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Abstract
The AP-LCA problem asks, given an n-node directed acyclic graph (DAG), to compute for every
pair of vertices u and v in the DAG a lowest common ancestor (LCA) of u and v if one exists, i.e. a
node that is an ancestor of both u and v but no proper descendent of it is their common ancestor.
Recently [Grandoni et al. SODA’21] obtained the first sub-n2.5 time algorithm for AP-LCA running
in O(n2.447) time. Meanwhile, the only known conditional lower bound for AP-LCA is that the
problem requires nω−o(1) time where ω is the matrix multiplication exponent.

In this paper we study several interesting variants of AP-LCA, providing both algorithms and
fine-grained lower bounds for them. The lower bounds we obtain are the first conditional lower
bounds for LCA problems higher than nω−o(1). Some of our results include:

In any DAG, we can detect all vertex pairs that have at most two LCAs and list all of their
LCAs in O(nω) time. This algorithm extends a result of [Kowaluk and Lingas ESA’07] which
showed an Õ(nω) time algorithm that detects all pairs with a unique LCA in a DAG and outputs
their corresponding LCAs.
Listing 7 LCAs per vertex pair in DAGs requires n3−o(1) time under the popular assumption
that 3-uniform 5-hyperclique detection requires n5−o(1) time. This is surprising since essentially
cubic time is sufficient to list all LCAs (if ω = 2).
Counting the number of LCAs for every vertex pair in a DAG requires n3−o(1) time under the
Strong Exponential Time Hypothesis, and nω(1,2,1)−o(1) time under the 4-Clique hypothesis.
This shows that the algorithm of [Echkardt, Mühling and Nowak ESA’07] for listing all LCAs
for every pair of vertices is likely optimal.
Given a DAG and a vertex wu,v for every vertex pair u, v, verifying whether all wu,v are valid
LCAs requires n2.5−o(1) time assuming 3-uniform 4-hyperclique requires n4−o(1) time. This defies
the common intuition that verification is easier than computation since returning some LCA per
vertex pair can be solved in O(n2.447) time.
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1 Introduction

A lowest common ancestor (LCA) of two nodes u and v in a directed acyclic graph (DAG) is
a common ancestor c of u and v such that no proper descendent of c is a common ancestor
of u and v. The AP-LCA problem asks to compute for every pair of nodes in a given DAG,
some LCA, provided a common ancestor exists.

Computing LCAs is an important problem with a wide range of applications. For
instance, LCA computation is a key ingredient in verification of the correctness of distributed
computation (e.g. [10]), object inheritance in object oriented programming languages such as
C++ and Java (e.g. [2, 19, 26]), and computational biology for finding the closest ancestor
of species in rooted phylogenetic networks (e.g. [22]).

Computing LCAs is very well-understood in trees [7, 8, 17, 24, 27, 37, 38, 40]. Aït-Kaci,
Boyer, Lincoln and Nasr [2] were one of the first to consider LCAs in DAGs, focusing on
lattices and lower semilattices with object inheritance in mind. Nykänen and Ukkonen [36]
obtained efficient algorithms for directed trees and asked if there is a subcubic time algorithm
for AP-LCA in DAGs.

Bender, Martin Farach-Colton, Pemmasani, Skiena and Sumazin [6] gave the first subcubic,
O(n(3+ω)/2) ≤ O(n2.687), time algorithm for AP-LCA in DAGs, where ω < 2.37286 is the
matrix multiplication exponent [4]. They also showed that AP-LCA is equivalent to the
so-called All-Pairs Shortest LCA Distance problem. Czumaj, Kowaluk and Lingas [30, 18]
improved the AP-LCA running time to O(n2.575) using a reduction to the Max-Witness
Product problem. With the current best bounds for rectangular matrix multiplication [33],
their algorithm runs in O(n2.529) time.

Notice that all subcubic algorithms above would run in Õ(n2.5) time1 if ω = 2. For more
than a decade, this running time remained unchallenged. It seemed that AP-LCA might
actually require n2.5−o(1) time, similar to several other n2.5 time problems such as computing
the Max-Witness product (see e.g. [34]).

Recently, Grandoni, Italiano, Lukasiewicz, Parotsidis and Uznanski [25] showed that this
is not the case, giving an algorithm that runs in O(n2.447) time, or in Õ(n7/3) time if ω = 2.

It is not hard to show (see [6, 18]) that any algorithm for AP-LCA can be used to solve
Boolean Matrix Multiplication (BMM), and hence beating O(nω) time for AP-LCA would
likely be difficult. No higher conditional lower bounds are known for the problem. It is still
open whether O(nω) time can actually be achieved for AP-LCA.

Partial progresses have been made for DAGs with special structures or for variants of
AP-LCA. Czumaj, Kowaluk and Lingas [18] showed that AP-LCA is in O(nω) time for
low-depth DAGs. Kowaluk and Lingas [31] showed that in O(nω log n) time one can return
an LCA for every vertex pair that has a unique LCA. Eckhardt, Mühling and Nowak [20]
showed that one can solve the AP-All-LCA problem, which asks to output all LCAs for every
pair of vertices, in O(nω(1,2,1)) time. Here ω(1, 2, 1) ≤ 3.252 is the exponent of multiplying
an n × n2 by an n2 × n matrix. AP-LCA was also studied in the weighted setting [5], the
dynamic setting [20] and the space-efficient setting [32].

This paper considers the following questions:
1. Can we return all LCAs for every pair of nodes that has at most 2 LCAs, in Õ(nω) time,

extending Kowaluk and Lingas’s algorithm [31]?
2. The AP-LCA problem asks us to exhibit a single LCA for each vertex pair. What if we

want to list 2, 3, . . . , k LCAs? How fast can we do it?

1 Õ hides poly-logarithmic factors.
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So far two variants of LCA are studied: list a single LCA per pair and list all LCAs per
pair. What about listing numbers in between? This is just as natural. In phylogenetic
networks for instance, there can be multiple LCAs per species pair, but typically not too
many. Then listing a constant number of LCAs fast can give a better picture than listing
a single representative. Other applications of AP-LCA would similarly make more sense
for listing multiple LCAs.

3. How fast can we count the number of LCAs each vertex pair has?
4. Suppose that for every pair of nodes u, v in a DAG we are given a node wu,v. Can we

efficiently determine whether wu,v is an LCA of u and v, for each u, v? One would think
that if AP-LCA can be solved faster than O(n2.5) time, then this verification version of
the problem should also be solvable faster.

We provide algorithms and fine-grained conditional lower bounds to address the above
questions. Our lower bounds are the first conditional lower bounds higher than nω−o(1) for
LCA problems.

1.1 Our results
Detecting and listing O(1) LCAs. Our results for this part are summarized in Table 1.

Table 1 A summary of our results for detecting and listing LCAs. In the second and third columns,
we give the best known runtime exponents for AP-AtLeastk-LCA and AP-List-k-LCA respectively.
An exponent of 3 above corresponds to the trivial brute-force algorithm. In the fourth and fifth
columns, we give the best conditional lower bounds for the exponent of AP-AtLeastk-LCA, and the
corresponding hardness sources for the lower bounds. The exponents and lower bounds in the last
row are for AP-All-LCA problem. All values in parentheses are the corresponding values when ω = 2.

k AP-AtLeastk-LCA Exponent AP-List-k-LCA Exponent Best Lower Bound Source of LB
1 ω (2) Folklore 2.447 (7/3) [25] ω (2) [6] BMM
2 ω (2) [31], Thm 26 2.529 (2.5) Thm 3 ω (2) [6] BMM
3 ω (2) Thm 27 2.529 (2.5) Thm 3 ω (2) [6] BMM
4 3 3 2.5 Thm 30 (4, 3)-Hyperclique
5 3 3 2.666 Thm 30 (5, 3)-Hyperclique
6 3 3 2.8 Thm 30 (6, 3)-Hyperclique
7 3 3 3 Thm 30 (5, 3)-Hyperclique

All N/A ω(1, 2, 1) (3) [20] ω(1, 2, 1) (3) Thm 4, 5 SETH, 4-Clique

Let us define AP-Exactk-LCA, AP-AtLeastk-LCA and AP-AtMostk-LCA as the problems of
deciding for every pair of vertices in a given DAG, whether they have exactly, greater than
or equal to, and less than or equal to k LCAs, respectively.

We study how fast AP-Exactk-LCA, AP-AtLeastk-LCA and AP-AtMostk-LCA can be solved
for constant k. More generally, we study the problem of returning k LCAs per vertex pair if
it has at least k LCAs, or all LCAs if it has fewer. We call the latter problem AP-List-k-LCA.

For any constant k, one can return up to k LCAs for every vertex pair in a DAG in cubic
time using a trivial brute-force algorithm2. More generally, if ω = 2, the O(nω(1,2,1)) time
AP-All-LCA algorithm in [20] would also run in essentially cubic time.

2 We first compute a topological ordering of the graph in O(n2) time and the transitive closure in O(nω)
time using [23]. For each vertex pair (u, v), we scan the vertices in the reverse order of the topological
ordering, and declare the current vertex w a new LCA if w can reach both u and v and w cannot reach
any LCAs found so far. We stop the scan as soon as we find k LCAs or reach the end of the topological
ordering. Given the transitive closure, each reachability check can be finished in O(1) time, so the
overall running time of the algorithm is O(kn3).

ICALP 2022
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It is thus interesting to study for what values of k, AP-Exactk-LCA, AP-AtLeastk-LCA,
AP-AtMostk-LCA and AP-List-k-LCA are solvable in truly subcubic, O(n3−ε) for ε > 0, time.

We show that for every constant k, the listing problem AP-List-k-LCA and the decision
problem AP-AtLeastk-LCA are subcubically equivalent. This statement appears as Theorem 28
in the main text. Thus, the values k for which one problem is in subcubic time are exactly
the same for the other problem.

We also prove a convenient equivalence between AP-Exactk-LCA, AP-AtLeastk-LCA and
AP-AtMostk-LCA:

▶ Theorem 1. For any constant k ≥ 0, the running times of AP-Exactk-LCA, AP-AtMostk-
LCA and AP-AtLeast(k + 1)-LCA are the same up to constant factors.

Now we can focus on AP-Exactk-LCA, and due to the above equivalence, we also obtain
results for the other variants.

Next, we extend the result of Kowaluk and Lingas [31] for pairs with unique LCAs to
pairs with two LCAs by showing that AP-Exactk-LCA can be solved in O(nω) time for both
k = 1, 2. Moreover, the corresponding witness LCAs can be listed in the same time.

▶ Theorem 2. AP-Exact1-LCA and AP-Exact2-LCA can be solved in O(nω) time with high
probability by Las Vegas algorithms. Moreover, finding the LCAs for vertex pairs (u, v) that
have exactly 1 or 2 LCAs can also be solved in O(nω) time with high probability.

This theorem appears as Theorems 26 and 27 in the main text. By our equivalence theorem,
the same result applies to AP-AtLeast(k + 1)-LCA and AP-AtMostk-LCA for k = 1, 2.

Our algorithm for AP-Exact1-LCA is different from that of [31]. The algorithm of [31] is
deterministic while ours is randomized, so it is seemingly weaker. We nevertheless include
our approach to AP-Exact1-LCA as it is simple and saves a factor of log n. Additionally, our
approach generalizes to AP-Exact2-LCA.

As our techniques no longer seem to work for the case of deciding if there are exactly
3 LCAs, we turn to conditional lower bounds. We prove that under popular fine-grained
hypotheses, the following hold in the word-RAM model with O(log n) bit words (Theorem 30):
AP-Exactk-LCA requires time n2.5−o(1) for k = 3, n8/3−o(1) for k = 4, n2.8−o(1) for k = 5 and
n3−o(1) for k = 6.

With our earlier equivalence theorem in mind, our conditional lower bound for AP-Exact3-
LCA means that detecting for each pair whether it has at least 4 LCAs, or listing 4 LCAs
per vertex pair also requires n2.5−o(1) time. In particular, this shows that listing 4 LCAs is
more difficult than listing just one LCA per vertex pair, as the latter has an O(n2.447) time
algorithm [25].

Furthermore, our conditional lower bound for AP-Exact6-LCA also implies that AP-
AtLeast7-LCA requires n3−o(1) time, and hence the clearly even harder problem of listing 7
LCAs per vertex pair requires n3−o(1) time. This is intriguing since as we mentioned earlier,
we can list all LCAs per pair in essentially cubic time if ω = 2.

We also show the following algorithmic results for AP-List-2-LCA and AP-List-3-LCA.

▶ Theorem 3. For k = 2 and k = 3, the AP-List-k-LCA problem can be deterministically
solved in Õ(n2+λ) time, where λ satisfies the equation ω(1, λ, 1) = 1 + 2λ. Here, ω(1, λ, 1) is
the exponent of multiplying an n × nλ by an nλ × n matrix.

The running time for AP-List-k-LCA above matches the best known running time for Max-
Witness product [18]. Using the current best bounds for rectangular matrix multiplication [33],
the runtime we get for AP-List-k-LCA is O(n2.529) for k = 2 and 3.
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Counting LCAs. We now turn our attention to computing the number of LCAs for every
pair of vertices in a DAG. We call this problem AP-#LCA. As shown in [20], we can list all
LCAs for every pair of vertices in O(nω(1,2,1)) time, which is essentially cubic time if ω = 2.
Thus in particular, we can also count all the LCAs in the same amount of time.

One might wonder, can the counts be computed faster, in truly subcubic time? We show
that under the Strong Exponential Time (SETH) Hypothesis [29, 13, 14], this is impossible,
even if we are only required to return the count for a vertex pair if it is smaller than some
superconstant function g(n). Notice that we can solve this restrained case in O(n3g(n)) time
using the brute-force algorithm, so the following theorem is tight up to no(1) factors when
g(n) is Õ(1).

▶ Theorem 4. Assuming SETH, AP-#LCA requires n3−o(1) time, even if we only need to
return the minimum between the count and g(n) for any g(n) = ω(1).

The current best running time O(nω(1,2,1)) for listing LCAs and also for AP-#LCA is
actually supercubic, however. For the current best bounds on ω(1, 2, 1), it is O(n3.252) [33].
In fact, there are serious limitations of the known matrix multiplication techniques [3, 15, 16]
that show that current techniques cannot be used to prove that ω(1, 2, 1) < 3.05.

In this case, the cubic lower bound for AP-#LCA under SETH would not be entirely
satisfactory. We thus present a tight conditional lower bound from the 4-Clique problem.

The 4-Clique problem asks, does a given n-node graph contain a clique on 4 nodes?
The fastest known algorithm for 4-Clique runs in Õ(nω(1,2,1)) time [21], which has remained
unchallenged for almost two decades. We show that an improvement over the O(nω(1,2,1))
time for AP-#LCA would also solve 4-Clique faster.

▶ Theorem 5. If the AP-#LCA problem can be solved in T (n) time, then 4-Clique can be
computed in O(T (n) + nω) time.

Verifying LCAs. Oftentimes in algorithms, one is also concerned with the problem of
verifying an answer besides computing an answer. In many cases, verification is an easier
problem than computation. For instance, even though computing the product of two n × n

matrices A and B currently is only known to be possible in O(n2.373) time, verifying whether
the product of A and B is a matrix C can be done in randomized Õ(n2) time. This was the
basis of the Blum-Luby-Rubinfeld linearity test [9].

We consider the following two verification variants of AP-LCA which we call Ver-LCA and
AP-Ver-LCA. In both variants, we are given an n-node DAG, and for every pair of nodes
u, v in the DAG, we are also given a node wu,v. In Ver-LCA, we want to determine whether
all wu,v are LCAs for their respective pair u, v, i.e. that the matrix w of candidate LCAs
is all correct (or conversely, that there is some pair that has an incorrect entry). In the
AP-Ver-LCA variant we want to know for every u, v whether wu,v is an LCA of u and v, so
this variant is potentially more difficult. After we compute the transitive closure of the graph,
it takes O(n) time to verify whether a vertex wu,v is indeed an LCA of u and v. Thus, both
Ver-LCA and AP-Ver-LCA can be solved in O(n3) time. No faster algorithm is known to the
best of our knowledge.

Kowaluk and Lingas [31] solved a variant of AP-Ver-LCA concerning vertex pairs that
have at most 2 LCAs. Specifically, given one or two nodes per pair they showed how to verify
that those nodes are all the LCAs for the pair, in O(nω) time. However, their algorithm is
not able to compute 2 LCAs for vertex pairs that have exactly 2 LCAs in O(nω) time.

Surprisingly, we provide strong evidence that Ver-LCA and AP-Ver-LCA are actually
harder than AP-LCA, as AP-LCA can be solved in O(n2.5−ε) time for ε > 0, while under
popular fine-grained hypotheses, Ver-LCA and AP-Ver-LCA require n2.5−o(1) time.

ICALP 2022



94:6 Listing, Verifying and Counting LCAs in DAGs

Our first hardness result is that the running time of AP-Ver-LCA is at least as high as
that of the Max-Witness problem, whose current best running time is O(n2.529) [30, 33]. If
ω = 2, then Max-Witness would be solvable in Õ(n2.5) time, and it is hypothesized [34] that
no n2.5−o(1) time algorithms exist for it.

▶ Theorem 6. If the AP-Ver-LCA problem can be solved in T (n) time, then the Max-Witness
problem can be solved in Õ(T (n)) time.

Note that Czumaj, Kowaluk and Lingas’s algorithm [18] for AP-LCA is essentially a
reduction from AP-LCA to Max-Witness. Combined with their algorithm, the above theorem
says that we can solve AP-Ver-LCA in T (n) time, then we can solve AP-LCA in Õ(T (n)) time.

Our second result is the hardness of Ver-LCA based on the hardness of the (4, 3)-Hyperclique
problem: given a 3-uniform hypergraph on n nodes, return whether it contains a 4-hyperclique.
This problem is hypothesized to require n4−o(1) time [35], and solving it in O(n4−ε) time for
ε > 0 would imply improved algorithms for Max-3-SAT and other problems (see [35] and the
discussion therein).

▶ Theorem 7. Assuming the (4, 3)-Hyperclique hypothesis, Ver-LCA requires n2.5−o(1) time.

Thus, verifying candidate LCAs is most likely harder than finding LCAs, defying the
common intuition that verification should be easier than computation.

1.2 Paper Organization
In Section 2, we give necessary definitions. In Section 3, we list basic relationships among AP-
Exactk-LCA, AP-AtMostk-LCA and AP-AtLeastk-LCA, including Theorem 1. In Section 4, we
show O(nω) time algorithms for AP-Exact1-LCA and AP-Exact2-LCA, proving Theorem 2. In
Section 5, we consider the AP-List-k-LCA problem. In Section 6, we prove several conditional
lower bounds for AP-Exactk-LCA and AP-#LCA, including Theorem 4 and Theorem 5.
In Section 7, we show conditional lower bounds for AP-Ver-LCA, proving Theorem 6 and
Theorem 7. Finally, in Section 8, we conclude with several open problems.

2 Preliminaries

2.1 Notation
Let G = (V, E) be a DAG. For every u, v ∈ V , we use LCA(u, v) to denote the set of vertices
that are LCAs for vertex pair u and v. We use u⇝ v to denote that u can reach v via zero
or more edges and use u ̸⇝ v to denote that u cannot reach v. In particular, u⇝ u for every
u ∈ V . We also use Anc(u) to denote the set of vertices that can reach u. For any V ′ ⊆ V ,
we use G[V ′] to denote the subgraph in G induced by the vertex set V ′.

We use ω < 2.37286 to denote the matrix multiplication exponent [4]. For any constants
a, b, c ≥ 0, we use ω(a, b, c) to denote the exponent of multiplying an na × nb matrix by an
nb × nc matrix, in the arithmetic circuit model. Note that the fastest known algorithms for
square [4] and rectangular [33] matrix multiplication all work in the arithmetic circuit model.

It is well-known that ω(a, b, c) = ω(b, c, a) (see e.g. [12]).

2.2 Variants of AP-LCA
Given a DAG G = (V, E), we study the following variants of AP-LCA.

▶ Definition 8 (AP-Exactk-LCA). Decide if |LCA(u, v)| = k for every pair u, v ∈ V .
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▶ Definition 9 (AP-AtMostk-LCA). Decide if |LCA(u, v)| ≤ k for every pair u, v ∈ V .

▶ Definition 10 (AP-AtLeastk-LCA). Decide if |LCA(u, v)| ≥ k for every pair u, v ∈ V .

▶ Definition 11 (AP-#LCA). Compute |LCA(u, v)| for every pair u, v ∈ V .

▶ Definition 12 (AP-List-k-LCA). Compute for every pair u, v ∈ V a list of k distinct LCAs.
If any pair u, v ∈ V has fewer than k LCAs, output all of their LCAs.

▶ Definition 13 (AP-All-LCA). For every pair u, v ∈ V , output LCA(u, v).

▶ Definition 14 (AP-Ver-LCA). Given a candidate vertex wu,v for each pair u, v ∈ V , decide
if wu,v ∈ LCA(u, v) for every pair u, v ∈ V .

▶ Definition 15 (Ver-LCA). Given a candidate vertex wu,v for each pair u, v ∈ V , decide if
there exists u, v ∈ V such that wu,v is not an LCA for u and v.

2.3 Fine-Grained Hypotheses
In this section, we list the hypotheses we use in this paper.

Eisenbrand et al. [21] gave the current best algorithm for 4-Clique that runs in O(nω(1,2,1))
time. The 4-Clique hypothesis states that we cannot improve this algorithm much.

▶ Hypothesis 16 (4-Clique Hypothesis [11, 1]). On a Word-RAM with O(log n) bit words,
detecting a 4-clique in an n-node graph requires nω(1,2,1)−o(1) time.

▶ Hypothesis 17 ((ℓ, k)-Hyperclique Hypothesis, [35]). Let ℓ > k > 2 be constant integers.
On a Word-RAM with O(log n) bit words, detecting whether an n-node k-uniform hypergraph
contains an ℓ-hyperclique requires nℓ−o(1) time.

Using common techniques (see e.g. [39]), the (ℓ, k)-Hyperclique hypothesis actually implies
the hardness of the following unbalanced version of (ℓ, k)-Hyperclique.

▶ Fact 18. Assuming the (ℓ, k)-Hyperclique hypothesis, on a Word-RAM with O(log n) bit
words, detecting whether a k-uniform ℓ-partite hypergraph with na1 , . . . , naℓ vertices on each
part for a1, . . . , aℓ > 0 requires na1+···+aℓ−o(1) time.

▶ Hypothesis 19 (Max-k-SAT Hypothesis, [35]). On a Word-RAM with O(log n) bit words,
for any k ≥ 3, given a k-CNF formula on n variables and poly(n) clauses, determining the
maximum number of clauses that can be satisfied by a Boolean assignment of the variables
requires 2n−o(n) time.

▶ Hypothesis 20 (Strong Exponential Time Hypothesis (SETH), [28, 13, 14]). On a Word-
RAM with O(log n) bit words, for every ϵ > 0, there exists k such that k-SAT on n variables
cannot be solved in O(2(1−ϵ)n) time.

▶ Definition 21. The Max-Witness product C of two n × n Boolean matrices A and B is
defined as

C[i, j] = max{k | A[i, k] = B[k, j] = 1}

where the maximum is defined to be −∞ if no such witness exists.

The best running time to compute the Max-Witness product is O(n2+λ) where λ satisfies
the equation ω(1, λ, 1) = 1 + 2λ [18]. This running time is Õ(n2.5) if ω = 2. It is used as a
hypothesis that this running time cannot be improved much.

▶ Hypothesis 22 (Max-Witness Hypothesis, [34]). On a Word-RAM with O(log n) bit words,
computing the Max-Witness product of two n × n matrices requires n2.5−o(1) time.

ICALP 2022
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3 Relationships among AP-Exactk-LCA, AP-AtMostk-LCA and
AP-AtLeastk-LCA

In this section, we consider the relationships between AP-Exactk-LCA, AP-AtMostk-LCA and
AP-AtLeastk-LCA. Our results are depicted in Figure 1 and are proven in the full version of
the paper.

AP-Exact0-LCA

AP-AtMost0-LCA

AP-AtLeast1-LCA

AP-Exact1-LCA

AP-AtMost1-LCA

AP-AtLeast2-LCA

AP-Exact2-LCA

AP-AtMost2-LCA

AP-AtLeast3-LCA

. . .

. . .

. . .

Figure 1 Reductions between AP-AtMostk-LCA, AP-Exactk-LCA and AP-AtLeastk-LCA. All arrows
in this figure represent O(n2) time reductions from an instance to another instance with the same
input sizes up to constant factors.

We first show the following lemma (whose proof is deferred to the full version) which then
allows us to show that AP-Exact(k + 1)-LCA (resp. AP-AtMost(k + 1)-LCA, AP-AtLeast(k + 1)-
LCA) is harder than AP-Exactk-LCA (resp. AP-AtMostk-LCA, AP-AtLeastk-LCA) for k ≥ 0.

▶ Lemma 23. Given a DAG G with n vertices, we can create another DAG G′ with 2n + 1
vertices and a map ρ : V (G) → V (G′) in O(n2) time such that for every u, v ∈ V (G), the
number of LCAs of u and v in G is exactly one fewer than the number of LCAs of ρ(u) and
ρ(v) in G′.

▶ Corollary 24. For any k ≥ 0, an instance of AP-Exactk-LCA (resp. AP-AtMostk-LCA,
AP-AtLeastk-LCA) with n vertices reduces to an instance of AP-Exact(k + 1)-LCA (resp.
AP-AtMost(k + 1)-LCA, AP-AtLeast(k + 1)-LCA) with O(n) vertices in O(n2) time.

Finally, we recall the relationship among AP-Exactk-LCA, AP-AtMostk-LCA and AP-
AtLeastk-LCA.

▶ Theorem 1. For any constant k ≥ 0, the running times of AP-Exactk-LCA, AP-AtMostk-
LCA and AP-AtLeast(k + 1)-LCA are the same up to constant factors.

4 Algorithms for AP-Exactk-LCA

As noted in the introduction, AP-Exactk-LCA can be solved in O(n3) time for any constant
k. Interestingly, an algorithm by Kowaluk and Lingas [31] that finds and verifies the LCAs
for vertex pairs with a unique LCA implies that AP-Exact1-LCA can be solved in Õ(nω)
time deterministically. In this section, we present an alternative randomized algorithm for
AP-Exact1-LCA, and also extend the algorithm for AP-Exact2-LCA.

The following claim is essential to our AP-Exact1-LCA algorithm. We defer its proof to
the full version fo the paper.



S. Mathialagan, V. Vassilevska Williams, and Y. Xu 94:9

▷ Claim 25. Given a DAG G = (V, E), for every pair of vertices u, v ∈ V , we have that

Anc(u) ∩ Anc(v) =
⋃

w∈LCA(u,v)

Anc(w). (1)

Moreover, if Anc(u) ∩ Anc(v) =
⋃

w∈S Anc(w) for some S ⊆ V , it must be the case that
LCA(u, v) ⊆ S.

▶ Theorem 26. There exists an O(nω) time Las Vegas algorithm for AP-Exact1-LCA that
succeeds with high probability. Additionally, this algorithm can find the unique LCA for all
pairs of vertices that have exactly 1 LCA.

Proof. For every pair of vertices u and v with a unique LCA w, we rewrite Equation (1) as
Anc(u) ∩ Anc(v) = Anc(w). In fact, Claim 25 gives us that this holds if and only if w is a
unique LCA of the pair u and v.

Let f : V → Zp be a random function for some p = Θ(n10). For every S ⊆ V , we will use
f(S) to denote

∑
x∈S f(x). Then with high probability, for any u, v, x ∈ V ,

Anc(u) ∩ Anc(v) = Anc(x) if and only if f(Anc(u) ∩ Anc(v)) = f(Anc(x)).

To see this, note that for S, S′ ⊆ V , if S ≠ S′, then f(S)−f(S′) is a sum of a nonzero number
of independent uniform random variables from Zp. Thus if S ̸= S′, then Pr [f(S) = f(S′)] =
1
p . Since we are comparing O(n2) such sets of the form f(Anc(x)) and f(Anc(u) ∩ Anc(v)),
by a union bound, the probability that two distinct sets collide is O(n4/p).

Therefore, it suffices to compute f(Anc(x)) and f(Anc(u) ∩ Anc(v)) for all u, v, x ∈ V .
For each x ∈ V (G), it is easy to compute f(Anc(x)) =

∑
v∈Anc(x) f(v) in O(n) time. To

compute F (u, v) = f(Anc(u) ∩ Anc(v)) for all u, v ∈ V , we construct the following matrices.
Let A be the transitive closure of G and let B[x, v] = f(x) · A[x, v]. Now, note that the
(u, v)-th entry of C = AT B gives us C[u, v] =

∑
x∈Anc(u)∩Anc(v) f(x) = F (u, v), as desired.

Therefore, we can compute all F (u, v) in O(nω) time.
Now, we sort the list L = {f(v) | v ∈ V (G)} in Õ(n) time. For each u, v ∈ V , we can find

an arbitrary wu,v such that F (u, v) = f(wu,v) in Õ(1) time. Assuming none of the O(n2) sets
we are interested in collide, which happens with probability at least 1−O(n4/p) = 1−O(1/n6),
we find such a wu,v if and only if it is the unique LCA of u, v ∈ V .

To make this algorithm Las Vegas, we first notice that if our algorithm does not report a
wu,v, then u and v does not have a unique LCA. For the vertex pairs that our algorithm
does find a wu,v, we run [31]’s verification algorithm (Theorem 2 in [31]) to verify if each
wu,v is in fact the unique LCA of u, v in O(nω) time. If we find any errors, we can simply
repeat the algorithm. ◀

Now we show how to extend our AP-Exact1-LCA algorithm to AP-Exact2-LCA.

▶ Theorem 27. There exists an O(nω) time Las Vegas algorithm for AP-Exact2-LCA that
succeeds with high probability. Additionally, this algorithm can find the two LCAs for all
pairs of vertices with exactly 2 LCAs.

Proof. For all pair of vertices u and v with exactly two LCAs, say a and b, we rewrite (1) as
Anc(u) ∩ Anc(v) = Anc(a) ∪ Anc(b). Moreover, for any u, v, a, b such that the above equation
holds, it must be the case that either both a and b are the only LCAs of u and v, or exactly
one of them is the unique LCA (and the other is a common ancestor). We can detect the
latter case with high probability by performing the algorithm as described in Theorem 26.

ICALP 2022



94:10 Listing, Verifying and Counting LCAs in DAGs

Let f : V (G) → Zp be a random function for some p = Θ(n10). By the same argument
as Theorem 26, with high probability, for any u, v, a, b ∈ V ,

Anc(u)∩Anc(v) = Anc(a)∪Anc(b) if and only if f(Anc(u)∩Anc(v)) = f(Anc(a)∪Anc(b)).

Let F (u, v) = f(Anc(u)∩Anc(v)) and H(a, b) = f(Anc(a)∪Anc(b)). As we saw in Theorem 26,
we can compute F (u, v) in O(nω) time.

To compute H(a, b), note that Anc(a) ∪ Anc(b) = Anc(a) ∩ Anc(b). First, we compute the
transitive closure A of G in O(nω) time. Then, we construct an n × n matrix M by setting
M [x, a] = 1 − A[x, a]. Now, construct another matrix N by setting N [x, b] = f(x) · M [x, b].
Then, it is easy to see that

(MT N)[a, b] =
∑

x∈Anc(a)∩Anc(b)

f(x) = f(Anc(a) ∩ Anc(b)).

Therefore, one can compute

H(a, b) = f(Anc(a) ∪ Anc(b)) = f(V ) − f(Anc(a) ∩ Anc(b)) = f(V ) − (MT N)[a, b]

for all a, b ∈ V in O(nω) time.
Now, sort L = {H(a, b) | a, b ∈ V }. For each u, v which does not have a unique LCA,

search for an arbitrary pair au,v, bu,v (if one exists) such that F (u, v) = H(au,v, bu,v) in Õ(1)
time. With probability 1 − O(1/n6), we find such a pair for each u, v if and only if au,v and
bu,v are the only two LCAs of u and v.

To make this algorithm Las Vegas, we first notice that if our algorithm does not report a
pair au,v, bu,v, then u and v does not have exactly two LCAs. For vertex pairs for which our
algorithm does find two LCA candidates, we run [31]’s verification algorithm (it is described
in a remark in [31]) to verify that au,v and bu,v are the only two LCAs of u and v in O(nω)
time. If we find any errors, we can simply repeat the algorithm from the beginning. ◀

Note that our technique for AP-Exact1-LCA and AP-Exact2-LCA does not extend to AP-
Exact3-LCA because it would require us to list f(Anc(x) ∪ Anc(y) ∪ Anc(z)) for all x, y, z ∈ V ,
which easily exceeds nω time. In fact, in Section 6, we show it is unlikely to obtain an Õ(nω)
time algorithm for AP-Exact3-LCA by proving that any O(n2.5−ϵ) time algorithm for ϵ > 0
for AP-Exact3-LCA would refute the (4, 3)-Hyperclique hypothesis. Thus, AP-Exact3-LCA is
indeed (conditionally) harder than AP-Exact1-LCA and AP-Exact2-LCA.

5 AP-LCA Listing Algorithms

In this section, we consider the AP-List-k-LCA problem. First, we show that AP-AtLeastk-LCA
and AP-List-k-LCA are subcubically equivalent, i.e. either both or neither have a truly subcubic
time algorithm.

▶ Theorem 28. Suppose AP-AtLeastk-LCA can be computed in T (n) time for a constant k.
Then, AP-List-k-LCA can be computed in O(

√
n3 · T (n)) time. In particular, AP-AtLeastk-LCA

and AP-List-k-LCA are subcubically equivalent.

Proof. Suppose we are given a DAG G = (V, E). First compute a topological ordering π of
the vertices in O(n2) time, and the transitive closure D in O(nω) time. Now, for every pair
of vertices u and v, we inductively find their k topologically latest (with respect to π) LCAs.

Suppose we have found the set S(u, v) of the topologically latest ℓ−1 LCAs for every pair
of vertices u, v, for some 1 ≤ ℓ ≤ k with respect to π. Now, partition the vertices into sets
V = V1 ⊔ V2 ⊔ · · · ⊔ Vn/L, where V1 contains the first L vertices in the topological ordering,
V2 contains the next L and so on for a parameter L that we will set later.
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Let LCAG[W ](u, v) denote the set of LCAs of u and v in the subgraph induced by W

(note the distinction between LCAG[W ](u, v) and LCA(u, v) ∩ W ). Consider the vertex set
Ui = Vi ⊔Vi+1 ⊔· · ·⊔Vn/L and the induced subgraph Gi = G[Ui]. We will prove the following
claim in the full version of the paper.

▷ Claim 29. For u, v ∈ Ui, it must be the case that LCAGi(u, v) = LCA(u, v) ∩ Ui.

Now we describe our algorithm. For i = n/L, n/L − 1, . . . , 1, run AP-AtLeastℓ-LCA on
each Gi. For each (u, v) ∈ V × V , keep track of the largest index iu,v where AP-AtLeastℓ-LCA
outputs 1, i.e. largest index such that |LCAGi

(u, v)| ≥ ℓ. By Claim 29, this must mean that
|LCA(u, v) ∩ Uiu,v | ≥ ℓ whereas |LCA(u, v) ∩ Uiu,v−1| < ℓ. In other words, the ℓth LCA lies
in Viu,v

. By Corollary 24, we can compute AP-AtLeastℓ-LCA in time O(T (n)). Therefore,
this step takes O

(
n
L · T (n)

)
time in total.

Next, for each u, v ∈ V , note that the topologically ℓth LCA must lie in the vertex
partition Viu,v

, if iu,v exists. Therefore, it suffices to find the latest vertex x ∈ Viu,v
such

that x ∈ Anc(u) ∩ Anc(v) and no y ∈ S(u, v) is a descendent of x. Such an x must in fact be
the ℓth LCA. Note that these checks can be done in O(1) time for each x ∈ Viu,v

using the
transitive closure D. If there is no iu,v such that AP-AtLeastℓ-LCA outputs 1, then u and v

have fewer than ℓ LCAs. This step takes O(ℓ · L) = O(L) time for each pair u, v ∈ V .
Since we have to iteratively find up to k LCAs per vertex pair, the overall runtime of the

algorithm is O(nω + k( n
L · T (n) + n2 · L)). Choosing L =

√
T (n)/n, we have a runtime of

O(
√

n3 · T (n)).
Moreover, it is clear that if there is a subcubic algorithm for AP-List-k-LCA, we can use

the same algorithm to solve AP-AtLeastk-LCA with an Õ(n2) additional cost. Therefore the
two problems are in fact subcubically equivalent. ◀

In Theorem 26 and Theorem 27, we showed O(nω) time algorithms for AP-Exact1-LCA
and AP-Exact2-LCA. By their equivalences with AP-AtLeast2-LCA and AP-AtLeast3-LCA
respectively, we can also solve AP-AtLeast2-LCA and AP-AtLeast3-LCA in O(nω) time. By
Theorem 28, these imply O(n(ω+3)/2) time algorithms for AP-List-2-LCA and AP-List-3-LCA.

In the following theorem, we show that we can further improve the O(n(3+ω)/2) running
time for AP-List-2-LCA and AP-List-3-LCA to Õ(n2+λ) time where ω(1, λ, 1) = 1 + 2λ.
Interestingly this running time matches the current best running time of the Max-Witness
problem [18]. For these algorithms, we use an idea from [31] about comparing the sizes of
two sets for verifying whether a set of one or two vertices are all the LCAs.

▶ Theorem 3. For k = 2 and k = 3, the AP-List-k-LCA problem can be deterministically
solved in Õ(n2+λ) time, where λ satisfies the equation ω(1, λ, 1) = 1 + 2λ. Here, ω(1, λ, 1) is
the exponent of multiplying an n × nλ by an nλ × n matrix.

We defer the proof of Theorem 3 to the full version of the paper.

6 Lower Bounds

In this section, we show our conditional lower bounds for AP-Exactk-LCA and AP-#LCA.
These lower bounds are the first conditional lower bounds for LCA problems that are higher
than nω−o(1).
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6.1 Lower Bounds for AP-Exactk-LCA
First, we show lower bounds for the AP-Exactk-LCA problem by reducing from 3-uniform
hypercliques. Combined with Corollary 24, the following theorem also shows that, for all
constant k ≥ 6, AP-Exactk-LCA requires n3−o(1) time.

▶ Theorem 30. Assuming the (4, 3)-Hyperclique hypothesis, AP-Exact3-LCA requires n2.5−o(1)

time. Assuming the (5, 3)-Hyperclique hypothesis, AP-Exact4-LCA and AP-Exact6-LCA require
n8/3−o(1) and n3−o(1) time respectively. Also, assuming the (6, 3)-Hyperclique hypothesis,
AP-Exact5-LCA requires n14/5−o(1) time.

Proof. All four reductions share the same underlying ideas. Thus, we only give full details
for the first reduction. The remaining reductions are deferred to the full version of the paper.

(4, 3)-Hyperclique → AP-Exact3-LCA. Suppose we are given a 3-uniform 4-partite hypergraph
G on vertex sets A, B, C, U , where |A| = |B| = |C| =

√
n, and |U | = n. By Fact 18, the

(4, 3)-Hyperclique hypothesis implies that it requires (|A||B||C||U |)1−o(1) = n2.5−o(1) time to
determine whether G contains a 4-hyperclique.

We construct the following instance of AP-Exact3-LCA as depicted in Figure 2. The graph
G′ contains 3 layers of vertices V1, V2, V3. Vertex set V1 is a copy of U , vertex set V2 equals
(A × B) ⊔ (B × C) ⊔ (C × A) and vertex set V3 equals (A × B) ⊔ C. To distinguish vertices
from V2 and V3, we use subscript 2 and 3, e.g. (a, b)2 and (a, b)3, to denote vertices from V2
and V3 respectively.

We also add the following edges to the graph G′:
Add a directed edge from every vertex in V1 to every vertex in V3.
Add a directed edge from any vertex in V2 to any vertex in V3 as long as they do not
have inconsistent labels. For instance, for every a ∈ A, b ∈ B, c ∈ C, we add an edge from
(a, b)2 to (a, b)3 and to c3, but we do not add an edge from (a, b)2 to (a, b′)3 if b ̸= b′.
For every u ∈ V1 and every (x, y)2 ∈ V2, add a directed edge from u to (x, y) if and only
if there is not a 3-hyperedge among u, x and y.

U

u

A × B

(a′, b′)2

B × C

(b′′, c′′)2

C × A

(c′′′, a′′′)2

A × B

(a, b)3

C

c3

{u, a′, b′} ̸∈ E
{u, b′′, c′′} ̸∈ E

{u, c′′′, a′′′} ̸∈ E

a′ = a

b′ = b

all
b′′ = b c′′ = c a′′′ = a

c′′′ = c

all all

V1

V2

V3

Figure 2 Construction of G′ in Theorem 30 from the 3-uniform 4-hyperclique instance. Between
the parts where we mark “all”, we add all possible edges. Between the parts where we mark a
condition, we only add an edge when the corresponding condition holds.
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We consider the set of LCAs for every pair of (a, b)3, c3 ∈ V3.
First, since G′ is a three layered graph, all common ancestors of (a, b)3 and c3 in V2 are

their LCAs. Since we only add edges from V2 to V3 when the labels are consistent, it is easy
to verify that the set of LCAs in V2 is {(a, b)2, (b, c)2, (c, a)2}.

Now we claim that a, b, c are in a 4-hyperclique in G if and only if (a, b)3 and c3 have an
LCA in V1 and there is a 3-hyperedge among a, b, c in G.

Suppose a, b, c are in a 4-hyperclique with a vertex u ∈ V (G). Since G is 4-partite,
we must have u ∈ U . The copy of u in G′ is clearly a common ancestor of (a, b)3 and
c3, since we add all possible edges from V1 to V3. Because a, b, c, u is in a 4-hyperclique,
{a, b, u}, {b, c, u}, {c, a, u} ∈ E(G). Therefore, in G′ we do not add edges from u to any of
(a, b)2, (b, c)2 and (c, a)2. Since these are the only common ancestors of (a, b)3 and c3 in V2,
u in fact cannot reach any other vertex that can reach both (a, b)3 and c3, which makes u an
LCA. Clearly, there is a 3-hyperedge among a, b, c in G.

To prove the converse, suppose u ∈ V1 is an LCA of (a, b)3 and c3 and there is a 3-
hyperedge among a, b, c in G. In that case, u cannot reach any vertex that can reach both
(a, b)3 and c3. In particular, u cannot reach any of (a, b)2, (b, c)2, (c, a)2. When we add edges
from V1 to V2, we have that {a, b, u}, {b, c, u}, {c, a, u} are all 3-hyperedges in G. Also, since
{a, b, c} is a 3-hyperedge, there is indeed a 4-hyperclique with vertices a, b, c, u.

Thus, a, b, c are in a 4-hyperclique in G if and only if the number of LCAs of (a, b)3 and
c3 is not 3 and there is a 3-hyperedge among a, b, c in G. Thus, given the result of an AP-
Exact3-LCA computation of G′, we can easily determine if G has a 4-hyperclique. Therefore,
assuming the (4, 3)-Hyperclique hypothesis, AP-Exact3-LCA requires n2.5−o(1) time. ◀

▶ Remark 31. Note that in all our reductions to AP-Exactk-LCA for 3 ≤ k ≤ 5, we only
need to output the results for o(n2) pairs of u and v. For instance, in the reduction from
(4, 3)-Hyperclique to AP-Exact3-LCA, we only need to output whether (u, v) has exactly 3
LCAs for u ∈ A × B and v ∈ C. The total number of such pairs is only O(n1.5). This is
the main reason why we do not get n3−o(1) conditional lower bounds for AP-Exactk-LCA for
3 ≤ k ≤ 5. On the other hand, in the reduction to AP-Exact6-LCA, we do have Θ(n2) queries.

Williams [41] showed that Max-3-SAT reduces to 3-uniform hypercliques. Lincoln,
Vassilevska Williams and Williams [35] further generalized this reduction to a reduction
from Constraint Satisfaction Problem (CSP) on degree-3 formulas to 3-uniform hypercliques.
Therefore, Theorem 30 also works assuming the Max-3-SAT hypothesis or the hardness of
maximizing the number of satisfying clauses in degree-3 CSP formulas.

▶ Corollary 32. Assuming Max-3-SAT (or even max degree 3 CSP formulas) on N variables
and poly(n) clauses requires 2N−o(N) time, AP-Exact3-LCA, AP-Exact4-LCA, AP-Exact5-LCA
and AP-Exact6-LCA requires n2.5−o(1), n8/3−o(1), n14/5−o(1) and n3−o(1) time respectively.

6.2 Lower Bounds for Counting LCAs
In this section, we show two conditional lower bounds for AP-#LCA, one based on SETH
and one based on the 4-Clique hypothesis.

The next lemma is a crucial tool for the SETH lower bound. It is a generalization of our
previous reduction from (5, 3)-Hyperclique to AP-Exact6-LCA.

▶ Lemma 33. If there exists a T (N) time algorithm for AP-Exact
(2(k−1)

k−1
)
-LCA for graphs with

N vertices, then there exists an O(f(k) poly(n)f(k)T (2n/3)) time algorithm for Max-k-SAT
with n variables and poly(n) clauses for some function f .
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To prove the lemma, we first reduce Max-k-SAT to k-uniform (2k − 1)-hyperclique, which
is a straightforward generalization of Williams’ Max-2-SAT algorithm [41]. Then we reduce
k-uniform (2k − 1)-hyperclique to AP-Exact

(2(k−1)
k−1

)
-LCA, building on ideas similar to the

proof of Theorem 30. The full proof can be found in the full version of the paper.

▶ Remark 34. Lemma 33 implies that if we assume the Max-k-SAT hypothesis, then AP-
Exact

(2(k−1)
k−1

)
-LCA requires n3−o(1) time. Since our reduction uses (2k−1, k)-Hyperclique as an

intermediate problem, the same lower bound also holds assuming the (2k − 1, k)-Hyperclique
hypothesis.

Now we show our SETH lower bound using Lemma 33.

▶ Theorem 4. Assuming SETH, AP-#LCA requires n3−o(1) time, even if we only need to
return the minimum between the count and g(n) for any g(n) = ω(1).

Proof. For the sake of contradiction, assume AP-#LCA has an O(n3−ϵ) time algorithm
for ϵ > 0 when the algorithm only needs to return the minimum between the count and
g(n). For any fixed k, when n is large enough, we have

(2(k−1)
k−1

)
< g(n), so we can solve

AP-Exact
(2(k−1)

k−1
)
-LCA in O(n3−ϵ) time. Thus, by Lemma 33, we can solve Max-k-SAT (and

thus k-SAT) with n variables and poly(n) clauses in time

O(f(k) poly(n)f(k)(2n/3)3−ϵ) = O(f(k) poly(n)f(k)2(1−ϵ/3)n) = O(poly(n) · 2(1−ϵ/3)n),

which would refute SETH. ◀

Finally, we present our reduction from 4-Clique to AP-#LCA, showing an nω(1,2,1)−o(1)

lower bound for AP-#LCA assuming the current algorithm for 4-Clique is optimal.

▶ Theorem 5. If the AP-#LCA problem can be solved in T (n) time, then 4-Clique can be
computed in O(T (n) + nω) time.

Proof. Suppose we are given a 4-Clique instance G = (V, E). Without loss of generality, we
assume G is a 4-partite graph with four vertex parts V = A ⊔ B ⊔ C ⊔ D of size n each.

First, make a copy G′ = (V ′, E′) of G, and modify the edge set of G′ as follows:
Remove all edges between A and B.
Direct all edges from D to A and B.
Direct all edges from C to A, B and D.

Then we add two additional vertex sets A′ and B′ to G′, where A′ is a copy of A and B′

is a copy of B. We use a′ to denote the copy of a ∈ A in A′ and use b′ to denote the copy of
b ∈ B in B′. We also add the following edges:

For every a ∈ A, add an edge (a′, a).
For every b ∈ B, add an edge (b′, b).
For every a ∈ A, b ∈ B, add two edges (a′, b) and (b′, a).
For every a ∈ A, c ∈ C, add an edge (c, a′) if {c, a} ̸∈ E.
For every b ∈ B, c ∈ C, add an edge (c, b′) if {c, b} ̸∈ E.

This construction of the graph is also depicted in Figure 3. From there, it is clear that
G′ is a 3-layered graph.

▷ Claim 35. For every a ∈ A, b ∈ B, c ∈ C, c is an LCA of a and b in G′ if and only if
{c, a}, {c, b} ∈ E and there doesn’t exist any d ∈ D such that {c, d}, {d, a}, {d, b} ∈ E.
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C

c

A′

a′

D

d

B′

b′

A

a

B

b

{c, a} ̸∈ E
{c, d} ∈ E

{c, b} /∈ E

a′ = a

all

{d, a} ∈ E {d, b} ∈ E

all
b′ = b

{c, a} ∈ E {c, b} ∈ E

Figure 3 Construction of G′ in Theorem 5 given a 4-partite 4-Clique instance. Between parts
where we mark “all”, we add all possible edges. Between parts where we mark a condition, we only
add an edge when the corresponding condition holds.

Proof. First, suppose c is an LCA of a and b. For the sake of contradiction, suppose {c, a} ̸∈ E.
Then by the construction of G′, (c, a′) ∈ E′. Also, (a′, a), (a′, b) ∈ E′, so c cannot be an
LCA. This leads to a contradiction, so we must have {c, a} ∈ E. Similarly, we must have
{c, b} ∈ E. Finally, suppose for the sake of contradiction that there exists a d ∈ D such
that {c, d}, {d, a}, {d, b} ∈ E, then by construction, (c, d), (d, a), (d, b) ∈ E′, so c cannot be
an LCA. Thus, there doesn’t exist any d ∈ D such that {c, d}, {d, a}, {d, b} ∈ E.

Now we prove the converse direction. Suppose {c, a}, {c, b} ∈ E and there doesn’t exist
any d ∈ D such that {c, d}, {d, a}, {d, b} ∈ E. By our construction, (c, a), (c, b) ∈ E′, so c is
at least a common ancestor of a and b. Since G′ is a 3-layered graph, it suffices to show that
there isn’t any vertex u in the middle layer such that (c, u), (u, a), (u, b) ∈ E′. First, for any
u ∈ A′, if u ̸= a′, then (u, a) ̸∈ E′; if u = a′, then (c, u) ̸∈ E′ because {c, a} ∈ E. Therefore,
there isn’t any u ∈ A′ such that (c, u), (u, a), (u, b) ∈ E′. Similarly, there isn’t any u ∈ B′

such that (c, u), (u, a), (u, b) ∈ E′. For any d ∈ D, we already have the condition that at
least one of {c, d}, {d, a}, {d, b} is not in E, so at least one of (c, d), (d, a), (d, b) is not in E′.
Therefore, c is an LCA. ◁

Using this claim, we describe our algorithm below.
First, run AP-#LCA to compute |LCA(a, b)| for all (a, b) ∈ A × B. Since G′ is a three-

layered graph, the set of LCAs of a and b in the middle layer is exactly the set of their common
neighbors in the middle layer. Therefore, we can easily compute |LCA(a, b) ∩ (A′ ∪ B′ ∪ D)| in
O(nω) time by using matrix multiplication to count the number of their common neighbors
in the middle layer. Also, clearly, there isn’t any LCA of a and b in A or B. Thus, we can
compute the number of c ∈ C that is an LCA of a and b by

|LCA(a, b) ∩ C| = |LCA(a, b)| − |LCA(a, b) ∩ (A′ ∪ B′ ∪ D)|.

By Claim 35, |LCA(a, b) ∩ C| is exactly the number of c ∈ C such that {c, a}, {c, b} ∈ E

and there doesn’t exist any d ∈ D such that {c, d}, {d, a}, {d, b} ∈ E.
Next, in O(nω) we can use matrix multiplication again to compute Q(a, b) for every (a, b)

where Q(a, b) is defined as the number of c ∈ C such that {c, a}, {c, b} ∈ E.
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Note that Q(a, b)−|LCA(a, b)∩C| is exactly the number of c ∈ C such that {c, a}, {c, b} ∈
E and there exists d ∈ D such that {c, d}, {d, a}, {d, b} ∈ E. Thus, a and b are in a 4-clique
if and only if {a, b} ∈ E and Q(a, b) − |LCA(a, b) ∩ C| > 0.

Overall, if we can compute AP-#LCA in T (n) time, then we can solve the 4-partite
4-Clique instance in O(T (n) + nω) time. ◀

Since AP-#LCA is easier than AP-All-LCA, this lower bound shows that the AP-All-LCA
algorithm in [20] is in fact conditionally optimal.

7 AP-Ver-LCA

In this section, we show two conditional lower bounds for AP-Ver-LCA, based on the Max-
Witness hypothesis and the (4, 3)-Hyperclique hypothesis. First, recall the following theorem:

▶ Theorem 6. If the AP-Ver-LCA problem can be solved in T (n) time, then the Max-Witness
problem can be solved in Õ(T (n)) time.

At the high level, we reduce the MaxWitness problem to O(log n) calls of the AP-Ver-LCA
problem using a parallel binary search technique.

Proof. Without loss of generality, suppose n = 2ℓ for some integer ℓ. Suppose we have two
n × n Boolean matrices A and B, each already padded with a column and row of ones to
ensure that there always exists a Boolean witness. Now, we will describe an algorithm to
compute C = Max-Witness(A, B) using an AP-Ver-LCA algorithm ℓ = log n times. At the high
level, we will be using a parallel binary search to find the maximum witness corresponding
to each entry of C.

Construct a tripartite graph G on vertices V = I ⊔ J ⊔ K, where |I| = |J | = |K| and
identify each of the sets with [n]. Add a directed edge from k ∈ K to i ∈ I if A[i, k] = 1
and an edge from k ∈ K to j ∈ J if B[k, j] = 1. Then, computing C[i, j] is the same as
determining the largest k ∈ K that is a common ancestor of both i ∈ I and j ∈ J . Now, we
will iteratively find the tth bit in the binary representation of each C[i, j] for t = 1, . . . , ℓ

(the first bit is the highest order bit, and the last bit is the lowest order bit). In the first
iteration, we do the following.

Phase 1: Construct a graph G1 by first making a copy of G and adding a vertex w. Then,
we add a directed edge from w to every vertex in I ∪ J . Now, add a directed edge from w to
all vertices k ∈ K whose binary representation starts with 1. Finally, run AP-Ver-LCA where
we guess w is an LCA for all pairs (i, j) ∈ I × J . If w is in fact an LCA, set c

(1)
i,j = 0, and

otherwise, set c
(1)
i,j = 1.

More generally, at the tth iteration of the algorithm, we do the following.

Phase t: At the tth iteration of the algorithm for 1 ≤ t ≤ ℓ, construct the graph Gt as
follows. First, make a copy of G. Then, for each string b = b1b2 . . . bt−1 ∈ {0, 1}t−1, create a
vertex wb. Now, add an edge from wb to all vertices in K whose binary representation starts
with b1b2 . . . bt−1||1. Then, add an edge from every wb to every vertex in I ∪ J . If c

(t−1)
i,j = b,

guess that wb is an LCA for (i, j) ∈ I × J . Run AP-Ver-LCA with all of these guesses. If the
algorithm outputs yes for (i, j), set c

(t)
i,j = b||0. Otherwise, set c

(t)
i,j = b||1.

We show by induction that at Phase t, c
(t)
i,j is the first t bits of C[i, j]. In Phase 1, note

that w is an LCA for (i, j) ∈ I × J exactly when none of its children are common ancestors
of (i, j). In other words, (i, j) has no common ancestor (and hence no witness) k ∈ K whose
first bit is 1.
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Suppose at iteration t − 1, this claim is true. In other words, for each i, j, di,j = c
(t−1)
i,j

corresponds to the first t − 1 bits of C[i, j]. Then, at iteration t, we guessed that wdi,j is
an ancestor. Since wdi,j

only has children whose first t bits are di,j ||1, it is an LCA of (i, j)
exactly when none of these children are common ancestors, i.e. the largest common ancestor
of (i, j) has binary representation starting with di,j ||0. Otherwise, it starts with di,j ||1, as
desired.

Therefore, after ℓ iterations, we have that C[i, j] = c
(ℓ)
i,j (where we interpret ci,j as an ℓ-bit

binary integer). The algorithm does O(n2) work at each phase to construct Gt, and then
invokes an AP-Ver-LCA algorithm. Hence the overall runtime is Õ(n2 + T (n)) = Õ(T (n)), as
desired. ◀

▶ Theorem 7. Assuming the (4, 3)-Hyperclique hypothesis, Ver-LCA requires n2.5−o(1) time.

Proof. Suppose we are given a 3-uniform 4-partite hypergraph G on vertex sets A, B, C, U ,
where |A| = |B| = |C| =

√
n, and |U | = n. The (4, 3)-Hyperclique hypothesis implies that it

requires n2.5−o(1) time to determine whether G contains a 4-hyperclique by Fact 18.
We construct the following Ver-LCA instance G′ on O(n) vertices.
The graph G′ contains 3 layers of vertices V1, V2, V3 with an additional vertex s. We set

V1 to be A × B, set V2 to be a copy of U and set V3 to be (B × C) ⊔ (C × A).
We also add the following edges to the graph G′.
Add a directed edge from every v1 ∈ V1 to every v3 ∈ V3.
Add a directed edge from (a, b) ∈ V1 to u ∈ V2 if and only if {u, a, b} ∈ E(G).
Add a directed edge from u ∈ V2 to (b, c) ∈ V3 if and only if {u, b, c} ∈ E(G). Similarly,
add a directed edge from u ∈ V2 to (c, a) ∈ V3 if and only if {u, c, a} ∈ E(G).
Add a directed edge from s to every other vertex in G′. This ensures that every pair of
vertices has some common ancestors, and thus has at least one LCA.

We claim that for every a ∈ A, b ∈ B, c ∈ C, a, b, c are in a 4-hyperclique in G if and only
if {a, b, c} ∈ E(G) and (a, b) is not an LCA of (b, c) and (c, a) in G.

First, if a, b, c are in a 4-hyperclique with u, then clearly {a, b, c} ∈ E(G). Also, by the
construction of G′, ((a, b), u), (u, (b, c)), (u, (c, a)) are all edges in G′. Thus, (a, b) can reach
a vertex u which can reach both (b, c) and (c, a), so (a, b) is not an LCA of (b, c) and (c, a).

Conversely, if {a, b, c} ∈ E(G) and (a, b) is not an LCA of (b, c) and (c, a), then since (a, b)
can reach both (b, c) and (c, a) via edges added from V1 to V3, (a, b) must be able to reach
some vertex that can reach both (b, c) and (c, a). Such a vertex must belong to V2. Say the
vertex is u, then by the construction of G′, we must have {a, b, u}, {b, c, u}, {c, a, u} ∈ E(G).
Together with the hyperedge {a, b, c}, a, b, c is in a 4-hyperclique.

Therefore, we can run Ver-LCA on G′ with the following set of LCA candidates:
For every a ∈ A, b ∈ B, c ∈ C such that {a, b, c} ∈ E(G), let w(b,c),(c,a) = (a, b).
For every other pair of vertices u, v ∈ V (G′), we use Grandoni et al.’s algorithm [25] to
find an actual LCA ℓu,v for them in O(n2.447) time and set wu,v = ℓu,v.

If some LCA candidate is incorrect, it must be that (a, b) is not an LCA for (b, c) and (c, a)
for some a ∈ A, b ∈ B, c ∈ C such that {a, b, c} ∈ E(G) and thus by previous discussion, the
hypergraph G has a 4-hyperclique. On the other hand, if all LCA candidates are correct,
then the hypergraph G does not have a 4-hyperclique.

Therefore, assuming the (4, 3)-Hyperclique hypothesis, Ver-LCA requires n2.5−o(1) time. ◀

Our conditional lower bounds for AP-Ver-LCA and Ver-LCA are surprising because they
suggest that AP-Ver-LCA and Ver-LCA require n2.5−o(1) time, while AP-LCA can be computed
in O(n2.447) time [25]. This defies the common intuition that verification should be easier
than computation.
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8 Open problems

We conclude this work by pointing out some potential future directions.
1. Does there exist a subcubic time algorithm for AP-Exactk-LCA for any 3 ≤ k ≤ 5? Or,

can we show an n3−o(1) conditional lower bound for AP-Exactk-LCA for any such k? How
about AP-Ver-LCA?

2. Is it possible to show conditional lower bounds for AP-List-k-LCA without using AP-
AtLeastk-LCA as an intermediate problem? For instance, since AP-AtLeastk-LCA has
O(nω) time algorithms for k ≤ 3, we cannot hope to get a higher than nω lower bound for
AP-List-k-LCA for k ≤ 3 using AP-AtLeastk-LCA as an intermediate problem. However,
the current best algorithm for AP-List-1-LCA runs in O(n2.447) and the best algorithm
for AP-List-2-LCA and AP-List-3-LCA runs in O(n2.529) time.

3. All our reductions reduce to instances of LCA variants in graphs with O(1) layers. In
such graphs, some variants could have faster algorithms. In particular, AP-LCA has an
Õ(nω) time algorithm [18] for graphs with O(1) layers, and thus we cannot hope to show
a higher conditional lower bound using our techniques. In order to overcome this, we
need to find reductions that show hardness for LCA variants in graphs with many layers.

4. Are there any other related problems whose verification version is easier than the compu-
tation version? Can we reduce these problems to or from AP-LCA?

References
1 Amir Abboud, Loukas Georgiadis, Giuseppe F Italiano, Robert Krauthgamer, Nikos Parotsidis,

Ohad Trabelsi, Przemysław Uznański, and Daniel Wolleb-Graf. Faster algorithms for all-
pairs bounded min-cuts. In Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP), volume 132, pages 7:1–7:15. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2019.

2 Hassan Aït-Kaci, Robert S. Boyer, Patrick Lincoln, and Roger Nasr. Efficient implementation
of lattice operations. ACM Trans. Program. Lang. Syst., 11(1):115–146, 1989.

3 Josh Alman. Limits on the universal method for matrix multiplication. In Proceedings of the
34th Computational Complexity Conference (CCC), volume 137, pages 12:1–12:24. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

4 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 522–539. SIAM, 2021.

5 Matthias Baumgart, Stefan Eckhardt, Jan Griebsch, Sven Kosub, and Johannes Nowak. All-
pairs ancestor problems in weighted dags. In Proceedings of the First International Conference
on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, ESCAPE’07,
pages 282–293. Springer-Verlag, 2007.

6 Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel
Sumazin. Lowest common ancestors in trees and directed acyclic graphs. J. Algorithms,
57(2):75–94, 2005.

7 Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data structure. SIAM J. Comput.,
22(2):221–242, 1993.

8 Omer Berkman and Uzi Vishkin. Finding level-ancestors in trees. J. Comput. Syst. Sci.,
48(2):214–230, 1994.

9 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

10 Vincent Bouchitté and Jean-Xavier Rampon. On-line algorithms for orders. Theor. Comput.
Sci., 175(2):225–238, 1997.



S. Mathialagan, V. Vassilevska Williams, and Y. Xu 94:19

11 Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular
expression membership testing. In Proceedings of the 58th IEEE Annual Symposium on
Foundations of Computer Science (FOCS), pages 307–318. IEEE, 2017.

12 Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Algebraic Complexity
Theory. Springer Verlag, 1997.

13 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. On the Exact Complexity
of Evaluating Quantified k-CNF. In Proceedings of the 5th International Symposium on
Parameterized and Exact Computation (IPEC), volume 6478, pages 50–59. Springer, 2010.

14 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. On the Exact Complexity of
Evaluating Quantified k-CNF. Algorithmica, 65(4):817–827, 2013.

15 Matthias Christandl, François Le Gall, Vladimir Lysikov, and Jeroen Zuiddam. Barriers for
rectangular matrix multiplication. CoRR, abs/2003.03019, 2020. arXiv:2003.03019.

16 Matthias Christandl, Péter Vrana, and Jeroen Zuiddam. Barriers for fast matrix multiplication
from irreversibility. In Proceedings of the 34th Computational Complexity Conference (CCC),
volume 137, pages 26:1–26:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

17 Richard Cole and Ramesh Hariharan. Dynamic LCA queries on trees. SIAM J. Comput.,
34(4):894–923, 2005.

18 Artur Czumaj, Miroslaw Kowaluk, and Andrzej Lingas. Faster algorithms for finding lowest
common ancestors in directed acyclic graphs. Theor. Comput. Sci., 380(1-2):37–46, 2007.

19 Roland Ducournau and Michel Habib. On some algorithms for multiple inheritance in object-
oriented programming. In Proceedings of ECOOP’ 87 European Conference on Object-Oriented
Programming, volume 276, pages 243–252. Springer, 1987.

20 Stefan Eckhardt, Andreas Michael Mühling, and Johannes Nowak. Fast lowest common
ancestor computations in dags. In Proceedings of the 15th Annual European Symposium on
Algorithms (ESA), volume 4698, pages 705–716, 2007.

21 Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and
dominating set. Theor. Comput. Sci., 326(1-3):57–67, 2004.

22 Johannes Fischer and Daniel H. Huson. New common ancestor problems in trees and directed
acyclic graphs. Inf. Process. Lett., 110(8-9):331–335, 2010.

23 Michael J. Fischer and Albert R. Meyer. Boolean matrix multiplication and transitive closure.
In Proceedings of the 12th Annual Symposium on Switching and Automata Theory (SWAT),
pages 129–131. IEEE, 1971.

24 Harold N. Gabow, Jon Louis Bentley, and Robert Endre Tarjan. Scaling and related techniques
for geometry problems. In Proceedings of the 16th Annual ACM Symposium on Theory of
Computing (STOC), pages 135–143. ACM, 1984.

25 Fabrizio Grandoni, Giuseppe F. Italiano, Aleksander Lukasiewicz, Nikos Parotsidis, and
Przemyslaw Uznanski. All-pairs LCA in dags: Breaking through the O(n2.5) barrier. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
273–289. SIAM, 2021.

26 Michel Habib, Marianne Huchard, and Jeremy P. Spinrad. A linear algorithm to decompose
inheritance graphs into modules. Algorithmica, 13(6):573–591, 1995.

27 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984.

28 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001.

29 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

30 Miroslaw Kowaluk and Andrzej Lingas. LCA queries in directed acyclic graphs. In Proceedings
of the 32nd International Colloquium on Automata, Languages and Programming (ICALP),
volume 3580, pages 241–248, 2005.

ICALP 2022

http://arxiv.org/abs/2003.03019


94:20 Listing, Verifying and Counting LCAs in DAGs

31 Miroslaw Kowaluk and Andrzej Lingas. Unique lowest common ancestors in dags are almost
as easy as matrix multiplication. In Proceedings of the 15th Annual European Symposium
(ESA), volume 4698, pages 265–274. Springer, 2007.

32 Mirosław Kowaluk, Andrzej Lingas, and Johannes Nowak. A path cover technique for lcas
in dags. In Scandinavian Workshop on Algorithm Theory (SWAT), pages 222–233. Springer,
2008.

33 Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the coppersmith-winograd tensor. In Proceedings of the 29th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1029–1046. SIAM, 2018.

34 Andrea Lincoln, Adam Polak, and Virginia Vassilevska Williams. Monochromatic Triangles,
Intermediate Matrix Products, and Convolutions. In Proceedings of the 11th Innovations
in Theoretical Computer Science Conference (ITCS), volume 151, pages 53:1–53:18. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020.

35 Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. Tight hardness for shortest
cycles and paths in sparse graphs. In Proceedings of the 29th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1236–1252. SIAM, 2018.

36 Matti Nykänen and Esko Ukkonen. Finding lowest common ancestors in arbitrarily directed
trees. Inf. Process. Lett., 50(6):307–310, 1994.

37 Baruch Schieber and Uzi Vishkin. On finding lowest common ancestors: Simplification and
parallelization. SIAM J. Comput., 17(6):1253–1262, 1988.

38 Robert Endre Tarjan. Applications of path compression on balanced trees. J. ACM, 26(4):690–
715, 1979.

39 Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path,
matrix, and triangle problems. J. ACM, 65(5):27:1–27:38, 2018.

40 Zhaofang Wen. New algorithms for the LCA problem and the binary tree reconstruction
problem. Inf. Process. Lett., 51(1):11–16, 1994.

41 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005.


	1 Introduction
	1.1 Our results
	1.2 Paper Organization

	2 Preliminaries
	2.1 Notation
	2.2 Variants of AP-LCA
	2.3 Fine-Grained Hypotheses

	3 Relationships among AP-Exactk-LCA, AP-AtMostk-LCA and AP-AtLeastk-LCA
	4 Algorithms for AP-Exactk-LCA
	5 AP-LCA Listing Algorithms
	6 Lower Bounds
	6.1 Lower Bounds for AP-Exactk-LCA
	6.2 Lower Bounds for Counting LCAs

	7 AP-Ver-LCA
	8 Open problems

