
Online Metric Allocation and Time-Varying
Regularization
Nikhil Bansal #

University of Michigan, Ann Arbor, MI, USA

Christian Coester #

University of Sheffield, UK

Abstract
We introduce a general online allocation problem that connects several of the most fundamental
problems in online optimization. Let 𝑀 be an 𝑛-point metric space. Consider a resource that can be
allocated in arbitrary fractions to the points of 𝑀. At each time 𝑡, a convex monotone cost function
𝑐𝑡 : [0, 1] → R+ appears at some point 𝑟𝑡 ∈ 𝑀. In response, an algorithm may change the allocation
of the resource, paying movement cost as determined by the metric and service cost 𝑐𝑡 (𝑥𝑟𝑡), where
𝑥𝑟𝑡 is the fraction of the resource at 𝑟𝑡 at the end of time 𝑡. For example, when the cost functions are
𝑐𝑡 (𝑥) = 𝛼𝑥, this is equivalent to randomized MTS, and when the cost functions are 𝑐𝑡 (𝑥) = ∞· 𝟙𝑥<1/𝑘 ,
this is equivalent to fractional 𝑘-server.

Because of an inherent scale-freeness property of the problem, existing techniques for MTS
and 𝑘-server fail to achieve similar guarantees for metric allocation. To handle this, we consider a
generalization of the online multiplicative update method where we decouple the rate at which a
variable is updated from its value, resulting in interesting new dynamics. We use this to give an
𝑂 (log 𝑛)-competitive algorithm for weighted star metrics. We then show how this corresponds to an
extension of the online mirror descent framework to a setting where the regularizer is time-varying.
Using this perspective, we further refine the guarantees of our algorithm.

We also consider the case of non-convex cost functions. Using a simple ℓ22 -regularizer, we give
tight bounds of Θ(𝑛) on tree metrics, which imply deterministic and randomized competitive ratios
of 𝑂 (𝑛2) and 𝑂 (𝑛 log 𝑛) respectively on arbitrary metrics.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computa-
tion → K-server algorithms

Keywords and phrases Online algorithms, competitive analysis, 𝑘-server, metrical task systems,
mirror descent, regularization

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.13

Related Version Full Version: https://arxiv.org/abs/2111.15169

Funding Nikhil Bansal: Supported in part by the NWO VICI grant 639.023.812.
Christian Coester : Supported in part by the Israel Academy of Sciences and Humanities & Council
for Higher Education Excellence Fellowship Program for International Postdoctoral Researchers.

Acknowledgements We thank Ravi Kumar, Manish Purohit and Erik Vee for many useful discussions
that inspired this work.

1 Introduction

We introduce a natural online problem that generalizes and is closely related to several
fundamental and well-studied problems in online computation such as Metrical Task Systems
(MTS), the 𝑘-server problem and convex body chasing. We call this the metric allocation
problem (MAP) and it is defined as follows.

There is an underlying metric space 𝑀 on 𝑛 points with distances 𝑑 (𝑖, 𝑗) between points
𝑖 and 𝑗 . An algorithm maintains an allocation of a resource to the points of 𝑀, represented
by a vector 𝑥 = (𝑥1, . . . , 𝑥𝑛) in the simplex Δ = {𝑥 ∈ R𝑀+ | ∑𝑖∈𝑀 𝑥𝑖 = 1}, where 𝑥𝑖 denotes the

© Nikhil Bansal and Christian Coester;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 13; pp. 13:1–13:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bansal@gmail.com
mailto:christian.coester@gmail.com
https://doi.org/10.4230/LIPIcs.ESA.2022.13
https://arxiv.org/abs/2111.15169
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Online Metric Allocation and Time-Varying Regularization

amount of resource at point 𝑖. At each time step 𝑡, tasks arrive at the points of 𝑀. The task
at 𝑖 ∈ 𝑀 is specified by a non-increasing and convex cost function 𝑐𝑡 ,𝑖 : [0, 1] → R+, which
describes the cost of completing the task as function of resource available at 𝑖.1 Given the
tasks at time 𝑡, the algorithm can modify its previous allocation 𝑥(𝑡 − 1) ∈ Δ to 𝑥(𝑡) ∈ Δ.
It then incurs a service cost 𝑐𝑡 (𝑥(𝑡)) =

∑
𝑖∈𝑀 𝑐𝑡 ,𝑖 (𝑥𝑖 (𝑡)) and a movement cost of modifying

𝑥(𝑡 − 1) to 𝑥(𝑡) according to the distances in 𝑀 (i.e., sending an 𝜖 amount of resource from 𝑖

to 𝑗 incurs cost 𝜖 · 𝑑 (𝑖, 𝑗)).
The problem is already very interesting when 𝑀 is a uniform metric. In particular,

this case already goes beyond the reach of existing techniques and highlights a key issue
of scale-freeness (details in Section 1.2), which seems closely related to current barriers for
improving bounds for 𝑘-server. For this reason, we will mostly focus on uniform metrics and,
more generally, on weighted star metrics. Later, we also describe some results for non-convex
cost functions on general metrics.

Besides the connections to other classical problems, that we describe below, MAP also
has a natural motivation on its own. For example, the resource may represent workers that
can be allocated to various locations. At step 𝑡, one could transfer extra workers to locations
with high cost to execute tasks more efficiently. This also motivates our assumption on
the cost functions being non-increasing (having more resources can only help) and convex
(adding extra resources has diminishing returns). If 𝑀 is a uniform or weighted star metric,
this means there is a central depot that workers must return to between switching tasks.

Connections. MAP generalizes several fundamental and well-studied problems in online
computation. We describe these next, as they play a key role in our discussion below.

Metrical Task Systems. Here, there is a metric space (𝑀, 𝑑) on 𝑛 points, and the
algorithm resides at some point in 𝑀 at any time. At time 𝑡, a cost vector 𝛼𝑡 ∈ R𝑀+
arrives. The algorithm can then move from its old location 𝑖𝑡−1 ∈ 𝑀 to a new 𝑖𝑡 ∈ 𝑀,
paying movement cost 𝑑 (𝑖𝑡−1, 𝑖𝑡) and service cost 𝛼𝑡 ,𝑖𝑡 .

The state of a randomized algorithm for MTS is given by a probability distribution
𝑥(𝑡) = (𝑥1 (𝑡), . . . , 𝑥𝑛 (𝑡)) on the 𝑛 points. Its expected service cost at time 𝑡 is given
by

∑
𝑖 𝛼𝑡 ,𝑖 · 𝑥𝑖 (𝑡) and its expected movement cost is measured just like in MAP. Thus,

randomized MTS is the special case of MAP with cost functions of the form 𝑐𝑡 ,𝑖 (𝑥𝑖) = 𝛼𝑡 ,𝑖𝑥𝑖,
i.e., linear and increasing. (We show in the full version that MAP with non-decreasing
cost functions is equivalent to MAP with non-increasing cost functions.)
𝒌-server. Here, there is a metric space (𝑀, 𝑑) and 𝑘 servers that reside at points of 𝑀.
At time 𝑡, some point 𝑟𝑡 is requested, which must be served by moving a server to 𝑟𝑡 .
The goal is to minimize the total movement cost. The fractional 𝑘-server problem is the
relaxation2 of the randomized 𝑘-server problem where points can have a fractional server
mass. A request at 𝑟𝑡 is served by having a server mass of at least 1 at 𝑟𝑡 .

Observe that fractional 𝑘-server is the special case of MAP with cost functions 𝑐𝑡 ,𝑖 = 0
for 𝑖 ≠ 𝑟𝑡 and 𝑐𝑡 ,𝑟𝑡 (𝑥𝑟𝑡) = ∞ if 𝑥𝑟𝑡 < 1/𝑘 and 0 if 𝑥𝑟𝑡 ≥ 1/𝑘, by viewing 𝑘𝑥𝑖 (𝑡) as the
fractional server mass at location 𝑖 at time 𝑡. Also notice that these 𝑐𝑡 ,𝑖 are convex
and non-increasing. If 𝑀 is a uniform metric (or weighted star), this is equivalent to
randomized (weighted) paging.

1 Wlog, we can assume that a task appears at only one point 𝑟𝑡 at time 𝑡, i.e., 𝑐𝑡,𝑖 = 0 for 𝑖 ≠ 𝑟𝑡 . See
Section 2.

2 All known randomized 𝑘-server algorithms with poly-logarithmic competitive ratios use this relaxation.

N. Bansal and C. Coester 13:3

Convex function chasing. Here, the request at time 𝑡 is a convex function 𝑓𝑡 : R𝑛 →
R+ ∪ {∞}. The algorithm maintains a point in R𝑛, and given 𝑓𝑡 it can move from its old
position 𝑥(𝑡 − 1) ∈ R𝑛 to a new 𝑥(𝑡) ∈ R𝑛, incurring cost ∥𝑥(𝑡) − 𝑥(𝑡 − 1)∥ + 𝑓𝑡 (𝑥(𝑡)).

MAP is a special case of convex function chasing where the norm ∥ · ∥ is induced
by a metric, cost functions are supported on the unit simplex and have separable form
(i.e., 𝑓𝑡 (𝑥) =

∑𝑛
𝑖=1 𝑓𝑡𝑖 (𝑥𝑖) with 𝑓𝑡𝑖 monotone).

The convex function chasing problem has seen tremendous progress recently, with the first
competitive algorithm for arbitrary dimension given in [14], and 𝑂 (𝑛)-competitive algorithms
shown in [27, 1]; this implies a trivial 𝑂 (𝑛) upper bound for MAP with convex cost functions.

In recent years there has also been remarkable progress on obtaining polylogarithmic-
competitive algorithms for special cases of MAP such as MTS [8, 26, 6, 7, 22, 3, 11, 19, 21]
and the 𝑘-server problem [20, 4, 5, 2, 12, 25, 16, 24]. However, these solutions are based
on rather ad hoc and problem-specific formulations (e.g., considering anti-server mass for
𝑘-server vs. server mass for MTS). Due to these inconsistencies, it is also still open, for
example, whether for 𝑘-server one can achieve the same competitive ratios as for MTS.3

One of our key goals for studying MAP is to develop a systematic and unified approach
for understanding a wide class of online problems.4

Our contribution. Below we list the results we obtain for MAP, and the new algorithmic
design and analysis techniques that we develop. We give more details in Section 1.3.

We give a tight 𝑂 (log 𝑛)-competitive algorithm for uniform metrics.
This result already requires new algorithmic techniques to handle a scale-freeness property
of the problem. In particular, our algorithm differs from classical multiplicative update
algorithms by decoupling the rate at which a variable is updated from its value.
The analysis also requires new ideas including a scale-mismatch potential function to
handle the differences in the algorithm’s perceived scale from the true scale.
Next, we generalize the 𝑂 (log 𝑛) bound above to weighted stars, and also refine this
guarantee to be (1 + 𝜖)-competitive with respect to the service cost.
To achieve the refinement, we extend the online mirror descent framework pioneered by
Bubeck et al. [12, 11] to a setting with a time-varying regularizer.
The time-varying nature of the regularizer causes various complications for Bregman
divergence based analysis techniques of prior works, and handling them requires several
modifications.
For the generalization of MAP where cost functions can be non-convex, we show an Ω(𝑛)
lower bound for arbitrary metrics. We give a matching 𝑂 (𝑛) upper bound on tree metrics.
This implies an 𝑂 (𝑛2) deterministic and 𝑂 (𝑛 log 𝑛) randomized bound on general metrics.
The 𝑂 (𝑛) upper bound is also based on the mirror descent framework, but in contrast to
all prior works in this framework, we do not use an entropic regularizer, but work with a
simple weighted ℓ2

2-regularizer instead.

3 This contrasts with the deterministic setting, where the competitive ratio of MTS (which is 2𝑛 − 1) is
known to be achievable for 𝑘-server (where 2𝑘 − 1 ≤ 2𝑛 − 1 is known). Indeed, this is achieved by the
same algorithm for both problems (the work function algorithm; see the book [9] for details) rather
than by problem-specific algorithms as in the randomized setting.

4 𝑘-server on an 𝑛-point metric is also a special case of MTS on a 𝑁 =
(𝑛
𝑘

)
point metric. But as the

competitive ratio of MTS depends on 𝑁 , this does not give any interesting bounds for 𝑘-server. In
contrast, MAP generalizes both fractional 𝑘-server and randomized MTS in the same metric space.

ESA 2022

13:4 Online Metric Allocation and Time-Varying Regularization

We next discuss the relevance of allocation problems on star metrics and associated
refined guarantees, and then describe the issue of scale-freeness that arises in MAP.

1.1 Allocation problems on star metrics and refined guarantees
Certain special cases of allocation problems on star metrics have been studied previously,
either implicitly or explicitly, as they capture a lot of the difficulty of general metrics. This
idea already goes back to Bartal et al. [7]; roughly, one can approximate a general metric
space by a hierarchically-separated tree (HST), and recursively run the star algorithm at the
internal nodes of the HST to decide how to much server mass to allocate to each child subtree.
In this way, known algorithms for MTS on general metrics [7, 22, 11, 19] are obtained by
using an algorithm for stars as central building blocks.

For 𝑘-server, a certain allocation problem on weighted stars was studied in [4] as a first
step towards obtaining polylog(𝑛, 𝑘)-competitive algorithms for 𝑘-server on general metrics.
This allocation problem corresponds to the special case of MAP where the convex functions
𝑐𝑡 ,𝑖 are piece-wise linear determined by values 𝑐𝑡 ,𝑖 (𝑗) at 𝑗 = 0, 1/𝑘, 2/𝑘, . . . , 1. In subsequent
work [2], this step was completed to obtain the first polylog(𝑛, 𝑘)-competitive algorithm for
𝑘-server on general metrics.

Refined guarantees. We say that an algorithm has 𝛼-competitive service cost and 𝛽-
competitive movement cost if, up to some fixed additive constant, its service cost is at most
𝛼 times the total (movement plus service) offline cost and its movement cost is at most 𝛽
times the total offline cost.

For 𝑘-server and MTS, polylog-competitive algorithms on general metrics rely on star
algorithms with (1 + 𝜖)-competitive service cost and poly(log 𝑛, 1/𝜖)-competitive movement
cost, for 𝜖 ≈ 1/log 𝑛. The reason is that when the algorithm for stars is used recursively to
obtain an algorithm on HSTs, then roughly, the service cost guarantee multiplies across levels
and the movement cost guarantee increases additively. See, e.g., [7, 2] for more details.

The algorithm for the special case of MAP considered in [4] has (1+ 𝜖)-competitive service
cost and 𝑂 (log 𝑘/𝜖)-competitive movement cost. However, the general cost functions that
we consider for MAP (in this paper) correspond to this problem as 𝑘 → ∞; for this case, the
𝑂 (log 𝑘/𝜖) bound of [4] becomes unbounded and does not give anything useful.

1.2 Scale-freeness
The reason for the failure of the algorithm in [4] when 𝑘 → ∞ is not just technical, but
an inherent one: roughly, for general cost functions, it is unclear how to do multiplicative
updates, as there is no inherent notion of scale in the resulting problem. We elaborate on
this issue now, as handling this scale-freeness is one of the key conceptual and technical
contribution of this paper.

Multiplicative updates. A key underlying idea, sometimes used implicitly, for achieving
poly-logarithmic guarantees for 𝑘-server, MTS and various other problems (e.g., those based
on the online primal dual-framework [18, 17]) is that of multiplicative updates.

Let us see how this works for 𝑘-server and MTS on a star metric. For 𝑘-server, if a
point 𝑟 is requested, the fractional server amount 𝑧𝑖 at other points 𝑖 is decreased at rate
proportional to 1− 𝑧𝑖 + 𝛿 (i.e., the amount of server already missing at 𝑖 plus a small constant
𝛿). On the other hand for MTS, if a cost is incurred at point 𝑟, then the other points are
increased at rate proportional to 𝑥𝑖 + 𝛿.

N. Bansal and C. Coester 13:5

Multiplicative update for MAP? As MAP generalizes these problems, clearly we also need
to do some kind of multiplicative update. However, after some thought one soon realizes
that completely unclear is “multiplicative update with respect to what?”.

In particular, if we model 𝑘-server as MAP (as described above), then the update rule
above becomes 𝑥′

𝑖
∝ (1/𝑘 − 𝑥𝑖) + 𝛿. This is natural as 1/𝑘 is a fixed parameter with a special

meaning as 𝑐𝑡 (𝑥) = ∞ for 𝑥𝑟𝑡 < 1/𝑘 and 0 otherwise. On the other hand, for MTS the reason
why 𝑥′

𝑖
∝ (𝑥𝑖 + 𝛿) is natural is that the 𝑐𝑡 ,𝑖 always have 𝑥-intercept at 0. In contrast, cost

functions in MAP are lacking such an intrinsic scale.
We give a more concrete and instructive example to show the difficulty due to this lack

of scale.

Example. We saw above how to model 𝑘-server via MAP by interpreting 𝑧𝑖 := 𝑘𝑥𝑖 as
the amount of server mass at 𝑖, and a request to point 𝑖 corresponds to the cost function
𝑐𝑡 (𝑥) = ∞ · 𝟙{𝑥𝑖<1/𝑘} . However, this correspondence between the server mass 𝑧𝑖 and the
variable 𝑥𝑖 is quite arbitrary.

A different way of modeling 𝑘-server via MAP is to choose any offset vector 𝑎 ∈ [0, 1]𝑛
with 𝑠 := 1 − ∑

𝑖 𝑎𝑖 > 0, and interpret 𝑧𝑖 := 𝑘 · (𝑥𝑖 − 𝑎𝑖)/𝑠 as the server mass at 𝑖. Then,
a request to page 𝑖 corresponds to the cost function 𝑐𝑡 (𝑥) = ∞ · 𝟙{𝑥𝑖<𝑎𝑖+𝑠/𝑘} , and we can
additionally intersperse cost functions 𝑐𝑡 (𝑥) = ∞ · 𝟙{𝑥 𝑗<𝑎 𝑗 } for each 𝑗 to ensure that 𝑧 𝑗 ≥ 0.
In other words, an adversary can simulate a 𝑘-server request sequence in various regions of
the simplex and at different scales.

Active region and active scale. Thus, the challenge for an algorithm is to find out the
“active region” and “active scale”. Since the adversary can keep changing this region and scale
arbitrarily over time, any online algorithm for MAP needs to learn this region dynamically
and determine how to do multiplicative updates with respect to the scale and offset of the
current region.

At a higher level, the difficulty of learning an “active region” also relates to the difficulty
in obtaining a polylog(𝑘)-competitive algorithm for 𝑘-server on general metrics, which seems
to require learning a region of poly(𝑘) many points where the adversary is currently playing
its strategy. A step in this direction was made recently in [12].

1.3 Results and techniques
We will first show the following tight bound for uniform metrics.

▶ Theorem 1. There is an 𝑂 (log 𝑛)-competitive algorithm for MAP on uniform metrics.

This bound is the best possible, due to the Ω(log 𝑛) lower bound for the special case
of randomized MTS [10]. Our algorithm is deterministic as randomization does not help
for MAP.5 The proof of Theorem 1 also extends to weighted stars (and we give a stronger
result in Theorem 2 below). However, to introduce the key ideas in a modular way and avoid
notational overhead, we focus on uniform metrics first.

To show Theorem 1, a key new idea is to handle the scale-freeness of MAP by decoupling
the position 𝑥𝑖 and its rate of change 𝑥′

𝑖
by using separate rate variables 𝜌𝑖 for 𝑥′

𝑖
. The update

of 𝜌𝑖 is driven by trying to learn the active region and scale (details in Section 3).

5 Any randomized algorithm for MAP can be derandomized by tracking its expected location. As cost
functions are convex, this can only decrease the algorithm’s cost.

ESA 2022

13:6 Online Metric Allocation and Time-Varying Regularization

Remark. Theorem 1 has an interesting consequence for the natural case of convex function
chasing described above (with separable cost functions supported on the simplex and ∥ · ∥ =
∥ · ∥1). The competitive ratio of 𝑂 (log 𝑛) improves exponentially on the 𝑂 (𝑛) bound that
follows from [1, 27] and breaks the Ω(

√
𝑛) lower bound that holds for the general case [23, 13].

The following theorem refines the previous guarantee via an improved algorithm for
weighted stars.

▶ Theorem 2. For any 𝜖 > 0, there exists an algorithm for MAP on weighted stars with
(1 + 𝜖)-competitive service cost and 𝑂

(1
𝜖
+ log 𝑛

)
-competitive movement cost.

As explained above, a possible application of such refined guarantees is an extension to
general metrics.

Time-varying regularization. To achieve the (1 + 𝜖)-competitive service cost, we extend
the powerful framework of regularization and online mirror descent to a setting where the
regularizer is time-varying. This contrasts with previous works in this framework [15, 12,
11, 16, 19], which all used a static regularizer. Also as discussed in Section 1.1, a possible
application of such refined guarantees is an extension to general metrics.

A time-varying regularizer is necessary as the regularizer must adapt to the current scale
and region over time. This leads to substantial complications in the analysis. In particular,
the default potential function for mirror descent analyses – the Bregman divergence – is not
well-behaved when the offline algorithm moves (actually, it is not even well-defined), and
changes of the regularizer lead to uncontrollable changes of the potential. We show how to
adapt the Bregman divergence in several ways to obtain a modified potential function that
has all the desired properties necessary to carry out the analysis.

Non-convex costs and arbitrary metric spaces. We also consider the version of MAP where
the cost functions can be non-convex. Here, the competitive ratio must be exponentially
worse.

▶ Theorem 3. On any 𝑛-point metric space, any deterministic algorithm for MAP with
non-convex cost functions has competitive ratio at least Ω(𝑛).

On tree metrics, we provide a matching upper bound:

▶ Theorem 4. There is an 𝑂 (𝑛)-competitive deterministic algorithm for MAP on tree metrics,
even if the cost functions are non-convex.

By known tree embedding techniques, this implies the following result for general metrics:

▶ Corollary 5. There is an 𝑂 (𝑛2)-competitive deterministic and 𝑂 (𝑛 log 𝑛)-competitive ran-
domized algorithm for MAP on arbitrary metric spaces, even for non-convex cost functions.

ℓ2
2-regularization. Our algorithm achieving the tight guarantee on trees is also based on

mirror descent, but again with a crucial difference to previous mirror-descent based online
algorithms in the literature. While previous algorithms all used some version of an entropic
regularizer, our regularizer is a weighted ℓ2

2 -norm. Here, again, the Bregman divergence is
not suitable as a potential function, but the issues are more fundamentally rooted in the
non-convex structure of cost functions, and addressing them with changes to the Bregman
divergence seems unlikely to work. Instead, our analysis uses two different potential functions,
one of which resembles ideas of “weighted depth potentials” used in [12, 11] and the other
one is a kind of “one-sided matching”.

N. Bansal and C. Coester 13:7

1.4 Organization
In Section 2, we define an equivalent version of MAP that will be easier to work with. We
will give a first algorithm for uniform metrics in Section 3, where we also describe the ideas
to overcome scale-freeness. In Section 4, we discuss a modified algorithm for weighted stars
via mirror descent with a time-varying regularizer. However due to space constraints, most
of the details are only given in the full version. Our upper and lower bounds for non-convex
cost functions on general metrics are proved in the full version, which includes in particular
the algorithm based on ℓ2

2 -regularization.

2 Preliminaries

For 𝑎 ∈ R, we write [𝑎]+ := max{𝑎, 0}. A metric space 𝑀 is called a weighted star if there are
weights 𝑤𝑖 > 0 for 𝑖 ∈ 𝑀 and the distance between two points 𝑖 ≠ 𝑗 is given by 𝑑 (𝑖, 𝑗) = 𝑤𝑖+𝑤 𝑗 .

Continuous-time model and simplified cost functions. It will be more convenient to work
with the following continuous-time version of MAP. Instead of cost functions being revealed
at discrete times 𝑡 = 1, 2, . . . , we think of cost functions 𝑐𝑡 arriving continuously over time,
and that 𝑐𝑡 changes only finitely many times. At any time 𝑡 ∈ [0,∞), the algorithm maintains
a point 𝑥(𝑡) ∈ Δ, where Δ := {𝑥 ∈ R𝑀+ :

∑
𝑖∈𝑀 𝑥𝑖 = 1}, and the dynamics of the algorithm is

specified by the derivative 𝑥′ (𝑡) at each time 𝑡. The movement cost and the service cost are
given by

∫ ∞
0 ∥𝑥′ (𝑡)∥𝑑𝑡 and

∫ ∞
0 𝑐𝑡 (𝑥(𝑡))𝑑𝑡 respectively, where the norm ∥·∥ is induced by the

metric.6 On a weighted star metric, the norm ∥·∥ is given by ∥𝑧∥ :=
∑
𝑖 𝑤𝑖 |𝑧𝑖 |.

Further, we assume that 𝑐𝑡 ,𝑖 is non-zero for only a single location 𝑟𝑡 ∈ 𝑀 at any time, and
𝑐𝑡 ,𝑖 is linear with slope −1 and truncated at 0 (see Figure 1(a)). Formally, 𝑐𝑡 (𝑥) = [𝑠𝑡 − 𝑥𝑟𝑡]+
for some 𝑠𝑡 ∈ [0, 1] and 𝑟𝑡 ∈ 𝑀. A useful consequence of this view is that if the service cost
𝑐𝑡 (𝑥(𝑡)) incurred by the online algorithm is 𝛼𝑡 , then the (one-dimensional) cost function 𝑐𝑡 ,𝑟𝑡
intercepts the 𝑥-axis (becomes 0) at the point 𝑥𝑟𝑡 (𝑡) + 𝛼𝑡 . The cost of an offline algorithm
at 𝑦 ∈ Δ is then given by [𝛼𝑡 + 𝑥𝑟𝑡 (𝑡) − 𝑦𝑟𝑡]+. For a cost function 𝑐𝑡 of this form, we will say
that 𝑥(𝑡) is charged cost 𝛼𝑡 at 𝑟𝑡 .

To simplify the description and analysis of our algorithms, we will further allow them to
decrease 𝑥𝑖 to a negative value. In the full version, we show that these assumptions are all
without loss of generality.

3 A first algorithm for uniform metrics

We describe here an 𝑂 (log 𝑛)-competitive algorithm for MAP on uniform metrics, proving
Theorem 1. Although the algorithm also extends to weighted stars, we assume in this section
that all weights are 1 to avoid technicalities and focus on the key ideas.

3.1 Overview
Before we state the formal algorithm, we first give an overview and intuition behind the
ideas needed to handle the difficulties due to scale-freeness.

Fix a time 𝑡, and let 𝑥 = 𝑥(𝑡) and 𝑦 = 𝑦(𝑡) denote the online and offline position and
suppose a cost of 𝛼 = 𝛼𝑡 is received (charged) at point 𝑟 = 𝑟𝑡 . We drop 𝑡 from now for
notational ease, as everything is a function of 𝑡. Clearly, an algorithm that wishes to be

6 In general, ∥𝑧 ∥ = min 𝑓

∑
𝑖, 𝑗∈𝑀 𝑓 (𝑖, 𝑗)𝑑 (𝑖, 𝑗), where the minimum is taken over all flows 𝑓 : 𝑀 ×𝑀 → R+

satisfying 𝑧𝑖 =
∑

𝑗∈𝑀 (𝑓 (𝑗 , 𝑖) − 𝑓 (𝑖, 𝑗)) for all 𝑖 ∈ 𝑀.

ESA 2022

13:8 Online Metric Allocation and Time-Varying Regularization

competitive must necessarily increase 𝑥𝑟 (otherwise the offline algorithm can move to some 𝑦
with 𝑦𝑟 > 𝑥𝑟 and keep giving such cost functions forever). So, the key question is how to
decrease other coordinates 𝑥𝑖 for 𝑖 ≠ 𝑟 to offset the increase of 𝑥𝑟 (and maintain

∑
𝑖 𝑥𝑖 = 1).

Separate rate variables and how to update them. As discussed in Section 1.2, due to
scale-freeness, the rate of update of 𝑥𝑖, denoted 𝑥′

𝑖
, cannot simply be some function of 𝑥𝑖,

as in standard multiplicative update algorithms. So we maintain separate rate variables 𝜌𝑖
(decoupled from 𝑥𝑖) that specify the rate at which to reduce 𝑥𝑖, i.e., 𝑥′

𝑖
= −𝜌𝑖 (plus a small

additive term and suitably normalized, but we ignore this technicality for now). Now the
key issue becomes how to update these 𝜌𝑖 variables themselves?

Consider the following two scenarios, which suggest two conflicting updates to 𝜌𝑟 , de-
pending upon the offline location 𝑦𝑟 .

(i) 𝑥𝑟 < 𝑦𝑟 . Here, the adversary can make us incur the service cost while possibly not
paying anything itself. However this is not problematic, as we will increase 𝑥𝑟 and hence get
closer to 𝑦𝑟 . Also, decreasing 𝜌𝑟 is good as it will prevent us in future from decreasing 𝑥𝑟
again too fast and move away from 𝑦𝑟 when requests arrive at locations 𝑖 ≠ 𝑟.

(ii) 𝑦𝑟 < 𝑥𝑟 . Here, increasing 𝑥𝑟 is fine, as even though we are moving away from 𝑦𝑟 , the
offline algorithm is paying a higher service cost than online. However, decreasing 𝜌𝑟 is very
bad, as this makes it much harder for online to catch up with the offline position 𝑦𝑟 later.

To summarize, in case (i), we should decrease 𝜌𝑖 and in case (ii), we should leave it
unchanged or increase it. However, the algorithm does not know the offline location 𝑦𝑟 , and
hence which option to choose.

(a) Linear Cost Function (b) yr < xr; adversary prefers (c) yr > xr: adversary prefers

{ { {α
α

α

with slope -1 large α small α

xr xr xryr yr

Figure 1 Illustration of cost functions.

Indirectly estimating 𝒚𝒓 . We note that even though the algorithm does not know 𝑦𝑟 , it
can reasonably estimate whether 𝑦𝑟 < 𝑥𝑟 or not, by looking at the structure of requests from
the adversary’s point of view. Suppose 𝑦𝑟 < 𝑥𝑟 (see Figure 1(b)). In this case, the adversary
will want to give us requests with large 𝛼; because for small 𝛼, the offline algorithm pays
much higher cost in proportion to that of online; indeed, as 𝛼 gets larger, the ratio between
the offline to online service cost tends to 1. On the other hand, if 𝑦𝑟 > 𝑥𝑟 (see Figure 1(c)),
the adversary will tend to give requests so that 𝑥𝑟 + 𝛼 ≤ 𝑦𝑟 (so offline incurs no service cost
at all), and hence keep 𝛼 small.

A problem however is that even though the online algorithm sees 𝛼 when the request
arrives, whether this 𝛼 is large or small has no intrinsic meaning as this depends on the
current scale at which the adversary is giving the instance. The final piece to make this idea
work is that the algorithm will also try to learn the scale at which the adversary is playing
its strategy. We describe this next.

N. Bansal and C. Coester 13:9

A region estimate. At each time 𝑡, and for each point 𝑖, we maintain a real number 𝑏𝑖 ≥ 0
where 𝑏𝑖 ≥ 𝑥𝑖. Intuitively, we can view 𝑏𝑖 as an (online) estimate of the “region” where the
adversary is playing the strategy, and we set the rate variable 𝜌𝑖 = 𝑏𝑖 − 𝑥𝑖. The observations
above now suggest the following algorithm. For an incoming request at point 𝑟,

(i) if 𝑥𝑟 + 𝛼 ≤ 𝑏𝑟 (this corresponds to small 𝛼 in the discussion above, which suggested
that 𝑦𝑟 > 𝑥𝑟) the algorithm increases 𝑥𝑟 and decreases 𝑏𝑟 at roughly the same rate (and
hence decreases 𝜌𝑟 = 𝑏𝑟 − 𝑥𝑟 at roughly twice the rate), and

(ii) if 𝑥𝑟 + 𝛼 > 𝑏𝑟 (this corresponds to 𝛼 being large, which suggested that 𝑦𝑟 < 𝑥𝑟),
the algorithm increases both 𝑏𝑟 and 𝑥𝑟 at roughly the same rate (and 𝜌𝑟 only increases
slowly). Note that even though the location 𝑟 is incurring a service cost, we do not necessarily
decrease 𝜌𝑟 .

Figure 2 Illustration of the update rule for 𝜌𝑟 . If 𝛼 > 𝜌𝑟 (left), then 𝑥𝑟 and 𝑏𝑟 increase and 𝜌𝑟

changes slowly. If 𝛼 < 𝜌𝑟 (right), then 𝑥𝑟 and 𝑏𝑟 move towards each other and 𝜌𝑟 decreases.

For other points 𝑖 ≠ 𝑟, 𝑏𝑖 stays fixed. So as 𝑥𝑖 decreases, this corresponds to increasing
the rate 𝜌𝑖. This step is analogous to multiplicative updates, but where the update rate is
given by distance of 𝑥𝑖 from 𝑏𝑖, where 𝑏𝑖 itself might change over time. We also call 𝑏𝑖 the
“baseline”.

A complication (in the analysis) will be that the 𝑏𝑖 themselves are only estimates and
could be wrong. E.g., even if 𝑏𝑖 is accurate at some given time, the offline algorithm can
move 𝑦𝑖 somewhere far at the next step, and start issuing requests in that region. The
current 𝑏𝑖 would be completely off now and the algorithm may make wrong moves. What
will help here in the analysis is that the algorithm is quickly trying learn the new 𝑏𝑖.

3.2 Formal description of the algorithm
At any instantaneous time 𝑡, the algorithm maintains a point 𝑥(𝑡) ∈ Δ. In addition, it also
maintains a point 𝑏(𝑡) ∈ R𝑀 , where 𝑏𝑖 (𝑡) ≥ 𝑥𝑖 (𝑡) for all 𝑖 ∈ 𝑀. Let 𝜌𝑖 (𝑡) = 𝑏𝑖 (𝑡) − 𝑥𝑖 (𝑡), for
each 𝑖 ∈ 𝑀. We specify the formal algorithm by describing how it updates the points 𝑥(𝑡)
and 𝑏(𝑡) in response to a cost function 𝑐𝑡 . Again, we drop 𝑡 from the notation hereafter.

Suppose the cost function at a given time charges cost 𝛼 at point 𝑟. Then, we increase 𝑥𝑟
at rate 𝛼 and simultaneously decrease all 𝑥𝑖 (including 𝑥𝑟) at rate

−𝛼 · 𝜌𝑖 + 𝛿𝑆2𝑆 ,

where 𝛿 = 1/𝑛 and 𝑆 :=
∑
𝑖 𝜌𝑖. Intuitively, one can think of 𝑆 as the current scale of the

problem (which is changing over time).
Then the overall update of 𝑥 can be summarized as

𝑥′𝑖 = 𝛼

(
𝟙𝑖=𝑟 −

𝜌𝑖 + 𝛿𝑆
2𝑆

)
for all 𝑖 ∈ 𝑀. (1)

ESA 2022

13:10 Online Metric Allocation and Time-Varying Regularization

The baseline vector 𝑏 is updated as follows:
(i) For 𝑖 ≠ 𝑟, 𝑏𝑖 stays fixed.
(ii) For 𝑖 = 𝑟, if 𝑥𝑟 + 𝛼 > 𝑏𝑟 (or equivalently 𝛼 > 𝜌𝑟), then 𝑏′𝑟 = 𝛼.
(iii) For 𝑖 = 𝑟, if 𝑥𝑟 + 𝛼 ≤ 𝑏𝑟 (or equivalently 𝛼 ≤ 𝜌𝑟), then 𝑏′𝑟 = −𝛼. 7

See Figure 2 for an illustration. Notice that the update rules for 𝑥′
𝑖

and 𝑏′
𝑖

also ensure
that 𝑏𝑖 ≥ 𝑥𝑖. Finally, using that 𝜌𝑖 = 𝑏𝑖 − 𝑥𝑖 and writing compactly, this gives the following
update rule for 𝜌𝑖.

𝜌′𝑖 = 𝛼

(
𝜌𝑖 + 𝛿𝑆

2𝑆 − 2 · 𝟙𝑖=𝑟 and 𝜌𝑟>𝛼

)
. (2)

This completes the description of the algorithm.

Feasibility. Notice that
∑
𝑖 (𝜌𝑖 + 𝛿𝑆)/(2𝑆) = 1 and hence

∑
𝑖 𝑥

′
𝑖
= 0 and the update for 𝑥

maintains that
∑
𝑖 𝑥𝑖 = 1. In the algorithm description above, we do not explicitly enforce

that 𝑥𝑖 ≥ 0. As we show in the full version, allowing the online algorithm to decrease 𝑥𝑖
to negative values is without loss of generality. It is possible to enforce this directly in the
algorithm, but this would make the notation more cumbersome.

3.3 Analysis sketch
Due to space constraints, and because our proof of Theorem 2 yields a stronger result anyway,
we only provide a brief sketch of the analysis of our algorithm here. It is based on potential
functions. Specifically, we define a (bounded) potential Θ that is a function of the online and
offline states, and show that at any time 𝑡 it satisfies

On′ + Θ′ ≤ 𝑂 (log 𝑛) · Off′, (3)

where On′ (resp. Off′) denote the change in cost of the online (resp. offline) algorithm, and
Θ′ is the change in the potential. The potential function Θ consists of two parts defined as

(Primary potential) 𝑃 :=
∑︁

𝑖 : 𝑥𝑖≥𝑦𝑖
(𝑏𝑖 − 𝑦𝑖) log (1 + 𝛿) (𝑏𝑖 − 𝑦𝑖)

𝜌𝑖 + 𝛿(𝑏𝑖 − 𝑦𝑖)

(Scale-mismatch potential) 𝑄 :=
∑︁
𝑖

[𝜌𝑖 + 2(𝑥𝑖 − 𝑦𝑖)]+ ,

where 𝑦 ∈ Δ is the position of the offline algorithm. The overall potential is given by

Θ = 12𝑃 + 6𝑄.

One can verify, by taking derivative with respect to 𝑦𝑖 and using 𝛿 = 1/𝑛 and 𝜌𝑖 = 𝑏𝑖 − 𝑥𝑖 ≥ 0,
that Θ is 𝑂 (log 𝑛)-Lipschitz in 𝑦𝑖. Thus, the potential increases by at most 𝑂 (log 𝑛) times
the offline movement cost when 𝑦 changes. It therefore suffices to show (3) for the case that
𝑦 stays fixed and only the online algorithm moves (i.e., while 𝑥, 𝜌 and 𝑏 are changing).

Recall that 𝑆 =
∑
𝑖 𝜌𝑖 is the algorithm’s estimate of the current “scale”, and define

𝐿 :=
∑
𝑖 |𝑥𝑖 − 𝑦𝑖 |, which we may think of as the true scale of the error between the online

position 𝑥 and the (unknown) offline position 𝑦. If the current estimate of the scale is
accurate, one would expect 𝑆 ≈ 𝐿, but in general this need not be true. In the full version,
we prove the following two lemmas:

7 Strictly speaking, if 𝑥𝑟 + 𝛼 = 𝑏𝑟 both rules (ii) and (iii) apply simultaneously and 𝑏𝑟 stays fixed.

N. Bansal and C. Coester 13:11

▶ Lemma 6 (Change of the primary potential). When 𝑦 is fixed and the online algorithm
moves, the change of 𝑃 is bounded by

𝑃′ ≤ 𝑂 (log 𝑛) [𝛼 + 𝑥𝑟 − 𝑦𝑟]+ − (𝛼/2) min {𝐿/2𝑆 , 1} .

▶ Lemma 7 (Change of the scale-mismatch potential). When 𝑦 is fixed and the online algorithm
moves, the change of 𝑄 is bounded by

𝑄′ ≤ 2𝛼 · 𝟙𝑦𝑟 ≤𝑥𝑟+𝛼/2 − (𝛼/2) [1 − 𝐿/𝑆]+ .

Note that the offline algorithm incurs service cost at rate [𝛼 + 𝑥𝑟 − 𝑦𝑟]+, and the online
algorithm incurs both service and movement cost at rate 𝑂 (𝛼). In the bound on 𝑃′ in Lemma
6, the positive term can be charged against the offline service cost. If 𝑆 = 𝑂 (𝐿), then the
negative term can be used to pay for the online cost. However, if 𝑆 ≫ 𝐿, then the negative
term may be negligibly small. Intuitively, this corresponds to the case that the algorithm’s
estimate of the scale is far off from the true scale, and this possibility is the reason why we
need the scale-mismatch potential.

If 𝑦𝑟 ≤ 𝑥𝑟 + 𝛼/2, the offline service cost is at least 𝛼/2, so the positive part in the change
of 𝑄 is at most 4 times the offline service cost. The negative part in Lemma 7 pays for the
online cost if 𝑆 ≫ 𝐿, which is precisely the case not covered by the primary potential. So,

Θ′ = 12𝑃′ + 6𝑄′ ≤ 𝑂 (log 𝑛) · Off′ − 3𝛼 (min {𝐿/𝑆, 2} + [1 − 𝐿/𝑆]+)
≤ 𝑂 (log 𝑛) · Off′ − 3𝛼,

which yields the desired inequality (3) because the online service cost is 𝛼 and online movement
cost is at most 2𝛼.

4 Time-varying regularization and refined guarantees on weighted
stars

We now turn to an improved algorithm for weighted stars, achieving the refined guarantees
of Theorem 2 that the service cost is (1 + 𝜖)-competitive. To do so, we first reinterpret our
previous algorithm through the lens of mirror descent.

4.1 Online mirror descent
The online mirror descent framework has been useful to derive optimally competitive al-
gorithms for problems where the state of an algorithm can be described by a point in a
convex body (e.g., set cover, 𝑘-server, MTS [15, 12, 11, 16, 19]). That is, the algorithm can
be described by a path 𝑥 : [0,∞) → 𝐾 for a convex body 𝐾 ⊂ R𝑛, such that 𝑥(𝑡) describes
the state of the algorithm at time 𝑡 (in our case, 𝐾 = Δ is the simplex). In the framework,
the dynamics of an algorithm 𝑥 is specified by a differential equation of the form

∇2Φ(𝑥(𝑡)) · 𝑥′ (𝑡) = 𝑓 (𝑡) − 𝜆(𝑡) (4)

where Φ : 𝐾 → R is a suitable convex function called the regularizer, ∇2Φ(𝑥(𝑡)) is its Hessian
at 𝑥(𝑡), 𝑓 : [0,∞) → R𝑛 is called a control function, and 𝜆(𝑡) is an element of the normal
cone of 𝐾 at 𝑥(𝑡), given by

𝑁𝐾 (𝑥(𝑡)) := {𝜆 ∈ R𝑛 : ⟨𝜆, 𝑦 − 𝑥(𝑡)⟩ ≤ 0, ∀𝑦 ∈ 𝐾}.

ESA 2022

13:12 Online Metric Allocation and Time-Varying Regularization

Under suitable conditions (which are all satisfied here), the path 𝑥 is uniquely defined by (4)
and absolutely continuous in 𝑡 [12]. The equation (4) is easiest to read if we imagine that
∇2Φ(𝑥(𝑡)) were the identity matrix. Then (4) says that 𝑥 tries to move in direction 𝑓 (𝑡),
and the normal cone element 𝜆 ensures that 𝑥(𝑡) does not leave the body 𝐾. The case when
∇2Φ(𝑥(𝑡)) is different from the identity matrix corresponds to imposing a different (e.g., non-
Euclidean) geometry on 𝐾. When Φ is fixed, the framework allows a black-box way to prove 1-
competitive service cost using the Bregman divergence 𝐷Φ (𝑦∥𝑥) := Φ(𝑦)−Φ(𝑥)+⟨∇Φ(𝑥), 𝑥−𝑦⟩
as a potential function.

We show in the full version that the dynamics (1) of 𝑥 defined in the previous section is
precisely equivalent to equation (4) when choosing the time-varying regularizer

Φ𝑡 (𝑥) :=
∑︁
𝑖

(𝑏𝑖 (𝑡) − 𝑥𝑖 + 𝛿𝑆(𝑡)) log
(
𝑏𝑖 (𝑡) − 𝑥𝑖
𝑆(𝑡) + 𝛿

)
(5)

for 𝑆(𝑡) :=
∑
𝑖 𝑏𝑖 (𝑡) − 1, and the control function

𝑓 (𝑡) := 𝛼𝑡

𝑏𝑟𝑡 (𝑡) − 𝑥𝑟𝑡 (𝑡) + 𝛿𝑆(𝑡)
𝑒𝑟𝑡 ,

where 𝑒𝑟𝑡 denotes the 0-1-vector with a 1 only in the 𝑟𝑡 -coordinate, and 𝛼𝑡 is the cost charged
at 𝑟𝑡 at time 𝑡.

To achieve the refined guarantees, we replace 𝛼𝑡 by 𝑏𝑟𝑡 (𝑡) − 𝑥𝑟𝑡 (𝑡) in the control function,
and use a very similar regularizer that incorporates a scaling factor and the weights of the
star. The most subtle parts in the proof of Theorem 2 are the way the baseline vector 𝑏𝑖 is
updated (which differs from how it was done in the previous section) and several modifications
to the Bregman divergence in order to handle the time-varying nature of Φ𝑡 . Due to space
constraints, we defer all details to the full version.

References
1 C. J. Argue, Anupam Gupta, Guru Guruganesh, and Ziye Tang. Chasing convex bodies with

linear competitive ratio (invited paper). In STOC ’21, 2021. doi:10.1145/3406325.3465354.
2 Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-

competitive algorithm for the 𝑘-server problem. J. ACM, 62(5), 2015. doi:10.1145/2783434.
3 Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Metrical task systems and the k-server

problem on HSTs. In ICALP’ 10, 2010. doi:10.1007/978-3-642-14165-2_25.
4 Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Towards the randomized k-server conjecture:

A primal-dual approach. In Symposium on Discrete Algorithms, SODA, pages 40–55, 2010.
5 Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A primal-dual randomized algorithm for

weighted paging. J. ACM, 59(4):19:1–19:24, 2012.
6 Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In

FOCS ’96, 1996. doi:10.1109/SFCS.1996.548477.
7 Yair Bartal, Avrim Blum, Carl Burch, and Andrew Tomkins. A polylog(n)-competitive

algorithm for metrical task systems. In STOC ’97, 1997. doi:10.1145/258533.258667.
8 Avrim Blum, Howard J. Karloff, Yuval Rabani, and Michael E. Saks. A decomposition theorem

for task systems and bounds for randomized server problems. SIAM J. Comput., 30(5), 2000.
doi:10.1137/S0097539799351882.

9 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

10 Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm for metrical
task system. J. ACM, 39(4), 1992. doi:10.1145/146585.146588.

https://doi.org/10.1145/3406325.3465354
https://doi.org/10.1145/2783434
https://doi.org/10.1007/978-3-642-14165-2_25
https://doi.org/10.1109/SFCS.1996.548477
https://doi.org/10.1145/258533.258667
https://doi.org/10.1137/S0097539799351882
https://doi.org/10.1145/146585.146588

N. Bansal and C. Coester 13:13

11 Sébastien Bubeck, Michael B. Cohen, James R. Lee, and Yin Tat Lee. Metrical task systems on
trees via mirror descent and unfair gluing. In SODA ’19, 2019. doi:10.1137/1.9781611975482.
6.

12 Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry.
𝑘-server via multiscale entropic regularization. In STOC ’18, 2018. doi:10.1145/3188745.
3188798.

13 Sébastien Bubeck, Bo’az Klartag, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. Chasing nested
convex bodies nearly optimally. In SODA ’20, 2020. doi:10.1137/1.9781611975994.91.

14 Sébastien Bubeck, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. Competitively chasing convex
bodies. In STOC ’19, 2019. doi:10.1145/3313276.3316314.

15 Niv Buchbinder, Shahar Chen, and Joseph (Seffi) Naor. Competitive analysis via regularization.
In Symposium on Discrete Algorithms, SODA, pages 436–444, 2014.

16 Niv Buchbinder, Anupam Gupta, Marco Molinaro, and Joseph (Seffi) Naor. k-servers with a
smile: Online algorithms via projections. In Symposium on Discrete Algorithms, SODA, pages
98–116, 2019.

17 Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via a primal-dual
approach. Found. Trends Theor. Comput. Sci., 3(2-3):93–263, 2009.

18 Niv Buchbinder and Joseph Naor. Online primal-dual algorithms for covering and packing.
Math. Oper. Res., 34(2):270–286, 2009.

19 Christian Coester and James R. Lee. Pure entropic regularization for metrical task systems.
In COLT ’19, 2019. URL: http://proceedings.mlr.press/v99/coester19a.html.

20 Aaron Cote, Adam Meyerson, and Laura J. Poplawski. Randomized k-server on hierarchical
binary trees. In STOC ’08, 2008. doi:10.1145/1374376.1374411.

21 Farzam Ebrahimnejad and James R. Lee. Multiscale entropic regularization for MTS on
general metric spaces. In ITCS ’22, 2022.

22 Amos Fiat and Manor Mendel. Better algorithms for unfair metrical task systems and
applications. SIAM J. Comput., 32(6), 2003. doi:10.1137/S0097539700376159.

23 Joel Friedman and Nathan Linial. On convex body chasing. Discret. Comput. Geom., 9, 1993.
doi:10.1007/BF02189324.

24 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. A hitting set relaxation for k-server
and an extension to time-windows. In FOCS ’21, 2021.

25 James R. Lee. Fusible HSTs and the randomized k-server conjecture. In FOCS ’18, pages
438–449, 2018. doi:10.1109/FOCS.2018.00049.

26 Steve Seiden. Unfair problems and randomized algorithms for metrical task systems. Inf.
Comput., 148(2), 1999. doi:10.1006/inco.1998.2744.

27 Mark Sellke. Chasing convex bodies optimally. In Shuchi Chawla, editor, SODA ’20, 2020.
doi:10.1137/1.9781611975994.92.

ESA 2022

https://doi.org/10.1137/1.9781611975482.6
https://doi.org/10.1137/1.9781611975482.6
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1137/1.9781611975994.91
https://doi.org/10.1145/3313276.3316314
http://proceedings.mlr.press/v99/coester19a.html
https://doi.org/10.1145/1374376.1374411
https://doi.org/10.1137/S0097539700376159
https://doi.org/10.1007/BF02189324
https://doi.org/10.1109/FOCS.2018.00049
https://doi.org/10.1006/inco.1998.2744
https://doi.org/10.1137/1.9781611975994.92

	1 Introduction
	1.1 Allocation problems on star metrics and refined guarantees
	1.2 Scale-freeness
	1.3 Results and techniques
	1.4 Organization

	2 Preliminaries
	3 A first algorithm for uniform metrics
	3.1 Overview
	3.2 Formal description of the algorithm
	3.3 Analysis sketch

	4 Time-varying regularization and refined guarantees on weighted stars
	4.1 Online mirror descent

