these problem variants, we maximize the minimum load received
by the machines rather than minimization of the maximum load, i.e., the objective function
is given by Cmin(σ) = mini∈M

∑
j∈σ−1(i) pij in this case.

Further Related Work. For a more detailed discussion of related work, we refer to [12] and
the long version of this paper.

ESA 2022
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2 Approximation Algorithm for Makespan Minimization with Interval
Restrictions

We establish the first approximation for RAI with an approximation factor better than 2:

▶ Theorem 1. There is a (2 − γ)-approximation for RAI with γ = 1
24 .

The particular value of the parameter γ is justified in the end. To achieve this result, we
first formulate a customized linear program based on the assignment LP due to Lenstra et
al. [10] and develop a rounding approach that places different types of jobs in phases. Note
that the placement of big jobs with size close to opt (where opt is the makespan of an
optimal schedule) is often critical when aiming for an approximation ratio of smaller than
2 for a makespan minimization problem. For instance, the classical 2-approximation [10]
for restricted assignment produces a schedule of length at most opt + maxj∈J pj where
opt is the makespan of an optimal schedule and hence the approximation ratio is better if
maxj∈J pj is strictly smaller than opt. This is also the case with our approach – the main
effort goes into the careful placement of such big jobs. In particular, we place the largest
jobs in a first rounding step and the remaining big jobs in a second. All of these jobs have
the property that each machine should receive at most one of them and they are placed
accordingly. Moreover, the placement is designed to deviate not too much from the fractional
placement due to the LP solution. In a last step, the remaining jobs are placed. Each
rounding step is based on a simple heuristic approach that considers the machines from left
to right and places the least flexible eligible jobs first, i.e., the jobs that have not been placed
yet, are eligible on the current machine, and have a minimal last eligible machine in the
ordering of the machines. Both the LP and the rounding approach reuse ideas from [16,17].
Hence, the main novelty lies in the much more elaborate approach for placing the mentioned
big jobs in two phases.

In the following, we first establish some preliminary considerations; then formulate the
LP and argue that it is indeed a relaxation of the problem at hand; and then discuss and
analyze the different phases of the rounding procedure step by step.

Preliminaries. For any integer k, we set [k] = {0, . . . , k − 1}. We apply the standard
technique (see [10]) of using a binary search framework to guess a candidate makespan T .
The goal is then to either correctly decide that no schedule with makespan T exists, or to
produce a schedule with makespan at most (2 − γ)T . Given this guess T , we divide the jobs
j into small (pj ≤ 0.5T ), large (0.5T < pj ≤ (0.5 + ξ)T ) and huge ((0.5 + ξ)T < pj) jobs
depending on some parameter ξ = 1

24 which is justified later on. We denote the sets of small,
large, and huge jobs as S, L, and H, respectively. Furthermore, we fix the (total) order of
the machines such that each job is eligible on consecutive machines. This is possible since
we are considering RAI. For the sake of simplicity, we assume M = [m] with the ordering
corresponding to the natural one and set M(ℓ, r) = {ℓ, . . . , r} for each ℓ, r ∈ M. When
considering the machines, we use a left to right intuition with predecessor machines on the
left and successor machines on the right. Note, that for each job j there exists a left-most
and right-most eligible machine and we denote these by ℓ(j) and r(j), respectively, i.e.,
M(j) = M(ℓ(j), r(j)). For a set of jobs J ⊆ J , we call a job j ∈ J least flexible in J if r(j)
is minimal in {r(j′) | j′ ∈ J}, and a job j is called less flexible than a job j′ if r(j) ≤ r(j′).
Lastly, we set J(ℓ, r) =

{
j ∈ J

∣∣ M(j) ⊆ M(ℓ, r)
}

for each set of jobs J ⊆ J and pair of
machines ℓ, r ∈ M, and p(J) =

∑
j∈J pj .
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Linear Program. The classical assignment LP (see [10]) is given by assignment variables
xij ∈ [0, 1] for each i ∈ M and j ∈ J and the following constraints:∑

i∈M
xij = 1 ∀j ∈ J (1)∑

j∈J
pjxij ≤ T ∀i ∈ M (2)

xij = 0 ∀j ∈ J , i ∈ M \ M(j) (3)

Equation (1) guarantees that each job is (fractionally) placed exactly once; Equation (2)
ensures that each machine receives at most a load of T ; and due to Equation (3) jobs are
only placed on eligible machines. We add additional constraints that have to be satisfied
by any integral solution. In particular, we add the following constraints using parameters
UB(ℓ, r) for each ℓ, r ∈ M with ℓ ≤ r, which will be properly introduced shortly:∑

j∈L∪H
xij ≤ 1 ∀i ∈ M (4)

∑
i∈M(ℓ,r)

∑
j∈H

xij ≤ UB(ℓ, r) ∀ℓ, r ∈ M, ℓ ≤ r (5)

Equation (4) captures the simple fact that no machine may receive more than one job of
size larger than 0.5T and was used in [5] as well. The bound UB(ℓ, r), on the other hand, is
defined in relation to the total load of small jobs that has to be scheduled in the respective
interval M(ℓ, r). In particular, we consider the overall load of small jobs that have to be
placed in the interval together with the load due to huge jobs with their sizes rounded down
to their minimum size. The respective load has to be bounded by T times the number of
machines in the interval, i.e.,

∑
i∈M(l,r)

∑
j∈H(0.5 + ξ)Txij + p(S(ℓ, r)) ≤ T |M(l, r)|. Since

the number of huge jobs placed in an interval is integral for an integral solution, we can
therefore set UB(ℓ, r) =

⌊
(T |M(l, r)| − p(S(ℓ, r)))/((0.5 + ξ)T )

⌋
. We note that a constraint

similar to Equation (5) is also used in [16, 17]. Summing up, we try to solve the linear
program given by Equations (1)–(5) which is indeed a relaxation for RAI. If this is not
successful, we reject T and otherwise round the solution x using the procedure described in
the following and yielding a rounded solution x̄.

Placement of Huge Jobs. Starting with the first machine in the ordering, we place the
huge jobs as follows:

Let i∗ be the current machine and H the set of huge jobs that have not been placed yet
and are eligible on i∗.
If

⌊∑
i∈M(0,i∗)

∑
j∈H xij

⌋
>

⌊∑
i∈M(0,i∗−1)

∑
j∈H xij

⌋
and H ̸= ∅, place a least flexible

job j ∈ H on i∗, i.e., we set x̄i∗j = 1.
Consider the next machine in the ordering or stop if there is none.

This procedure indeed works and we preserve a connection to the original LP solution:

▶ Lemma 2. All of the huge jobs are placed (on eligible machines) by the above procedure
and, for each ℓ, r ∈ M with ℓ ≤ r, we have

∑
i∈M(ℓ,r)

∑
j∈H x̄ij ≤

⌈∑
i∈M(ℓ,r)

∑
j∈H xij

⌉
.

We note that this first rounding step is very similar to the first rounding step in [17].

Mapping out the Regions. In the next step, we divide the machines into regions, where
each region did receive fractional large load of (roughly) one. To that end, we define a
set of border machines B as the machines considered from left to right where the sum of

ESA 2022
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fractionally placed large jobs hits a new integer, i.e., B =
{
i′ ∈ M

∣∣ ⌊∑
i∈M(0,i′)

∑
j∈L xij

⌋
>⌊∑

i∈M(0,i′−1)
∑

j∈L xij

⌋}
. Moreover, let B = {i1, . . . , iq} with i1 < · · · < iq and i0 the

left-most machine with
∑

j∈L xi0j > 0. For each s ∈ [q] = {0, . . . , q − 1}, we may initially
define the s-th region as Rs = M(is, is+1). At this point consecutive regions overlap by one
machine. We want to change this, while guaranteeing that each region retains at least one
candidate machine that may receive a large job in the following. In particular, a machine
i ∈ M is a candidate if it did receive some fractional large or huge job in the LP solution,
i.e.,

∑
j∈H∪L xij > 0, but no huge job afterwards, i.e.,

∑
j∈H x̄ij = 0. We denote the set

of candidate machines as C. For each s ∈ [q − 1], we apply the following procedure in
incremental order:

Check whether region Rs needs the last machine to have at least one candidate, i.e.,
M(is, is+1 − 1) ∩ C = ∅.
If this is the case, we set Rs+1 = M(is+1 +1, is+2) and otherwise set Rs = M(is, is+1 −1).

After applying this procedure, we have:

▶ Lemma 3. The regions are non-overlapping and each contain at least one candidate.

Before proceeding with the placement of the large jobs, we note the following technical
observation:

▶ Lemma 4. Let ℓ, r ∈ M with ℓ ≤ r, ℓ ∈ Rs, r ∈ Rt, k = |{s, . . . , t}|, and fracLarge =∑
i∈M(ℓ,r)

∑
j∈L xij . Then we have k− 2 < fracLarge < k+ 2. Furthermore, fracLarge <

k + 1 if either ℓ > is or r < it+1 and fracLarge < k if both of these conditions hold.

Placement of Large Jobs. Using the regions, we place the large jobs via the following
procedure starting with the first region:

Let R∗ be the current region and L the set of large jobs that have not been placed yet
and are eligible on at least one candidate machine from R∗.
Do the following twice: Pick a least flexible large job j ∈ L, place it on the leftmost
eligible candidate machine i ∈ R∗, i.e. x̄ij = 1, and update L.
Consider the next region in the ordering or stop if there is none.

Observe that the placement of both the large and huge jobs guarantees that only machines
that did receive fractional large or huge load in the LP solution may receive any large or
huge job and each such machine receives at most one such job. We argue that this procedure
works and also retains some connection to the original LP solution x.

▶ Lemma 5. All large jobs are placed (on eligible machines) by the described procedure and,
for each ℓ, r ∈ M with ℓ ≤ r, we have

∑
i∈M(ℓ,r)

∑
j∈L x̄ij < 2(

∑
i∈M(ℓ,r)

∑
j∈L xij + 2).

Proof. Regarding the second statement note that we place at most 2 jobs in each region
and hence Lemma 4 directly yields the proof. As usual, we proof the first statement by
contradiction. To that end, assume that there exists a large job j∗ that is not placed by
the procedure. First note, that there is at least one eligible candidate machine for j∗. To
see this, consider the set M of eligible machines i ∈ M(j) that either received fractional
load of j∗ or some huge load, i.e., xij > 0 for j ∈ {j∗} ∪ H. Then Equation (4) implies∑

i∈M

∑
j∈H xij ≤ |M | − 1. Hence, at most |M | − 1 many huge jobs are placed on machines

from M due to Lemma 2 and therefore at least one of these machines is a candidate. There
are two possibilities why j∗ was not placed on such a machine: either a less flexible job got
placed on the machine, or two other less flexible jobs were already placed in the same region.
Let r∗ = r(j∗) and ℓ∗ ≤ ℓ be minimal with the property that each large job that was placed



M. Maack, S. Pukrop, and A. R. Rasmussen 77:7

in M(ℓ∗, r∗) is less flexible than j∗ and each free candidate machine in the interval is free
because two other machines in the same respective region already received a large job less
flexible than j∗. Furthermore, let J∗ be the set of large jobs placed in M(ℓ∗, r∗) together
with j∗. We argue that ℓ(j) ≥ ℓ∗ for each j ∈ J∗. Otherwise, there exists a job j ∈ J∗ eligible
on machine ℓ∗ − 1. Then there are three possibilities regarding this machine. It was not a
candidate before the procedure; it was a candidate and received a job less flexible then j

(and therefore also less flexible then j∗); or it was a candidate and did not receive a large job
because two other machines in the same region received a job less flexible then j. Each yields
a contradiction to the definition of ℓ∗. Let fracLarge =

∑
i∈M(ℓ∗,r∗)

∑
j∈L xij be the sum

of fractional large jobs in M(ℓ∗, r∗) according to x. Note that we did show J∗ ⊆ J (ℓ∗, r∗)
and hence fracLarge ≥ |J∗|.

Let M∗ ⊆ M(ℓ∗, r∗) be the set of machines that did receive a fraction of a job from J∗ ∪H.
Then Equation (4) implies

∑
i∈M∗

∑
j∈H xij ≤ |M∗| − |J∗|, and furthermore Lemma 2 yields

that at most |M∗| − |J∗| huge jobs are placed on machines from |M∗|. Hence, there are
at least |J∗| candidate machines in M(ℓ∗, r∗). Since not all of the jobs from J∗ have been
placed by the procedure, there is therefore at least one free machine in i∗ ∈ M(ℓ∗, r∗). The
definition of ℓ∗ yields, that two jobs less flexible then j∗ have been placed in the same region
as i∗ and these jobs have to be included in J∗ (and the machines they are placed on in
M(ℓ∗, r∗)).

We now take a closer look at the regions (partially) included in M(ℓ∗, r∗). Let ℓ∗ ∈ Rs,
r∗ ∈ Rt, and k = |{s, . . . , t}|. We consider three cases: If we have ℓ∗ = is and r∗ = it+1,
i.e., the borders of the interval correspond to the (original) outer borders of their regions,
then each of the regions Rs, . . . , Rt did receive at least one job from J∗ and one received
at least two yielding k ≤ |J∗| − 2 ≤ fracLarge − 2. Moreover, if ℓ∗ > is or r∗ < it+1, then
one of the regions Rs, . . . , Rt may not have received a job from J∗ changing the inequality
to k ≤ fracLarge − 1. Lastly, if both ℓ∗ > is and r∗ < it+1, then the two outer regions
may have received no job from J∗ yielding k ≤ fracLarge. However, Lemma 4 considers
the same three cases, yielding fracLarge < k + 2, fracLarge < k + 1, and fracLarge < k,
respectively. � ◀

Placement of Small Jobs. Lastly we place the small jobs. Starting with the first machine,
we do the following:

Let i∗ be the current machine and J the set of jobs that have not been placed yet and
are eligible on i∗.
Successively place least flexible jobs j on i∗, i.e., set x̄i∗j = 1, until either J = ∅ or placing
the next job would raise the load of i∗ above (2 − γ)T .
Consider the next machine in the ordering or stop if there is none.

We argue that this procedure works under certain conditions:

▶ Lemma 6. All small jobs are placed (on eligible machines) by the described procedure if
γ ≤ ξ, γ + ξ ≤ 1

12 , and 8ξ + 7γ ≤ 0.75 hold. In the resulting schedule, each machine has a
load of at most (2 − γ)T .

Proof (Idea). The main idea of the proof is to assume that some job cannot be placed and to
use this to construct some interval in which each machine received some minimum amount of
load and in which each placed job had to be placed in the respective interval. Then Lemma 2,
Lemma 5, and the constraints of the LP are used to show a contradiction. Depending on the
number of large jobs in the interval, either Equation (2) or Equation (5) are critical. ◀

ESA 2022
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Lastly, we choose values for ξ and γ which satisfy all the requirements of the above lemma
and maximize γ. The biggest γ is achieved by setting γ = ξ = 1

24 . This concludes the proof
of Theorem 1.

3 Complexity Results

Remember that we use the notation [n] = {0, . . . , n− 1} for each integer n. The complexity
result in this work directly build upon the ones in [12]. In that work, a satisfiability problem
denoted as 3-SAT∗ was introduced and shown to be NP-hard, and all reductions in the
present work start from this problem. An instance of the problem 3-SAT∗ is a conjunction
of clauses with exactly 3 literals each. Each of the clauses is either a 1-in-3-clause or a
2-in-3-clause, that is, they are satisfied if exactly one or two of their literals, respectively,
evaluate to true in a given truth assignment. We denote a k-in-3-clause with literals x,
y, and z as (x, y, z)k and the truth values true and false are denoted as ⊤ and ⊥ in the
following. There are as many 1-in-3-clauses in a 3-SAT∗ instance as there are 2-in-3-clauses,
and, furthermore, each literal occurs exactly twice. Hence, a minimal example for a 3-SAT∗

instance is given by (x0, x1,¬x2)1 ∧ (¬x0, x1, x2)1 ∧ (x0,¬x1,¬x2)2 ∧ (¬x0,¬x1, x2)2: We
have two 1-in-3-clauses and two 2-in-3-clauses, and two occurrences of xi and ¬xi for each
i ∈ [3]. The formula is satisfied if we map every variable to ⊥.

In each reduction, we start with an instance I of 3-SAT∗ with m many 1-in-3-clauses
C0, . . . , Cm−1, m many 2-in-3-clauses Cm, . . . , C2m−1 and n variables x0, . . . , xn−1. Since
there are 2m clauses with 3 literals each and 4 occurrences for each variable, we have
6m = 4n. In the following, the precise positions of the occurrences of the variables are
important and we have to make them explicit. To this end, let for each j ∈ [n] and t ∈ [4]
the pair (j, t) correspond to the first or second positive occurrence of variable xj if t = 0 or
t = 1, respectively, and to the first or second negative occurrence of variable xj if t = 2 or
t = 3. Furthermore, let κ : [n] × [4] → [2m] × [3] be the bijection that maps (j, t) to the
corresponding clause index and position in that clause. For instance, in the above example
we have κ(0, 2) = (1, 0) and κ(2, 1) = (3, 2).

Next, we construct an instance I ′ of the problem considered in the respective case. For
the restricted assignment type problems, all job sizes are integral and upper bounded by some
constant T such that the overall size of the jobs equals |M|T . Hence, if a machine receives
jobs with overall size more or less than T , the objective function value is worse than T for
both the makespan and fair allocation case. The goal is to show, that there is a schedule with
makespan T for I ′, if and only if I is a yes-instance. This rules out approximation algorithms
with rate smaller than (T + 1)/T for the makespan problem, and with rate smaller than
T/(T − 1) for the fair allocation variant since the overall load is |M|T . For the low rank
problem, we first design a restricted assignment reduction using the above approach and
then show that there exist low rank scheduling instances that approximate the restricted
assignment instance with arbitrary precision.

Simple Reduction. We start with a simple reduction for the general restricted assignment
problem (with arbitrary restrictions) introducing several ideas and gadgets relevant for all of
the following reductions. Note that the reduction is very similar to the one by Ebenlendr et
al. [5] and to a reduction in [12].

We have three types of basic jobs and machines, namely, truth assignment machines and
jobs that are used to assign truth values to variables, clause machines and jobs that model
clauses being satisfied, and variable jobs that connect the first two types:
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Table 1 Resource demands and capacities of the jobs and machines, respectively, for the case
with 3 resources.

Job/Mach. Res. 1 Res. 2 Res. 3

TMach(j, 0) 4j + 1 4n − 4j 1
TMach(j, 1) 4j + 3 4n − 4j 0
TJob(j) 4j 4n − 4j 0
CMach(i, s), κ−1(i, s) = (j, t) 4j + t 4n − (4j + t) 2 + i

CJob(i, s) 0 0 2 + i

VJob(j, t) 4j + t 4n − (4j + t) 1 − ⌊ t
2 ⌋

There are truth assignment machines TMach(j, q) with j ∈ [n] and q ∈ [2] and one truth
assignment job TJob(j) with size 2 and eligible on {TMach(j, 0), TMach(j, 1)}.
There are clause machines CMach(i, s) for each i ∈ [2m] and s ∈ [3] and three clause jobs
CJob(i, s) each eligible on {CMach(i, s′) | s′ ∈ [3]}. The job CJob(i, 0) has size 1, CJob(i, 2)
has size 2, and CJob(i, 1) has size 2 if clause Ci is a 1-in-3-clause and size 1 otherwise.
Lastly, there are variable jobs VJob(j, t) for each j ∈ [n] and t ∈ [4] each of size 1 and
eligible on {TMach(j, ⌊ t

2 ⌋), CMach(κ(j, t))}.
First note:

▷ Claim 7. The overall job size
∑

j∈J p(j) is equal to 2|M|.

Consider the case that we have a satisfying truth assignment for instance I. If variable xj is
assigned to ⊤, we place TJob(j) on TMach(j, 0), VJob(j, 0) and VJob(j, 1) on CMach(κ(j, 0))
and CMach(κ(j, 1)), respectively, together with local size 1 clause jobs. Furthermore, VJob(j, 2)
and VJob(j, 3) are placed on TMach(j, 1) and CMach(κ(j, 2)) and CMach(κ(j, 3)) each receive
a local size 2 clause job. If variable xj is assigned to ⊥, we place TJob(j) on TMach(j, 1), and
the placement strategy of the positive and negative variable jobs is reversed. Note that the
placement of the clause jobs has to work out since the truth assignment is satisfying. This
approach yields a schedule with makespan 2. However, it is also easy to see that a schedule
with makespan 2 yields a satisfying truth assignment by basing the assignment of xj on the
placement of TJob(j), and hence we have:

▶ Lemma 8. There is a satisfying truth assignment for I, if and only if there is a schedule
with makespan 2 for I ′.

This reduction can be considered the basis of all the other ones considered in this work.

3.1 Three Resources
In the RAR(3) case, we can use essentially the same construction as above. However, the sets
of eligible machines are defined using the resources and are slightly different. The resource
demands and capacities are specified in Table 1. The choice of resources implies:

▷ Claim 9. We have M(TJob(j)) = {TMach(j, 0), TMach(j, 1)} for each j ∈ [n] and
M(VJob(j, t)) = {TMach(j, ⌊ t

2 ⌋), CMach(κ(j, t))} for each j ∈ [n] and t ∈ [4].

Hence, the truth assignment and variable jobs have the same sets of eligible machines as
before. For the clause jobs this is not true, however, a similar claim holds. We call a schedule
that assigns a load of exactly T to each machine a T -schedule. Using the fact, that in a
2-schedule each clause machine has to receive at least one clause job, it is easy to show the
following:
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▷ Claim 10. In any 2-schedule each machine from {CMach(i, s) | s ∈ [3]} receives exactly one
job from {CJob(i, s) | s ∈ [3]}.

Hence, Lemma 8 works the same as before and we have:

▶ Theorem 11. There is no better than 1.5-approximation for RAR(3) and no better than
2-approximation for the fair allocation version of this problem, unless P=NP.

3.2 Interval Restrictions
In order to motivate the new ideas for the RAI reduction and to make them easier to
understand, it is helpful to revisit the reduction from [12] first. One of the main ingredients
in that result is a simple trick that we will also use extensively.

Pyramid Trick. Consider the following setting: We have 2ℓ consecutive machines and ℓ

pairs of jobs. The i-th pair of jobs is eligible on the i-th machine and up to and including
the (2ℓ+ 1 − i)-th machine. Furthermore, we assume that each machine has to receive at
least one of the jobs. Then the first and last machine each have to receive one job from the
first pair because there are no other eligible jobs that can be processed on these machines.
Now, the same argument can be repeated for the second and second to last machine and so
on. Hence, machine i and (2ℓ+ 1 − i) each have to receive exactly one job from pair i.

Sorting. Next, consider that in the ordering of the machines the truth assignment machines
are placed on the left and the clause machines on the right. We could use similar truth
assignment and clause jobs as in the reduction in the beginning of this chapter. However,
variable jobs each are eligible on one truth assignment and one clause machine. Hence
they have to be eligible on all machines in between in a naive adaptation of the reduction
to the interval case. If we want to use the pyramid trick to deal with this problem, then
intuitively decisions regarding variables in later clauses have to be made before the decisions
for variables in earlier clauses and this, of course, cannot be guaranteed regardless of the
fixed order of the clauses or variables. The main work in [12] was to remedy this situation
by – roughly speaking – sorting the information regarding the variables made in the truth
assignment gadget to enable the use of the pyramid trick. To do so several gadgets have
been introduced that were intertwined with the truth assignment gadget and carefully build
up the ordered information using the pyramid trick and interlocking job sizes. The problem
with this approach is that the job sizes can get big rather fast if too many different job types
are eligible on the same machines resulting in a high value for T . Now, the main idea in the
present work is to decouple the decision and the sorting process and make the sorting process
as simple as possible to enable smaller job sizes and therefore a stronger result. Curiously,
the sorting process in [12] could be interpreted as some variant of insertion sort, while the
one used in the present reduction resembles bubble sort.

Machines and Order. Let k ∈ O(n2) be a parameter to be specified later in this paragraph.
In addition to the truth assignment and clause machines, we introduce the following ones:

For each j ∈ [n] and t ∈ [4] there are two gateway machines: one forward FGMach(j, t)
and one backward gateway machine BGMach(j, t).
For each ℓ ∈ [k], j ∈ [n], and t ∈ [4] there are two sorting machines: one forward
FSMach(ℓ, j, t) and one backward sorting machine BSMach(ℓ, j, t).
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Let T , G, and C be the sets of truth assignment, gateway, and clause machines, respectively.
Moreover, for each ℓ ∈ [k] let Sℓ = {BSMach(ℓ, j, t), FSMach(ℓ, j, t) | j ∈ [n], t ∈ [4]} be the
ℓ-th set of sorting machines. We define the overall order of the machines by setting an
internal order for each set of machines as well as an order of the machine sets. However,
before we can do so, we need some additional concepts and notation. In particular, let
φ0 be the sequence of (j, t)-pairs with j ∈ [n], t ∈ [4] with increasing lexicographical
order and ψ0 = κ(φ0), i.e., φ0 = ((0, 0), . . . , (0, 3), . . . , (n − 1, 0), . . . , (n − 1, 3)) and ψ0 =
(κ(0, 0), . . . , κ(0, 3), . . . , κ(n− 1, 0), . . . , κ(n− 1, 3)). Hence, ψ0 is a permutation of the pairs
(i, s) with i ∈ [2m] and s ∈ [3]. We consider sorting ψ0 with the goal of reaching the
increasing lexicographical order. Let k be the number of transpositions performed by bubble
sort if we do this. Furthermore, let ψℓ+1 for ℓ ∈ [k] be the sequence we get after the
first (ℓ+ 1)-transpositions and φℓ+1 = κ−1(ψℓ+1). The use of bubble sort guarantees that
k ∈ O(n2) and that two consecutive sequences φℓ, φℓ+1 differ only by two consecutive entries
that are transposed. For any finite sequence χ, we denote the reversed sequence as χ̄. Now,
the ordering is specified as follows:

The sets are ordered as follows: T ,G,S0, . . . ,Sk−1, C.
The truth assignment machines are ordered in increasing lexicographical order of the
indices (j, q).
The clause machines are ordered in decreasing lexicographical order of the indices (i, s).
The backward gateway machines are placed before the forward gateway machines and
for each ℓ ∈ [k] the backward sorting machines are placed before the forward sorting
machines from Sℓ as well.
The forward and backward gateway machines are ordered in increasing and decreasing
lexicographical order of the indices (j, t), i.e., φ0 and φ̄0, respectively.
For each ℓ ∈ [k], the backward sorting machines are sorted according to the placement of
the (j, t) indices in φ̄ℓ.
For each ℓ ∈ [k], the forward sorting machines are sorted according to the placement of
the (j, t) indices in φℓ+1.

The peculiar ordering of the machines is designed to enable the use of the pyramid trick.

Jobs, Sizes, and Eligibilities. We give a full list of all jobs together with their sizes and
define the sets of eligible machines by stating the respective first and last eligible machine
for each job. We will need one more definition: Let ξ : [k] → [n] × [4] be the function that
maps ℓ to the distinct pair (j, t) that has a higher index in φℓ+1 than in φℓ.

Truth assignment jobs: For each j ∈ [n] there is a job TJob(j) with size 2, first machine
TMach(j, 0) and last machine TMach(j, 1).
Variable jobs: For each j ∈ [n], t ∈ [4], and ◦ ∈ {⊤,⊥} there is a job VJob(j, t, ◦) with size
2 if ◦ = ⊥ and 3 otherwise, first machine TMach(j, ⌊t/2⌋) and last machine BGMach(j, t).
Gateway jobs: For each j ∈ [n], t ∈ [4], and ◦ ∈ {⊤,⊥} there is a job GJob(j, t, ◦) with
size 5 if ◦ = ⊥ and 4 otherwise, first machine BGMach(j, t) and last machine FGMach(j, t).
Bridge jobs: For each ℓ ∈ [k + 1], j ∈ [n], t ∈ [4], and ◦ ∈ {⊤,⊥} there is a bridge job
BJob(ℓ, j, t, ◦) with size 1 if ◦ = ⊥ and 2 otherwise, first machine either FGMach(j, t) if
ℓ = 0 or FSMach(ℓ− 1, j, t) otherwise, and last machine either BSMach(ℓ, j, t) if ℓ < k or
CMach(κ(j, t)) otherwise.
Sorting jobs: For each ℓ ∈ [k], j ∈ [n], t ∈ [4], and ◦ ∈ {⊤,⊥} there is a job SJob(ℓ, j, t, ◦).
If ξ(ℓ) = (j, t), it has size 4 if ◦ = ⊥ and 3 otherwise, and, if ξ(ℓ) ̸= (j, t), it has size 7 if
◦ = ⊥ and 6 otherwise. The first machine of SJob(ℓ, j, t, ◦) is BSMach(ℓ, j, t) and the last
machine is FSMach(ℓ, j, t).
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T G S0 Sk−1 C
. . .

VJob(∗, ∗, ∗)

GJob(∗, ∗, ∗)

BJob(0, ∗, ∗, ∗)

SJob(0, ∗, ∗, ∗)

BJob(1, ∗, ∗, ∗) BJob(k − 1, ∗, ∗, ∗)

SJob(k − 1, ∗, ∗, ∗)

BJob(k, ∗, ∗, ∗)

Figure 1 A visualization of the job and machine structure for the reduction regarding RAI.
The lower part corresponds to sets of machines with arrows corresponding to the direction of their
ordering; and the upper part to different job sets with lines corresponding to intervals of eligible
machines for pairs of jobs. Truth assignment and clause jobs as well as private loads are not depicted.

Clause jobs: For each i ∈ [2m] and s ∈ [3] there is a job CJob(i, s) with size 7 if s = 1,
8 − k if s = 2 and Ci is a k-in-3-clause, and 6 if s = 3, first machine CMach(i, 2) and last
machine CMach(i, 0).
Private loads: Each truth assignment machine has a private load (a job eligible only
one one machine) of 2, each backward or forward gateway machine a load of 1 or 2,
respectively, and for each ℓ ∈ [k] the sorting machines BSMach(ℓ, ξ(ℓ)) and FSMach(ℓ, ξ(ℓ))
have a private load of 3.

Using this reduction, we can show:

▶ Theorem 12. There is no better than 9
8 -approximation for RAI and no better than

8
7 -approximation for the fair allocation version of this problem, unless P=NP.

While the formal proof of this result exceeds the scope of this short version of the paper,
we briefly discuss the main idea: We have a truth assignment gadget that determines the
truth values of the variables and is followed by the gateway gadget, whose sole purpose is
to decouple the used job sizes in the truth assignment gadget and the sorting gadget. Next
there is the sorting gadget that slowly reorders the information about the decisions in the
truth assignment gadget, and lastly there is the clause gadget in which the truth assignment
is evaluated. The connection between the truth assignment and gateway gadget is provided
by the variable jobs and all other connections are realized via bridge jobs. A sketch of the
overall structure of the reduction is provided in Figure 1.

4 Conclusion

We conclude this work with a brief discussion of possible future research directions. There are
some obvious questions that can be pursued directly building upon the presented results, i.e.,
a better approximation ration for RAI or even stronger inapproximability results for RAI or
RAR(2). Of course, an improved approximation ratio for any problem of the family would be
interesting to develop. We would like to highlight LRS(2), in particular, as the in some sense
easiest problem in the family without a known polynomial time approximation with ratio
better than 2. Lastly, only very little is known regarding fixed-parameter tractable algorithms
for this family of problems. For instance, it is open whether RAR(1) is fixed-parameter
tractable with respect to the objective value.
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