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Abstract
Graphs with multiple edge costs arise naturally in the route planning domain when apart from
travel time other criteria like fuel consumption or positive height difference are also objectives to
be minimized. In such a scenario, this paper investigates the number of extreme shortest paths
between a given source-target pair s, t. We show that for a fixed but arbitrary number of cost types
d ≥ 1 the number of extreme shortest paths is in nO(logd−1 n) in graphs G with n nodes. This is a
generalization of known upper bounds for d = 2 and d = 3.
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1 Introduction

Given a finite set of points P ⊂ Rd, what is the number of vertices (or extreme points)
of the convex hull of P? This is a frequently asked question, for instance, in the area of
Multi-objective Linear Programming [3] or in probability theory [4]. In this work, we examine
this question for the case when P is the set of cost vectors of paths in a graph G (V, E) with
multiple edge costs.

Multi-objective path computation has obvious applications in the transportation domain,
where the cost values (also called metrics) might correspond to quantities like travel time,
fuel consumption, or positive height difference.

Figure 1 shows example cost vectors with two metrics. The red points are non-dominated
(or Pareto-optimal) and, thus, may be the solution to constrained minimization problems.
However, optimizing over all non-dominated cost vectors often turns out to be too expensive
as, for instance, in the constrained shortest path problem [12, 14]. A typical strategy in such
cases is to restrict the set of possible solutions to the non-dominated extreme points of the
convex hull (circled in blue). The extreme points have the property that for any convex
combination of the metrics there is at least one extreme point optimal for it. Therefore,
extreme points are interesting on their own and one can hope that restricting the search to
extreme points will lead to a good approximation of the optimal solution.
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14:2 An Upper Bound on the Number of Extreme Shortest Paths in Arbitrary Dimensions

Let Pst be the set of cost vectors of all simple paths from a node s to a node t in a
graph G. While it is easy to see that the number of non-dominated points in Pst can be
exponential in the size of G, there is little known about the complexity of the extreme
points in Pst. In this work we tackle the problem of counting the extreme points in Pst,
which we call extreme shortest paths. We show that the number of extreme shortest paths
in Pst is in nO(logd−1 n), where n is the number of nodes in G and d is the fixed number of
metrics. Thus, complexity-wise there is indeed a considerable gap between extreme points
and non-dominated points in Pst.

There are multiple ways to model multi-objective shortest path problems. A well
established one is the parametric shortest path problem, which is typically formulated for the
two-metric case. We have decided to use the variant developed in the context of personalized
route planning [10, 8] as it fits very well to practical application scenarios. Complexity-wise
there is no difference between these two models.
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Figure 1 Paths in cost space (black and red dots); Pareto-optimal paths (red); (lower left part of)
the boundary of the convex hull of all Pareto-optimal paths in green; extreme shortest paths/extreme
points of the CH circled in blue; shortest (but not extreme) path dot-circled in blue.

Related Work
For the comparison with related work let us first define the well-studied parametric shortest
path problem as in [9]. Given an acyclic, directed graph G (V, E) the weights we of the edges
e ∈ E are linear functions of the form

we (λ) := aeλ + be.

The cost of a path p is then given by C (p, λ) :=
∑

e∈p we (λ). Clearly, if we compute the
shortest path from a node s ∈ V to a node t ∈ V for different values of λ, we may get
different paths. Let Πst bet the set of all paths from s to t. Then

C (λ) := min
p∈Πst

C (p, λ)
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is the shortest path cost function, which is a concave, piece-wise linear function. The maximum
possible number of pieces of C (λ) with respect to the size of G is called the parametric
shortest path complexity. Complexity-wise, counting the pieces of C (λ) is equivalent to
counting extreme shortest paths from s to t. Therefore, all results regarding the parametric
shortest path complexity are closely related to our work.

For the two-metric case, it is well known that the number of pieces in C (λ) is upper
bounded by nO(log n), where n is the number of nodes in G [11]. This upper bound is tight
[5, 6, 15], even for planar graphs [9].

Gajjar and Radhakrishnan [9] extend the parametric shortest path problem to three
dimensions by setting

we (λ := (λ1, λ2, λ3)) := aeλ1 + beλ2 + ceλ3.

They show that in this case the number of extreme shortest paths is in n(log n)2+O(log n).
We are not aware of any results regarding the parametric shortest path complexity beyond

three dimensions. Parts of our way (especially Section 3.2) to prove the general upper bound
are inspired by the proof for three dimensions in [9].

Both, Pareto-optimal paths as well as extreme shortest paths have been instrumented
to create alternative route recommendations. The former approach, pursued e.g. in [7, 13],
unfortunately only seems to be viable on rather small graphs due to the too rapidly growing
number of Pareto-optimal paths. Restricting to extreme shortest paths, though, as in [8],
has been shown to be feasible in different practical application scenarios [2, 1].

2 Preliminaries

In this section, we introduce the notions used in Section 3 and show some basic, well known
properties.

For a set f ⊆ Rd, we define its dimension dim (f) to be the maximum number of affinely
independent points in f minus one. For a finite set P ⊂ Rd we denote the number of elements
in P with |P |.

▶ Definition 1. The d-metric preference space Pd is defined as follows.

Pd := {(α1, α2, . . . , αd) ∈ Rd
≥0 |

d∑
i=1

αi = 1}

Note that the d-metric preference space is a (d − 1)-dimensional simplex in d dimensions.
Given a finite set of points P ⊂ Rd with v ∈ P , let fP (v) ⊆ Pd be the set of preferences for
which αvT is minimal, where αvT is the dot product of the (row) vectors α, v. Or more
formally,

fP (v) := {α ∈ Pd | α (v − v′)T ≤ 0 ∀v′ ∈ P}. (1)

▶ Definition 2. Given a finite set of points P ⊂ Rd, a subset P ′ ⊆ P is a preference cover
(PC) of P if and only if⋃

v∈P ′

fP (v) = Pd. (2)

The following lemma states that there is a special, minimal PC for each finite point set P .

ESA 2022



14:4 An Upper Bound on the Number of Extreme Shortest Paths in Arbitrary Dimensions

▶ Lemma 3. Given a finite set of points P ⊂ Rd and let X := {v ∈ P | dim (fP (v)) = d−1},
then X is a PC of P and it holds

|X| = min
P ′ is PC of P

|P ′|.

Proof. Let M := minP ′ is PC of P |P ′|. As the number of points in P is finite and because
the inequality in (1) is not strict, it holds⋃

v∈X

fP (v) = Pd.

Thus, X is a PC of P and |X| ≥ M. Moreover, for each v ∈ X one can find an α ∈ Pd with

αvT < αv′T ∀v′ ∈ P \ {v}.

It follows that |X| ≤ M and, thus, |X| = M. ◀

The following definition is motivated by Lemma 3.

▶ Definition 4. Given a finite set of points P ⊂ Rd, we call the subset

M (P ) := {v ∈ P | dim (fP (v)) = d − 1}

minimum preference cover (MPC) of P .

▶ Definition 5. Given a finite set of points P ⊂ Rd, the d-metric preference space subdivision
(PSS) Sd (P ) (or simply S (P )) is the arrangement induced by the set {fP (v) | v ∈ P}. We
write fr

P ∈ Sd (P ) for an r-dimensional facet of Sd (P ).

Figure 2 shows an example 3-metric PSS. The following lemma motivates the term
subdivision.

▶ Lemma 6. Given a finite set of points P ⊂ Rd with d > 1, for any two v, v′ ∈ M (P ) we
have dim (fP (v) ∩ fP (v′)) < d − 1. Furthermore, for any v ∈ P there is a v′ ∈ M (P ) with
fP (v) ⊆ fP (v′).

Proof. Given two points v, v′ ∈ M (P ), let H be the hyperplane described by α (v − v′)T =
0, α ∈ Rd. For the first part of the lemma we have to show that dim (H ∩ Pd) ≤ d − 2. This
is the case if Pd ⊈ H. The vector v − v′ must have at least one positive and one negative
entry (otherwise, one vector would dominate the other). Thus, H cannot be parallel to∑

i≤d αi = 1 and Pd ⊈ H follows.
Now we come to the second part of the lemma. If dim (fP (v)) = d − 1, then v ∈ M (P )

and we are finished. Thus, we may assume that 0 < dim (fP (v)) < d − 1. From Lemma 3
we know that

fP (v) = {α ∈ Rd | α (v − v′)T ≤ 0 ∀ v′ ∈ M (P )}.

Therefore, if dim (fP (v)) < d − 1, there must be a point v′ ∈ M (P ) and a hyperplane H ′

described by α (v − v′)T = 0 with fP (v) ⊆ H ′. It follows that fP (v) ⊆ fP (v′). ◀

In fact, a PSS looks similar to a Voronoi diagram.

▶ Definition 7. Given a finite set of points P ⊂ Rd, then φr
d (P ) is the number of r-

dimensional facets in the PSS S (P ).
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Figure 2 Example 3-metric preference space subdivision S3.

Throughout this work, we assume that a graph G (V, E) with directed edges, without
multi-edges and with n nodes is given. A path π := u1e1u2e2 . . . elul+1 in G is an alternating
sequence of nodes and edges that starts and ends with a node. Furthermore, for each edge
ei ∈ π it holds ei = (ui, ui+1). We say that a path π is simple if it contains each node u ∈ V

at most once.
A d-metric (or d-dimensional) cost function c : E → Rd

≥0 maps edges to (non-negative)
cost vectors. We extend c to paths π as follows.

c (π) :=
∑
e∈π

c (e)

We define Cd to be the set of all d-metric cost functions of E.
Let Π be a set of paths (or: path set) in G and c a cost function for E. Then we define

the point set P (Π, c) as follows.

P (Π, c) := {c (π) | π ∈ Π}

With Πst (l) we denote all simple paths from s ∈ V to t ∈ V (with s and t being arbitrary
but fixed nodes) with at most ⌈l⌉ edges (l is a real number as we need to divide it by two in
a recursion later on). We call Πst (l) a complete path set.

▶ Definition 8. Given a path set Π, we define φr
d (Π) with 1 ≤ r ≤ d − 1 as

φr
d (Π) := max

c∈Cd

φr
d (P (Π, c)) .

Note that, by Lemma 6, it holds φd−1
d (Π) = maxc∈Cd

|M (P (Π, c)) |.

▶ Definition 9. Given a path set Π and a cost function c ∈ Cd, an element v ∈ P (Π, c) =: P

is an extreme shortest path with respect to Π and c if and only if v ∈ M (P ). Furthermore,
for a preference α ∈ Pd we call a cost vector v ∈ M (P ) α-shortest path with respect to P if
and only if α ∈ fP (v).

There are a few possibly confusing things to clarify here. First, we call the elements in M (P )
extreme shortest paths even though they are mere cost vectors. The reason is that there is a
bijective relationship between elements in P and Π as long as no two paths in Π have the

ESA 2022



14:6 An Upper Bound on the Number of Extreme Shortest Paths in Arbitrary Dimensions

same cost vector. However, if there are multiple paths in Π with the same cost vector we
prefer to count them only once. This is the reason why we focus on the set P instead of the
set Π.

Second, if a cost vector v is an extreme shortest path depends on the path set Π. For
instance, if Π := {π}, then any cost vector v = c (π) is an extreme shortest path. Thus, if we
say that v is an extreme shortest path, this is always with respect to some path set Π and
cost function c that we either mention explicitly or that should be clear from the context.

Third, a cell of a d-metric PSS Sd (P ) is a (d − 1)-dimensional and not a d-dimensional
facet. The reason is that the preference space Pd lives in d dimensions but is itself a
(d − 1)-dimensional object (because the preferences sum up to one).

This work is about finding an upper bound for the number of extreme shortest paths in
P (Πst (n) , c) in arbitrary dimensions d and for arbitrary cost functions c ∈ Cd.

Comparison of Personalized Route Planning and Parametric Shortest
Path Problem
In the parametric shortest path problem, as defined for three dimensions in [9], the edge
costs have the form

c
(
e ∈ E, λ ∈ Rd

)
:= λc (e)T (3)

with c : E → Rd. In contrast to the definition in [9], λ1 is typically set to one. However,
note that the shortest path problem is homogeneous in the sense that if we scale all edge
costs by a factor δ > 0 we also scale the extreme shortest paths by δ. Thus, as argued in [9],
(3) can always be scaled to either λ1 = 1 or λ1 = −1. The complexity of these two versions
therefore can only differ by a factor of two.

In the personalized route planning model the edge costs are defined as

c (e ∈ E, α ∈ Pd) := αc (e)T (4)

with c : E → Rd
≥0. The differences between (4) and (3) are that the preferences α ∈ Pd

and cost vectors are non-negative and the preferences sum up to one. We can handle the
normalization with the same scaling argument as above. The non-negativity makes sure that
there are no negative cost cycles in G regardless of α. This issue is treated differently in the
parametric shortest path problem by requiring G to by acyclic. In the end, it is a matter of
taste which requirement to choose. With minor adjustments our proofs also work for the
case when G is acyclic and the costs and preferences are allowed to be negative.

3 A General Upper Bound on the Number of Extreme Shortest Paths

In this section we prove the following theorem.

▶ Theorem 10. For any fixed but arbitrary d ≥ 1 and any cost function c ∈ Cd the number
of extreme shortest paths in P (Πst (n) , c) is upper bounded by nO(logd−1 n).

▶ Definition 11. We define φr
d (n, l) to be the maximum of φr

d (Πst (l)) over all possible
graphs G (V, E) with n nodes and all possible node pairs s, t ∈ V .

Thus, Theorem 10 is equivalent to the statement φd−1
d (n, n) ∈ nO(logd−1 n). We prove

Theorem 10 with a recursion of the form φd−1
d (n, n) ≤ f

(
φd−2

d−1 (n, n)
)
. Thus, we upper

bound φd−1
d (n, n) with a recursion in the dimension d, which is an idea also used in the

proof of the upper bound for d = 3 in [9].
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Figure 3 Example preference space subdivision with red hyperplane intersection.

We obtain the function f as follows. First, we show that the intersection of a d-
dimensional PSS and a hyperplane can have at most the complexity of a (d − 1)-dimensional
PSS (Lemma 12). In fact, this observation is based on a similar result shown in [9] in the
context of parametric shortest paths. Second, we use this insight to upper bound φd−2

d (n, l)
for special path sets (Lemma 13 and 14), which then allows us to construct a second recursion
of the form φd−2

d (n, l) ≤ g
(
φd−2

d

(
n, l

2
))

. This leads to an upper bound for φd−2
d (n, l) based

on φd−2
d−1 (n, l) (Lemma 15). The proof of Theorem 10 then uses Lemma 15 together with an

observation we discuss in Section 3.1 to construct the function f . We consider Lemma 13
and 14 in Section 3.3 as our main contributions as these ingredients allow us to generalize
the ideas shown in [9] to arbitrary values d.

3.1 A First Upper Bound on the Number of Cells
The number of (d − 2)-dimensional facets in a PSS is an upper bound of the number of
(d − 1)-dimensional facets in the same PSS for the following reasons. Given any finite point
set P ⊂ Rd with d > 1. Each facet fd−2

P of Sd (P ) supports at most two (d − 1)-dimensional
facets. Moreover, every facet fd−1

P is supported by at least d (d − 2)-dimensional facets. This
is true because the preference space Pd is bounded itself and, thus, there is no unbounded
cell in Sd (P ). Therefore, we have

φd−1
d (P ) ≤ 2

d
φd−2

d (P ). (5)

For the case d = 1, our task of counting extreme shortest paths is simple. It holds

φ0
1 (P ) ≤ 1 (6)

for any finite point set P because M (P ) = {minv∈P v}.

3.2 Bounding the Complexity of PSS Intersections
In this section we show that the complexity of the intersection of a hyperplane with a d-metric
PSS is upper bounded by the complexity of a (d − 1)-metric PSS. This observation is a
crucial ingredient of our proof of Theorem 10 as it allows us to construct recursive upper
bounds in the dimension d. The authors of [9] prove a similar statement in the context of
parametric shortest paths. As their setting and notation slightly differ from ours, we decided
to give a proof of the following lemma.

ESA 2022



14:8 An Upper Bound on the Number of Extreme Shortest Paths in Arbitrary Dimensions

▶ Lemma 12. Let d > 1 and let Hd be a hyperplane in d dimensions with Pd ⊈ Hd that
intersects the preference space Pd. Then for any path set Π and cost function c ∈ Cd the set
Y := {fd−1

P (Π, c) ∩ Hd | dim
(

fd−1
P (Π, c) ∩ Hd

)
= d − 2} has at most φd−2

d−1 (Π) elements.

Proof. We fix an arbitrary cost function c ∈ Cd and define P := P (Π, c). See Figure 3 for
an example of the intersection Hd ∩ Pd. The set Z := {f ∩ Hd | f ∈ Sd (P )} looks like a
(d − 1)-metric PSS. However, it is unclear whether the complexity bounds for (d − 1)-metric
PSS also apply for sets like Z, which live in d dimensions. This lemma says that the answer
is yes in the case of extreme shortest paths.

Our strategy to prove Lemma 12 looks as follows.
1. We show that for each v ∈ P there is at most one f ∈ Y with dim (fP (v) ∩ f) = d − 2.
2. We define mappings η : Rd → Rd−1 and β : Hd ∩ Pd → Pd−1 such that for each

α ∈ Hd ∩ Pd and each v ∈ P it holds αvT = β (α) η (v)T .
We prove these points later on and first show that they are sufficient to prove the lemma.
Let η (P ) and β (fP ) be the mapped sets P and fP . It follows from the second point that
for any v ∈ P with dim (fP (v) ∩ Hd) = d − 2 it holds

β (fP (v) ∩ Hd) ⊆ fη(P ) (η (v)) .

Therefore, for each f ∈ Y there is also an extreme shortest path v′ ∈ M (η (P )) with
β (fP (v)) ⊆ fη(P ) (η (v′)) (see Lemma 6).

Let v′ ∈ M (η (P )) be any extreme shortest path with respect to η (P ). Then the set
W := {f ∈ Y | β (f) ⊆ fη(P ) (v′)} contains at most one element. Otherwise, we could take
any cost vector v ∈ P with η (v) = v′ and show, using point two, that all elements of W are
subsets of fP (v). This contradicts the first point.

In summary, for each element f ∈ Y we find an extreme shortest path v′ ∈ M (η (P ))
with β (f) ⊆ fη(P ) (v′). Furthermore, for each extreme shortest path v′ ∈ M (η (P )) we find
at most one f ∈ Y with β (f) ⊆ fη(P ) (v′). Thus, it is possible to injectively map Y to
M (η (P )). As |M (η (P )) | ≤ φd−2

d−1 (Π) by definition and because we chose the cost function
c arbitrarily, this finishes the proof.

It remains to show that the two points are correct. Assume that we find a cost vector
v ∈ P and two elements f1, f2 ∈ Y with f1 ⊆ fP (v) and f2 ⊆ fP (v). We know from Lemma
6 that there is a v′ ∈ M (P ) with fP (v) ⊆ fP (v′). Let f3 := fP (v′) ∩ Hd. Clearly, f1 ⊆ f3
and f2 ⊆ f3. As f1 ̸= f2 at least one of them cannot be equal to f3. W.l.o.g. let f2 ⊂ f3.

By definition of Y , we find a shortest path v2 ∈ M (P ) with f2 = fP (v2) ∩ Hd. As
f2 ⊂ Hd and f3 ⊂ Hd it follows that Hd is described by α (v′ − v2)T = 0. But then
fP (v2) ∩ Hd = fP (v′) ∩ Hd = f3, which is a contradiction to f2 ⊂ f3.

We come to the second point. W.l.o.g. let the intersection Hd ∩ Pd be describable by an
equation of the form

α1 = x2 · α2 + x3 · α3 + · · · + xd−1 · αd−1 + b =: f (α)

with xi, b ∈ R. We map each point v := (v1, v2, . . . , vd) ∈ P to

η (v) := (v2 + v1 · ṽ2,1 + vd · ṽ2,d, v3 + v1 · ṽ3,1 + vd · ṽ3,d, . . . , vd + v1 · ṽd,1 + vd · ṽd,d)

with ṽi,1 = xi +b, ṽi,d = − (xi + b) and xd = 0. Note that η reduces the number of dimensions
by one. Let η (P ) be the set of mapped points of P . By definition, Sd−1 (η (P )) has at most
φd−2

d−1 (n, l) (d − 2)-dimensional facets. Thus, there are at most φd−2
d−1 (n, l) extreme shortest

paths in η (P ).
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Let the map β : Hd ∩ Pd → Pd−1 be defined as follows.

β (α) = (α2, α3, . . . , αd + α1)

For any v ∈ P and α ∈ Hd ∩ Pd we have

α · vT =
(

f (α) , α2, . . . , 1 − f (α) −
∑

1<i<d

αi

)
· (v1, . . . , vd)T

=f (α) (v1 − vd) + vd +
∑

1<i<d

αi (vi − vd)

=b (v1 − vd) + (α1 + αd) vd +
∑

1<i<d

αixi (v1 − vd) +
∑

1<i<d

αivi

= (α1 + αd) (vd + v1ṽd,1 + vdṽd,d) +
∑

1<i<d

αi (vi + v1ṽi,1 + vdṽi,d)

=β (α) η (v)T
. ◀

3.3 Decomposing Path Sets
In this section we first look at path sets Πsut that can be written as the pairwise concatenation
of two path sets Πsu and Πut that end/start at a common node u. We will see that in such
a scenario the PSS S (P (Πsut, c)) is the overlay of S (P (Πsu, c)) and S (P (Πut, c)) for any
cost function c (see Figure 4 for an example). Thus, we can upper bound φd−2

d (Πsut) with
the help of Lemma 12.

▶ Lemma 13. Let Πsu and Πut be two path sets such that each path in Πsu ends at node u ∈ V

and each path in Πut starts at node u. Furthermore, let Πsut := {π1π2 | π1 ∈ Πsu, π2 ∈ Πut}
be the pairwise concatenation of Πsu and Πut. Then it holds

φd−2
d (Πsut) ≤ φd−2

d−1 (Πut) · φd−2
d (Πsu) + φd−2

d−1 (Πsu) · φd−2
d (Πut) .

Proof. We fix an arbitrary cost function c ∈ Cd and prove the inequality for c. Let Psut :=
P (Πsut, c), Psu := P (Πsu, c) and Put := P (Πut, c). Given any α ∈ Pd, let vsu and vut be
the α-shortest paths in Psu and Put. Then with vsut := vsu + vut it holds vsut ∈ Psut and
vsut is the α-shortest path in Psut. This is true because all paths in Πsut go via node u.
Thus, S (Psut) is the overlay of S (Psu) and S (Put).

Every facet fd−2
Psu

is part of a hyperplane Hd. If we let Hd intersect the preference
subdivision Sd (Put) we know from Lemma 12 that this intersection contains no more than
φd−2

d−1 (Πut) (d − 2)-dimensional facets. Thus, in the overlay of S (Psu) and S (Put) the facet
fd−2

Psu
can be split into at most φd−2

d−1 (Πut) (d − 2)-dimensional facets as well. An analogous
statement holds for the facets fd−2

Put
, which finishes the proof. ◀

The following lemma addresses the problem of upper bounding φd−2
d (Π′) if the path set Π′

is the union of multiple path sets.

▶ Lemma 14. Given k path sets Π1, Π2, . . . , Πk and let Π′ :=
⋃

1≤i≤k Πi, then it holds for
every d > 1

φd−2
d (Π′) ≤ 2 · k · φ′ ·

∑
1≤i≤k

φd−2
d (Πi) ,

with φ′ := max1≤i≤k φd−2
d−1 (Πi).
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14:10 An Upper Bound on the Number of Extreme Shortest Paths in Arbitrary Dimensions

Figure 4 This figure illustrates the meaning of Lemma 13. With the two path sets Πsu and Πut

the PSS S (Psut), as defined in Lemma 13, is the overlay of S (Psu) and S (Put). An edge f1
Psu

can
cause multiple edges in the PSS S3 (Psut) by intersecting the PSS S3 (Put). Lemma 13 says that
f1

Psu
can be split into at most φ1

2 (Πut) many edges in S3 (Psut).

Proof. We fix an arbitrary cost function c ∈ Cd and define P ′ := P (Π′, c) and Pi := P (Πi, c)
for all 1 ≤ i ≤ k.

Now, let us fix a facet fd−2
P ′ ∈ S (P ′). The facet is part of a hyperplane H that is described

by α (v1 − v2)T = 0 with v1, v2 ∈ M (P ′) and v1 ̸= v2.
We first assume that v1 and v2 belong to the same set Pi. As Pi ⊆ P ′, we have v1, v2 ∈

M (Pi) and fP ′ (v1)∩fP ′ (v2) ⊆ fPi
(v1)∩fPi

(v2). Therefore, dim (fPi
(v1) ∩ fPi

(v2)) = d−2
and there is a facet fd−2

Pi
= fPi

(v1) ∩ fPi
(v2). Thus, we have at most φd−2

d (Πi) such pairs
v1, v2 in M (Pi).

We now assume that v1 and v2 belong to different sets Pi and Pj . From Pi ∪ Pj ⊆ P ′ it
follows that fP ′ (v1) ∩ fP ′ (v2) ⊆ fPi

(v1) ∩ fPj
(v2). Thus, dim

(
fPi

(v1) ∩ fPj
(v2)

)
≥ d − 2.

Therefore, there must be a facet fd−2
Pi

or fd−2
Pj

(or both) that intersects with fPi (v1) ∩
fPj

(v2).
In summary, for each facet fd−2

P ′ we either find a corresponding facet fd−2
Pi

with fd−2
P ′ ⊆

fd−2
Pi

(case one) or an intersection fd−2
Pi

∩fd−1
Pj

(or fd−1
Pi

∩fd−2
Pj

) with dim
(

fd−2
Pi

∩ fd−1
Pj

)
= d−2

(case two). Clearly, we can upper bound the first case with
∑

1≤i≤k φd−2
d (Πi).

The second case we handle with the help of Lemma 12. The intersection of the facet
fd−2

Pi
with any PSS Sd (Pj) can contain at most φd−2

d−1 (Πj) ≤ φ′ (d − 2)-dimensional facets
(Lemma 12). Moreover, there are at most two extreme shortest paths in Pi that are adjacent
to fd−2

Pi
. Thus, in total the facet fd−2

Pi
can contribute to at most 2 · (k − 1) · φ′ intersections

of case two. Therefore, the number of facets fd−2
P ′ of case two can be upper bounded by

2 · (k − 1) · φ′ ·
∑

1≤i≤k φd−2
d (Πi).

With
∑

1≤i≤k φd−2
d (Πi) + 2 · (k − 1) · φ′ ·

∑
1≤i≤k φd−2

d (Πi) ≤ 2 · k · φ′ ·
∑

1≤i≤k φd−2
d (Πi)

the statement follows. ◀

3.4 Proving the Upper Bound via Recursion
In the following lemma we describe a recursive upper bound for φd−2

d (n, l) in the dimension
d, which we then use to prove Theorem 10.

▶ Lemma 15. φd−2
d (n, l) ≤ d · l2 · n2 log l · φd−2

d−1 (n, l)2 log l for d > 1.

Proof. We prove Lemma 15 for an arbitrary complete path set Πst (l) and cost function
c ∈ Cd and define Pst := P (Πst (l) , c). We first introduce path sets Πsut := {π ∈ Πst (l) | u ∈
V divides π into subpaths of at most ⌈ l

2 ⌉ edges}. Clearly, each path π ∈ Πst (l) is contained
in at least one path set Πsut. Thus, we can apply Lemma 14 and get
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φd−2
d (Πst (l)) ≤ 2 · n · φd−2

d−1 (n, l) ·
∑
u∈V

φd−2
d (Πsut) , (7)

as one can easily show that φd−2
d−1 (n, l) ≥ maxu∈V φd−2

d−1 (Πsut).
The path sets Πsut can be written as the pairwise concatenation of the path sets Πsu

(
l
2
)

and Πut

(
l
2
)
. Thus, they satisfy the requirements to apply Lemma 13 such that for each

node u we get

φd−2
d (Πsut) ≤ φd−2

d−1

(
Πut

(
l

2

))
· φd−2

d

(
Πsu

(
l

2

))
+ φd−2

d−1

(
Πsu

(
l

2

))
· φd−2

d

(
Πut

(
l

2

))
≤ 2 · φd−2

d−1

(
n,

l

2

)
· φd−2

d

(
n,

l

2

)
.

(8)

If we combine (7) and (8), we get

φd−2
d (Πst (l)) ≤ 4 · n2 · φd−2

d−1 (n, l) · φd−2
d−1

(
n,

l

2

)
· φd−2

d

(
n,

l

2

)
≤ 4 · n2 · φd−2

d−1 (n, l)2 · φd−2
d

(
n,

l

2

)
.

(9)

Using this recursion in l we obtain with φd−2
d (n, 1) = d

φd−2
d (Πst (l)) ≤ d · 4log l · n2 log l · φd−2

d−1 (n, l)2 log l

= d · l2 · n2 log l · φd−2
d−1 (n, l)2 log l

.
(10)

◀

Proof of Theorem 10. We need to show that φd−1
d (n, n) ∈ nO(logd−1 n) for a fixed but

arbitrary number of cost types d ≥ 1. From Lemma 15 we know that φd−2
d (n, n) ≤

d · n2+2 log n · φd−2
d−1 (n, n)2 log n. With (5) we get φd−1

d (n, n) ≤ 2 · n2+2 log n · φd−2
d−1 (n, n)2 log n.

With φ0
1 (n, n) = 1 this leads to φd−1

d (n, n) ∈ nO((2·log n)d−1), which is, for a fixed d, equal
to φd−1

d (n, n) ∈ nO(logd−1 n). ◀

4 Conclusions

In this paper we showed that the number of extreme shortest paths in a graph G is upper
bounded by nO(logd−1 n), where n is the number of nodes and d is the fixed but arbitrary
number of edge costs in G. This is a generalization of previous results in the context of
parametric shortest paths for two and three dimensions.

An open question is whether one can also generalize the matching two-dimensional lower
bounds shown in [5].
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