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Abstract
In this paper, we present a novel, polynomial time, algorithm for approximate sampling from
symmetric Gibbs distributions on the sparse random graph and hypergraph. The examples of
symmetric distributions we consider here include some important distributions on spin-systems
and spin-glasses. These are: the q-state antiferromagnetic Potts model for q ≥ 2, including the
(hyper)graph Ising model and random colourings. The uniform distribution over the Not-All-Equal
solutions of a random k-SAT formula. Finally, we consider sampling from the spin-glass distribution
called the k-spin model, i.e., this is the “diluted” version of the well-known Sherrington-Kirkpatrick
model. Spin-glasses give rise to very intricate distributions which are also studied in mathematics,
in neural computation, computational biology and many other areas. To our knowledge, this is the
first rigorously analysed efficient sampling algorithm for spin-glasses which operates in a non trivial
range of the parameters of the distribution.

We present, what we believe to be, an elegant sampling algorithm. Our algorithm is unique in its
approach and does not belong to any of the well-known families of sampling algorithms. We derive
it by investigating the power and the limits of the approach that was introduced in [Efthymiou:
SODA 2012] and combine it, in a novel way, with powerful notions from the Cavity method.

Specifically, for a symmetric Gibbs distribution µ on the random (hyper)graph whose parameters
are within an appropriate range, our sampling algorithm has the following properties: with probability
1−o(1) over the instances of the input (hyper)graph, it generates a configuration which is distributed
within total variation distance n−Ω(1) from µ. The time complexity is O((n log n)2), where n is the
size of the input (hyper)graph.

We make a notable progress regarding impressive predictions of physicists relating phase-
transitions of Gibbs distributions with the efficiency of the corresponding sampling algorithms. For
most (if not all) the cases we consider here, our algorithm outperforms by far any other sampling
algorithms in terms of the permitted range of the parameters of the Gibbs distributions.

The use of notions and ideas from the Cavity method provides a new insight to the sampling
problem. Our results imply that there is a lot of potential for further exploiting the Cavity method
for algorithmic design.
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1 Introduction

Random constraint satisfaction problems (r-CSPs) have been the subject of intense study in
combinatorics, computer science and statistical physics. In computer science the study of
random CSPs is motivated by a wealth of applications, e.g., they are used as algorithmic
benchmarks for hard problems such as the graph colouring, or the k-SAT, they are studied as
models for statistical inference, they are also used as gadgets for cryptographic constructions,
or reductions in complexity theory [23, 20, 19, 26].

Physicists, independently, have been studying random CSPs as models of disordered
systems using the so-called Cavity Method (e.g. see [32, 29]). The Cavity method originates
from the groundbreaking ideas in physics which got Giorgio Parisi the 2021 Nobel Prize in
Physics. With its very impressive predictions and its deep intuition, the Cavity Method
attracted the interest of both computer scientists and mathematicians, despite its lack of
mathematical rigour. In the last two-decades, or so, ideas from the Cavity method have
blended the study of random CSPs in computer science and have yield some beautiful results
and breakthroughs in the area e.g., [11, 1, 34, 12, 24].

A fundamental notion in physicists’ predictions is that of the Gibbs distribution. Using the
Cavity method, physicists make predictions relating phase-transitions of Gibbs distributions
with the efficiency of the sampling algorithms. Establishing rigorously these connections
is a very challenging task and, despite any recent advances, most of the central questions
still remain open. In this work, we introduce a novel approach to the sampling problem
that exploits intuition from the Cavity method, as well as mathematical tools and ideas that
were developed for the study of random CSPs in conjunction with the Cavity method. Our
approach yields efficient algorithms with notable performance with respect to the allowed
region of the parameters of the problem.

We remark that this is not the first attempt to employ ideas from the Cavity method for
algorithmic design. The celebrated heuristics Belief Propagation and Survey Propagation
[5, 33] are prominent examples of physicists’ attempt to turn the Cavity method into an
algorithm. Despite their impressive empirical performance, we lack a rigorous mathematical
analysis for these heuristics with respect to generating samples from Gibbs distributions.

Our algorithm here is for sampling from what we call symmetric Gibbs distributions. This
includes important examples such as the (hyper)graph q-colourings and its generalisation
the q-state Potts model for q ≥ 2, the symmetric variants of k-SAT such as the not-all-equal
k-SAT (k-NAE-SAT). A notable case is the spin-glass k-spin model, i.e., the same spin-glasses
that Parisi studied in the 80’s. Spin-glasses give rise to very intricate distributions which
are also studied in mathematics, in neural computation, computational biology and many
other areas [37]. For us, the underlying geometry is an instance of the random graph, or
hypergraph of constant expected degree d > 0.

For most of the above distributions it is extremely challenging to sample from. This is not
only because the underlying geometry is random. Each of the aforementioned distributions
exhibits special features that make the analysis of known sampling techniques intractable.
E.g., in the interesting region of parameters for k-NAE SAT, or hypergraph colourings, we
have untypical configurations with non-local freezing of the variables, the spin-glasses exhibit
local, randomly induced, frustration phenomena, etc.

An additional motivation for this work comes from our desire to investigate the power
and the limits of the (well-known) sampling method that is introduced in [15]. The method
in [15], (or any of its subsequent works) does not exploit the Cavity method. On a high level,
the approach summarises as follows: having the graph G at the input, the algorithm initially
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removes all the edges and generates a configuration for the empty graph. Then, iteratively,
the algorithm puts the edges back one by one. If Gi is the subgraph we have at iteration
i, our objective is to have a configuration σi which is distributed very close to the Gibbs
distribution on Gi. The idea is to generate σi by updating appropriately the configuration
of Gi−1, i.e., update σi−1 to generate efficiently σi. Once all the edges are put back, the
algorithm outputs the configuration of G.

The algorithm in [15], relies heavily on properties that are special to graph colourings, for
this reason it is restricted to this distribution. The same holds for similar approaches in the
area, i.e., the algorithm is specific to the distribution it is sampling from. This is a drawback
because every time we consider a new distribution we have to design a new algorithm from
scratch. With our approach here, we avoid this. We introduce a sampling algorithm that the
Gibbs distribution we are sampling from is a parameter, e.g., similarly to Glauber dynamics.

Previous approaches in the area rely on the correlation decay condition called tree-uniquess
to establish the accuracy of the algorithm. For our purposes, requiring such a condition can
be too restrictive. On one hand, for many of the distributions we consider here, we are far
from establishing their tree uniqueness region. Actually, for many of them it is notoriously
difficult to establish it even for a very limited rage of their parameters. On the other hand, it
seems that Gibbs uniqueness is too restrictive a condition for distributions on the hypergraph.
With our approach here we give a new insight to the problem by showing that we can exploit
notions about the Gibbs distributions that we typically encounter in the study of the Cavity
method and random CSPs. For example, we use notions like the broadcasting probabilities
encountered in the study of the extremality of Gibbs distributions for random CSPs [7, 29, 16],
or the contiguity between the Gibbs distribution and its corresponding teacher-student model
for the study of the so-called free energy and its fluctuations [1, 11, 30, 8].

To appreciate our results, we remark that for most of the distributions we consider here,
in order to prove that, e.g., the MCMC sampler works anywhere near the region of the
parameters that our algorithm allows, would require major breakthroughs in the area of
Markov chains, with repercussions that go beyond the problems we consider in this work.

The reader should not confuse the bounds we get here with those for “worst-case” instances.
For worst case instances, usually, the parametrisation is w.r.t. the maximum degree of the
underlying (hyper)graph, whereas for the random (hyper)graph, the natural parametrisation
is w.r.t. the expected degree. Typically for the random (hyper)graphs here the maximum
degree is unbounded, i.e., Θ(logn/ log logn), while the expected degree d is a fixed number.

It is important to mention that having an algorithm which allows a lot of freedom for
the parameters comes at a certain cost. The approximation guarantees of our algorithm
are not equally strong to, e,g., those of the MCMC approach. That is, even though the
state of the art of MCMC can be far more restrictive in the parameters it allows, it provides
stronger approximation guarantees. Roughly speaking, our results is summarised as follows:
for a symmetric Gibbs distribution µ on the random (hyper)graph which satisfies our set of
conditions, we have an approximation sampling algorithm such that with probability 1 − o(1)
over the instances of the input (hyper)graph, it generates a configuration which is distributed
within total variation distance n−Ω(1) from µ. The time complexity is O((n logn)2).

Concluding, the idea of “iteratively adding edges and updating” turns out to be quite
powerful, particularly when we combine it with notions and ideas from the Cavity method.
It allows us to sample from distributions that, prior to this work, was impossible to sample.
Our approach leads to, what we believe to be, an elegant sampling algorithm which deviates
from [15] and follow up approaches not only on the phenomena of the Gibbs distributions
that it utilises, but also on its basic description. Our work shows how powerful the notions
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from the Cavity method can be, i.e., even in the context of sampling algorithms. We believe
that there is a lot of potential towards the direction of using ideas from the Cavity method
for the sampling problem in order to get even stronger algorithms.

Results for specific distributions appear in Section 1.2. Particularly, we show results for
the anti-ferro q-state Potts model on graphs and hypergraphs, for any q ≥ 2. This includes the
“zero-temperature” case (hyper)graph colourings, as well as the anti-ferro Ising model. Also,
we show results for the k-NAE-SAT, for k ≥ 2, and the spin-glass called the k-spin model.
This is the diluted version of the celebrated and extensively studied Sherrington-Kirkpatrick
mean field model [31, 38]. Spin-glasses are studied in mathematics, in neural computation,
computational biology and many other areas [37]. To our knowledge, this is the first rigorous
analysis of efficient algorithm for spin-glasses. Our algorithm is by no means restricted to
the cases presented here, i.e., it applies to any symmetric Gibbs distribution. We choose to
present the specific ones because there is a common analysis framework that we can use.

1.1 General Overview
Let the fixed k-uniform hypergraph Hk = (V,E). Clearly, the graph case corresponds to
having k = 2. A Gibbs distribution on Hk is specified by the set of spins A and the weight
functions (ψe)e∈E such that ψe : Ak → R≥0. The Gibbs distribution µ = µH is on the set
of configurations AV , i.e., the assignments of spins to the vertices of Hk, such that each
σ ∈ AV gets probability measure

µ(σ) ∝
∏
e∈E

ψe(σ(xe,1), σ(xe,2), . . . , σ(xe,k)),

where xe,i is the i-th vertex in the hyperedge e. We assume a predefined order for the vertices
in each hyperedge. The symbol ∝ stands for “proportional to”.

In many situations, we allow ψe to vary with e. For example, in k-NAE-SAT, or the
k-spin model each ψe is chosen independently, according to a predefined distribution. For
this early exposition of the results the reader may very well assume that all ψe’s are the
same and fixed.

Roughly speaking, µ is symmetric, if for any σ, τ ∈ AV such that σ can be obtained from
τ by repermuting the spin classes, we have that µ(σ) = µ(τ). For example, suppose that
A = {±1}. If µ is symmetric, then we have µ(σ) = µ(τ) for any two σ, τ ∈ AV , such that
σ(x) = −τ(x) for all x ∈ V .

The underlying (hyper)graph structure is random. We let H = H(n,m, k) be the random
k-uniform hypergraph on n vertices and m hyperedges. For the graph case, i.e., k = 2,
we write G(n,m). The expected degree is denoted by d. We take d to be a constant, i.e.,
m = Θ(n). Our results hold for any d > 0, i.e., we do not require that “d is sufficiently large”.

Consider a typical instance of H, of expected degree d, and µ = µH a symmetric Gibbs
distribution on H. Suppose that we want to sample from µ. In what follows, we describe
the key features of the algorithm we propose for sampling from µ.

The main problem we need to deal with is the update-rule, i.e., how to design a method
that gives us the configuration σi from σi−1, while, at the same time, it is generic enough
to apply to all symmetric Gibbs distributions. We introduce an approach that relies on an
abstract process that is called broadcasting. This is a natural process, that can be used to
generate samples of symmetric Gibbs distributions on trees. The update starts by changing
the configuration of the vertices that are disconnected and become connected when we add
the (hyper) edge in the iteration i. W.l.o.g. assume that we change the assignment of just
one of these vertices. Starting from this disagreeing vertex, we employ a process that is a



C. Efthymiou 57:5

reminiscent of a coupling between two broadcasting processes. It is possible that in this
process the initial disagreements propagates to some of its neighbours and, in turn, the
disagreement of the neighbours propagates to neighbours further away and so on. The update
stops when no more disagreements are generated.

It is crucial for the accuracy of the algorithm that the disagreements do not propagate
too much further from the initial one. We can bound the rate that the disagreements
spread during the update in terms of certain quantities related to the Gibbs distribution
called broadcasting probabilities. Particularly, we have two desiderata: (a) the broadcasting
probabilities are sufficiently close with each other (b) we need to show that the configuration of
the vertices that the update rule encounters, somehow, looks like the result of a broadcasting
process.

For the first desideratum we just need to tune appropriately the parameters of the Gibbs
distribution. As far as the second one is concerned, even though we expect it to be true in
our setting, it is very difficult to establish it rigorously. To this end, we employ the so-called
planting-trick. This is a technique that allows us to circumvent the problem of accessing
properties of the Gibbs distribution by using a very accurate approximation of it, which is
called the Teacher-Student model. Working with the later distribution is technically much
easier and it allows to get our second desideratum.

Let us be more specific. In order to have an accurate algorithm we introduce a set of
technical conditions for the Gibbs distribution µ which we call SET. For describing SET, we
need to visit few basic concepts.

Using the weight functions (ψe)e∈E we considered before, we introduce the following
distributions: for each e ∈ E, let me be the distribution on Ae, i.e., configurations on the
vertices in e, such that

me(σ) ∝ ψe(σ(xe,1), σ(xe,2), . . . , σ(xe,k)) ∀σ ∈ Ae. (1)

From Cavity’s perspective, the distributions {me}e∈E can be viewed as fixed-points of the
so-called BP equations. The distributions me are natural objects in our setting. Particularly
we focus on the so-called broadcasting probability mi

e, which is the distribution me conditional
on the configuration at xe,1 being i ∈ A.

Furthermore, we need to introduce the notion of total variation distance between
distributions. Particularly, for any two distributions ν̂ and ν on AV we let

||ν̂ − ν||tv = (1/2)
∑

σ∈AV |ν̂(σ) − ν(σ)|.

Also, we let ||ν̂ − ν||Λ be the total variation distance of the marginals of ν̂ and ν on the
vertex set Λ ⊆ V .

SET consists of two conditions which we call B.1 and B.2. The condition B.1 requires
that for any two mi

e, mj
e, i.e, any two broadcasting probabilities of µ, their total variation

distance is not too large. We say that B.1 is satisfied with slack δ > 0 if we have that

max
i,j∈A

||mi
e − mj

e||Λ ≤ 1 − δ

d(k − 1) , where Λ = {xe,2, xe,3, . . . , xe,k}.

Recall that k is the size of the hyper-edge in H, while d is the expected degree. The above
implies that for any two broadcasting, their total variation distance should be smaller than
(1 − δ) over the expected number of neighbours of a vertex in H.

The condition B.2 requires mutual contiguity between the Gibbs distribution µ and the
so-called teacher-student model. We generate the pair (H∗,σ∗) according to the teacher-
student model by working as follows: choose σ∗ randomly from AV . Given σ∗, generate the
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weighted random hypergraph H∗ on n vertices and m edges, where the weight depends on
σ∗ and µ. Contiguity implies that the typical properties of the pair (H∗,σ∗) are the same as
those of the pair (H,σ), where H = H(n,m, k) and σ is distributed as in µ. More formally,
contiguity implies that for any sequence of events (Sn)n we have that

Pr[(H,σ) ∈ Sn] = o(1) iff Pr[(H∗,σ∗) ∈ Sn] = o(1).

For the planting-trick we combine B.1 with B.2. Roughly speaking, we use B.1 to
prove that the update rule is local when it is applied to a configuration that is from the
teacher-student model. Then, B.2, i.e., contiguity, implies that the same is true for our
original configuration σi−1. The reader can find further details and discussions about this in
Section 2.

The region of the parameters that our algorithm is accurate are specified by SET.
Employing technical arguments from [11, 8, 10], we show that, for symmetric distributions,
the condition B.1 is stronger than B.2. In that respect, the specifications of SET reflect
exactly the restrictions that B.1 imposes to the Gibbs distribution.

The general result we prove in this work is stated in the following two theorems. Also,
see Section 1.2 for applications of these theorems on specific distributions.

▶ Theorem 1. For δ ∈ (0, 1], for integer k ≥ 2, for any d ≥ 1/(k − 1) and integer
m = dn/k the following is true for our algorithm: Consider the random k-uniform hypergraph
H = H(n,m, k). Let µ = µH be a symmetric Gibbs distribution on H which satisfies SET
with slack δ.

With probability 1 − o(1), over the input instances H and weight functions on the edges
of H, our algorithm generates a configuration whose distribution µ̄ is such that

||µ̄− µ||tv ≤ n− δ
55 log(dk) .

As mentioned above, the theorem does not require d to be a “sufficiently large constant”.
We chose d ≥ 1/(k− 1), because otherwise the underlying graph structure is very simple and
the problem is trivial.

Let us remark that, even though the output error for the algorithm is polynomial small,
we didn’t optimise the constants at the exponent of the polynomial.

▶ Theorem 2. For k ≥ 2 and d ≥ 1/(k − 1) and integer m = dn/k, consider the random
k-uniform hypergraph H = H(n,m, k). The time complexity of our algorithm on input H is
O((n logn)2).

SET Versus Gibbs Uniqueness

As noted earlier, for almost all the cases of distributions we consider here, our algorithm
outperforms by far the corresponding MCMC. However, it is natural to further characterise
the region of parameters that our algorithm allows, not in terms of the performance of other
algorithms, but in terms of spatial mixing conditions on the the k-uniform random hyper-tree
where each non-leaf vertex has (k − 1) × Poisson(d) children and k ≥ 2. If not anything else,
this could give further insight on the approach.

Establishing the so-called tree-uniqueness for many of the Gibbs distributions here turns
out to be a notoriously difficult problem even for the regular tree, not to mention the random
tree, or the random hyper-tree. Deriving such results is of independent interest and goes far
beyond the scope of this work. The lack of rigorous result for uniqueness allows only for a
discussion on the basis of conjectures coming (mainly) from physics.
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For the graph case, it is natural to compare SET with the Gibbs tree-uniqueness condition
on the Galton-Watson tree with offspring distribution the Poisson(d). At least for the
antiferromagnetic Ising and Potts model and the 2-NAE-SAT model, the requirement of our
algorithm coincides with the conjectured tree uniqueness region of the the random tree. We
are not aware of any conjectures about the tree uniqueness of the spin-glass 2-spin model.

For the hyper-graph case, things seem to be more interesting. The author of this work is
not aware of any physics’ conjectures about the Gibbs uniqueness on the random hyper-tree.
However, we believe that is interesting to include in our discussion the following (somehow
easy to make) observation: For the sake of our discussion, rather than random hyper-tree
consider a regular one, e.g. consider k-uniform hyper-tree where each non-leaf vertex has
∆(k − 1) children, for integers ∆, k > 0. Consider also a symmetric Gibbs distribution with
hard constraints on this hyper-tree, e.g. the q-colouring model. Provided that ∆, k are
relatively large, say ∆, k ≥ 15, the condition SET does not preclude configurations at the
vertices at level ℓ of the tree that specify uniquely the colouring at the root, for howsoever
large ℓ > 0 we choose 1. Of course, such colourings are extremely untypical with respect to
the Gibbs distribution on the hyper-tree. A very similar phenomenon can be observed at
the random hyper-tree, too. This aforementioned phenomenon leads us to conjecture for the
hypergraph cases, that our algorithm allows to sample beyond the corresponding hyper-tree
uniqueness region for all the Gibbs distributions we consider here.

The above should not be a surprise to the reader. It is well-known that for hard-constraint
distributions on the hyper-graph (not necessarily random), the worst case configurations can
be very problematic for the analysis of MCMC sampler, i.e., even under very mild conditions,
e.g. see [22]. Our algorithm does not suffer from such problems, because it deals with typical
configurations which are much nicer.

Related work

The idea of “iteratively adding edges and updating” for sampling was first introduced in [15]
for sampling colourings of random graphs. The techniques and tools we introduce here for
the sampling problem, rely on results developed in the study Cavity method and random
CSP, e.g. see [1, 8, 10, 11].

There are two other works which follow the approach of “adding edges and updating”
and use the same correlation decay approach to [15]. One is [17], an improvement of [15],
which is about colourings of the random graph of sufficiently large expected degree d. The
other one is [4] for the Potts model on the related random ∆-regular graph, for large ∆.
From the second paper, it is conceivable that we can get an efficient algorithm only for the
ferromagnetic Potts model on the random graph, provided that the expected degree d is large.
Apart from colourings and ferro-Potts on the graph, we cannot rely on any of these two
approaches for our endeavours. Both of them rely on the special properties of the distribution
they are sampling from, thus they don’t allow for other distributions. Furthermore, their
tree-uniqueness requirement essentially restrict their use to considering only graphs, rather
than hypergraphs. Our work here improves on both results in [17, 4] as it allows for any
expected degree d > 0, i.e., rather than sufficiently large d.

1 E.g., in this setting SET allows q ≈ ((k − 1)∆)1/(k−1), while the number of children of a non-leaf vertex
is (k − 1)∆ ≫ q.

ICALP 2022
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There are other approaches to sampling from Gibbs distributions (not-necessarily on
random graphs), which is different than the one we consider here. Notably, the most popular
ones rely on the Markov Chain Monte Carlo Method (MCMC) [28, 21]. The literature
of MCMC algorithms is vast and includes some beautiful results, just to mention a few
[3, 39, 27, 25, 35, 14, 18, 6, 13].

Our results about the colourings are related to the work in [18] for MCMC sampling.
Some result from [18] can be extended naturally to the Potts model, too. In that respect
our approach outperforms, by far, [18] it terms of the range of the allowed parameters
of the Gibbs distributions. However, we note that the MCMC algorithm achieves better
approximation guarantees in the (more restricted) regions it operates.

1.2 Applications
1.2.1 The antiferromagnetic Ising Model
The Ising model on the k-uniform hypergraph Hk = (V,E) is a distribution on the set of
configurations {±1}V such that each σ ∈ {±1}V is assigned probability measure

µ(σ) ∝ exp
(
β ·

∑
e∈E

∏
x,y∈e1{σ(x) = σ(y)} + h ·

∑
x∈V σ(x)

)
,

where β ∈ R is the inverse temperature and h is the external field. It is straightforward that
the Ising model is symmetric only when h = 0. We assume β < 0, which corresponds to the
antiferromagnetic Ising model.

For ∆, k > 0 such that ∆ > 2k−1−1
k−1 we let the function

βIsing(∆, k) = log
(

∆(k−1)+1−2k−1

∆(k−1)+1

)
.

The uniqueness region of the antiferromagnetic Ising model on the ∆-ary tree, for ∆ ≥ 1,
is well-known. Particularly, it corresponds to temperatures β such that either ∆ > 2 and
βIsing(∆, 2) < β < 0, or ∆ = 1 and finite β < 0, i.e., β ̸= −∞.

▶ Theorem 3. For integer k ≥ 2 fr any d ≥ 1/(k − 1) such that either
1. d > (2k−1 − 1)/(k − 1) and βIsing (d, k) < β < 0, or
2. d ≤ (2k−1 − 1)/(k − 1) and finite β < 0,
the following is true: For the random k-uniform hypergraph H = H(n,m, k), where m =
dn/k, let µ = µH be the antiferromagnetic Ising model on H, with inverse temperature β
and external field h = 0.

There exists c0 > 0 which depends only on the choice of k, d, β, such that with probability
1 − o(1) over the input instances H, our algorithm generates a configuration with distribution
µ̄ such that

||µ̄− µ||tv ≤ n− c0
55 log(dk) .

The time complexity of the algorithm is O((n logn)2) with probability 1.

▶ Remark 4. For the graph cases, i.e., k = 2, physics’ conjecture is that we get the Gibbs
uniqueness region for the random trees with expected offspring d, by somehow “pretending”
that we are dealing with a d-ary tree (regardless of d being an integer, or not). From the
above theorem, it is evident that the region that our algorithm operates, corresponds exactly
to the region that is implied by the physics’ non rigorous consideration. Someone could
observe the same for the related Potts model in the following section.
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1.2.2 The antiferromagnetic Potts Model and the Colouring Model
The Potts model on the k uniform hypergraph Hk = (V,E) is a generalisation of the Ising
model in the sense that it allows for q spins where q ≥ 2. Particularly, each σ ∈ [q]V , where
[q] = {1, 2, . . . , q}, is assigned probability measure

µ(σ) ∝ exp
(
β ·

∑
e∈E

∏
x,y∈e1{σ(x) = σ(y)}

)
.

where β ∈ R is the inverse temperature. The graph case, i.e., k = 2, follows immediately
from the above.

There is a version of the Potts model with external field, similarly to the Ising model.
We do not consider the case with field because it gives rise to a non symmetric distribution.
The antiferromagnetic Potts model we focus here corresponds to having β < 0.

A very interesting case of the Potts model is the colouring model. This is the uniform
distribution over the proper q-colourings of the underlying (hyper)graph Hk, i.e., we do not
allow configurations with monochromatic edges. The colouring model corresponds to the
Potts model with β = −∞.

For ∆, k > 0 such that ∆ > qk−1−1
k−1 , we let the function

βPotts(∆, q, k) = log
(

∆(k−1)+1−qk−1

∆(k−1)+1

)
.

▶ Theorem 5. For integer k ≥ 2, for any d ≥ 1/(k − 1), integers q > 2 and m = dn/k the
following is true: Assume that β, q satisfy one of the following cases:
1. (qk−1 − 1)/(k − 1) < d and βPotts(d, q, k) < β < 0,
2. (qk−1 − 1)/(k − 1) > d and β < 0, including β = −∞.
Consider the random k-uniform hypergraph H = H(n,m, k). Let µ = µG be the q-state
antiferromagnetic Potts model on H with inverse temperature β. There exists c0 > 0, which
depends only on our choices of k, d, β such that with probability 1 − o(1) over the input
instances H, our algorithm generates a configuration whose distribution µ̄ is such that

||µ̄− µ||tv ≤ n− c0
55 log(dk) .

The time complexity of the algorithm is O((n logn)2) with probability 1.

Physics’ (folklore) conjecture for the uniqueness of antiferromagnetic Potts model on the
Galton Watson tree with offspring distribution Poisson(d) coincides with the region specified
in the theorem above, for k = 2.

1.2.3 The k-NAE-SAT Model
For integer k ≥ 2, let Fk(n,m) be a random propositional formula over the Boolean variables
x1, . . . , xn. Particularly, Fk(n,m) is obtained by inserting m independent random clauses of
length k such that no variable appears twice in the same clause. Here, we consider formulas
with m = dn/k clauses for a fixed number d, i.e., on average every variable occurs in d

clauses.
We focus on the “Not-All-Equal” satisfying assignments of Fk(n,m). A Boolean

assignment σ of x1, . . . , xn is NAE-satisfying for Fk(n,m) if under both σ and its binary
inverse σ̄ all m clauses evaluate to “true”. The random k-NAE-SAT problem is one of the
standard examples of random CSPs and has received a great deal of attention. In particular,
in an influential paper Achlioptas and Moore [2] pioneered the use of the second moment
method for estimating the partition functions of random CSPs with the example of random
k-NAE-SAT. Our focus is on sampling from the uniform distribution over the NAE satisyfing
assignments of Fk(n,m). We have the following result.
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▶ Theorem 6. For δ ∈ (0, 1], for k ≥ 2, for any 1/(k − 1) ≤ d < (1 − δ) 2k−1−1
k−1 and for

integer m = dn/k, the following is true for our algorithm: Consider Fk(n,m) and let µ be
the uniform distribution over the NAE satisfying assignments of Fk(n,m). With probability
1 − o(1) over the input instances Fk(n,m), our algorithm generates a configuration whose
distribution µ̄ is such that

||µ̄− µ||tv ≤ n− δ
55 log(dk) .

The time complexity of the algorithm is O((n logn)2) with probability 1.

As a point of reference for the performance of our sampling algorithm, note that it works
in a region of parameters which is very close to those of search algorithms for the problem,
e.g. see the analysis for the renown walk-sat algorithm in [9].

1.2.4 The k-spin model
For integer k ≥ 2, consider the k-uniform hypergraph Hk = (V,E). Additionally, let
J = (Je)e∈E be a family of independent, standard Gaussians (expectation zero and variance
one). The k-spin model on Hk at inverse temperature β > 0 is the distribution that assigns
each configuration σ ∈ {±1}V the probability measure

µ(σ) ∝
∏

α∈E exp
(
βJe

∏
y∈ασ(y)

)
. (2)

It is elementary to verify that the k-spin model is symmetric when k ≥ 2 is an even integer.
Here we consider the above distribution when the underlying (hyper)graph is an instance of
H = H(n,m, k) of expected degree d, i.e., m = dn/k.

The k-spin model is the diluted version of the well-known Sherrington-Kirkpatrick model
which has been subject of intense study both in mathematics and physics [38, 31]. Generally,
spin-glasses give rise to very intricate distributions and they are also studied in neural
networks, computational biology and other areas of computer science [37]. As mentioned
before, this is the first efficient algorithm for sampling from spin-glasses in a non-trivial
region of their parameters. For what follows we consider the function

Fk(x) = |ex − e−x|
(2k−1 − 1)e−x + ex

. (3)

▶ Theorem 7. For δ ∈ (0, 1], for even integer k ≥ 2, for any d ≥ 1/(k − 1) and for any
β ≥ 0 such that

E[Fk(βJ0)] ≤ 1−δ
d(k−1) ,

where the expectation is w.r.t. the standard Gaussian random variable J0, the following is
true for our algorithm: Consider H = H(n,m, k), where m = dn/k, and let µ be the k-spin
model on H at inverse temperature β. With probability 1 − o(1) over the input instances H

and the weight functions on the edges of H, our algorithm generates a configuration whose
distribution µ̄ is such that

||µ̄− µ||tv ≤ n− δ
55 log(dk) .

The time complexity of the algorithm is O((n logn)2) with probability 1.
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Notation

Let the hypegraph Hk = (V,E) and the Gibbs distribution µ on the set of configurations
AV . For a configuration σ, we let σ(Λ) denote the configuration that σ specifies on the set
of vertices Λ. We let µΛ denote the marginal of µ at the set Λ. For a configuration σ ∈ AV

we let µ(· | Λ, σ), denote the distribution µ conditional on the configuration at Λ being σ(Λ).
Also, we interpret the conditional marginal µΛ(· | Λ′, σ), for Λ′ ⊆ V , in the natural way.

2 Algorithmic Approach – High Level Description

To facilitate the exposition of the algorithm assume in this section that we are dealing with
a graph, rather than hypergraph, while we assume that this graph is fixed.

First, we recall the algorithm: on input G, the algorithm initially removes all the edges
and generates a configuration for the empty graph. Then, iteratively, we put the edges back
one by one. If Gi is the subgraph we have at iteration i, our aim is to have a configuration
σi which is distributed very close to the Gibbs distribution on Gi, for every i. We generate
σi by updating appropriately σi−1, the configuration of Gi−1. Once all edges are put back,
the algorithm outputs the configuration of G. One of the main challenge is to specify the
update rule, i.e., how to generate σi from σi−1.

We describe the proposed rule by considering the following, simpler, problem. Consider
two high-girth, fixed, graphs G = (V,E) and G′ = (V,E′). Assume that G and G′ differ on
a single edge, i.e. compared to G, the graph G′ has the extra edge e = {u,w}. Let µ and
µ′ be the Gibbs distributions of G and G′, respectively. We want to use the update rule to
generate efficiently τ a sample from µ′, while we are given σ, a sample from µ.

To facilitate our exposition, assume that we already know τ (u) and τ (w), and they are
such that τ (u) = σ(u) and τ (w) ̸= σ(w). In what follows, we focus on specifying τ for the
rest of the vertices in V .

The plan is to visit each vertex z iteratively and specify τ (z). At each iteration t, we only
know the configuration of τ for the vertices in the set of vertices we have already visited, we
call it Nt. Initially we have that N0 = {w, u}. Also, let D = {τ (w),σ(w)}, i.e., D is the set
of the spins of the initial disagreement. At iteration t we pick a vertex z which is outside Nt

but has a neighbour x ∈ Nt which is disagreeing, i.e., τ (x) ̸= σ(x). For the moment, assume
that such vertex exists.

If σ(z) /∈ D, then we just set τ (z) = σ(z). On the other hand, if σ(z) ∈ D, then we work
as follows: there is a probability pz, that depends on the configuration of σ and τ at Nt,
and we set

τ (z) =
{

D \ {σ(z)} with prob. pz

σ(z) with prob. 1 − pz.

The first line implies that τ (z) gets the opposite spin of σ(z). E.g., if D = {red, blue} and
σ(z) = red, then τ (z) = blue. Once τ (z) is decided, set Nt+1 = Nt ∪ {z} and continue
with the next iteration.

It could be that in iteration t, there is no vertex z outside Nt which has a disagreeing
neighbour inside Nt. If this is the case, then for every z for which we have not specified τ (z),
we set τ (z) = σ(z). Once we have specified the assignment τ for every vertex z in the graph,
the update rule terminates.
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The probability pz is determined in terms of a maximal coupling between the marginals of
µ′ and µ at z, conditional on τ (Nt) and σ(Nt). We denote these marginals as µ′

z(· | Nt, τ )
and µz(· | Nt,σ), respectively. We have

pz = max
{

0, 1 − µ′
z(σ(z) | Nt, τ )
µz(σ(z) | Nt,σ)

}
.

One can show that the above generates a perfect sample from the distribution µ′. There is
an issue with this approach, though. It is not clear how we can compute the probabilities pz,
efficiently. Computing pz relies on estimating conditional marginals of Gibbs distributions.
In our setting, we don’t known how to estimate these marginals efficiently. To this end, we
use different probabilities. That is, we follow the previous steps and when at the iteration t

we examine a vertex z for which σ(z) ∈ D, we set τ (z) such that

τ (z) =
{

D \ {σ(z)} with prob. qz

σ(z) with prob. 1 − qz,
(4)

i.e., instead of pz we use qz. Recall that we choose z because it has a disagreeing neighbour
x ∈ Nt. Each qz can be expressed in terms of the simpler distribution mα, where α is the
edge between z and x. We have

qz = max
{

0, 1 − mα,z(σ(z) | x, τ )
mα,z(σ(z) | x,σ)

}
. (5)

Recall from our notation that mα,z(· | x, τ ) is the marginal of mα on z, conditional on x

being set τ (x). Also, note from (1) that the distribution mα is very simple and can be
computed very fast.

A natural question at this point is what motivates the use qz in the place of pz. We
observe that if our graphs G and G′ were trees, then we would have that qz = pz. That is,
for trees our update rule generates perfect samples from µ′. In some sense, our approach
amounts to approximating the probabilities pz, which are difficult to compute, with those of
the tree, which we can compute very fast. In light of our assumption that our graphs G and
G′ are of high-girth, i.e., locally tree-like, this approximation seems quite natural.

Under certain conditions, our approach yields very good approximations of µ′. The
update rule is accurate in settings where, typically, the set of vertices that change assignment
does not grow “too large”. To be more specific, let Q be the set of vertices that change
configuration during the update, i.e., their configuration under τ is different than that under
σ. Somehow, our update rule runs into trouble when Q induces a subgraph which contains
one of the long cycles of G, or Q reaches u. In this case we consider that the algorithm fails.
That is, our update rule outputs either a configuration τ ∈ AV , or a fail status. We establish
a connection between the accuracy of the update and its failure probability, particularly we
show that the smaller the failure probability the more accurate the algorithm is.

2.1 Accuracy and failure probabilities
We relate the approximation error of the update rule with failure probabilities by exploiting
an interesting property of the update rule which is a reminiscent of the detailed balance
equation from the theory of reversible Markov chains [36]. In what follows, first we describe
the “detailed balance property” of the update and then we show how we use it to study the
accuracy.

In the same setting as before, assume that σ({u,w}) = σ and τ ({u,w}) = τ , for
fixed σ, τ ∈ A{u,w}. The update rule can be viewed as a stochastic process that takes a
configuration that agrees with σ at {u,w} and generates either a new configuration which
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agrees with τ at {u,w}, or fails. There is a natural way of defining the reverse update which
works towards the opposite direction, i.e., takes a configuration which agrees with τ and
either generates a configuration that agrees with σ at {u,w}, or fails.

For any two configuration κ, η ∈ AV , we let Pσ,τ (κ, η) be the probability that on input
κ the update generates η. Similarly we can define Pτ,σ(η, κ) for the reverse update. The
detailed balance equation relates these two probabilities, i.e., it specifies that

µ(κ)Pσ,τ (κ, η) = µ(η)Pτ,σ(η, κ).

Note that, in the equation above, the Gibbs distributions µ are unconditional.
We proceed by demonstrating how we use the detailed balance to get the update error.

Consider the same setting as in the previous paragraphs. Let µ̄ be the distribution of the
output of the update when the input is distributed as in µ(· | {u,w}, σ).

We need to focus on the failure probability of both the update and the reverse update.
Let F(κ) be the failure probability of the update rule on input (fixed) κ. In that respect,
the failure probability is equal to E[F(κ)], where the expectation is w.r.t. to κ which is
distributed as in µ(· | {w, u}, σ). Similarly, let R(η) be the failure probability for the reverse
update on input (fixed) η. The failure probability of the reverse update is E[R(η)], where η

is distributed as in µ(· | {w, u}, τ).
Using the detail balance and an asymptotic independence result between the configuration

of w and u under µ, we get the following: For any η ∈ AV we have that

µ̄(η) =
∑

κ∈AV

µ(κ | {w, v}, σ)Pσ,τ (κ, η) ≈
∑

κ∈AV

µ(η | {w, v}, τ)Pτ,σ(η, κ)

= µ(η | {w, v}, τ)(1 − R(η)). (6)

The first equation is just the definition of µ̄(η). The detailed balance with the asymptotic
independence are used for the derivation with “≈”. The last equation follows from the
observation that summing Pτ,σ(η, κ) over κ ∈ AV is equal to the probability that the reverse
update does not fail, when the input is η.

Another observation that we use is the following one: if the update has a positive failure
probability, then

∑
η µ̄(η) < 1. This holds because µ̄ gives positive measure to the failure

status of the update. That is, we have that E[F(κ)] +
∑

η µ̄(η) = 1. Combining this equality
and (6), standard derivations imply

||µ̄− µ(· | {w, u}, τ)||tv ≈ (1/2)(E[R(η)] + E[F(κ)]).

Essentially the update error is equal to the average of the failure probabilities of the update
and its reverse.

2.2 The failure probability on the random graph
Here we highlight the intuition behind our claim that if SET holds, then the failure probability
is very small.

Consider a setting which is a bit simpler than that we had before. Let µ be a symmetric
Gibbs distribution on G = G(n,m). Consider the spins c, c′ ∈ A such that c ̸= c′. Let σ be
distributed as in µ conditional on σ(u) = c′, for some u ∈ V . We use the update process to
generate a configuration τ which is (approximately) distributed as in µ conditional on that
τ (u) = c. Our focus is on the probability of failure for the update. Particularly, we argue
that if SET holds, then the size of the set of disagreeing vertices in the update process, i.e,
the vertices v such that σ(v) ̸= τ (v), grows subcritically at each iteration.
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Recall that, in the update, the disagreements start from vertex u and iteratively propagate
over the graph. Assume that not too many vertices have been visited in the process. In
iteration t, the process chooses the vertex z which is adjacent to the disagreeing vertex x,
i.e., we already know that τ (x) ̸= σ(x). The probability of disagreement propagating to
z can be estimated by just using (4) and (5). The idea is to combine (4) and (5) with the
randomness of σ and show that the probability of disagreement at z is < 1/d, which would
imply the subcriticality for the update process.

Exploiting the randomness of σ means that at iteration t of the process we only have
exposed the configuration of σ for the vertices which the process has already visited. If the
process hasn’t revealed the configuration of σ for too many vertices, then the marginal of
the configuration at z should be close to me(· | x,σ), where e = {x, z}. This would imply
that the disagreement probability at z is at most

max
c,c′∈A

||me(· | x, c) − me(· | x, c′)||z.

The above observation is quite interesting because the quantity above, i.e., disagreement
probability, is upper bounded by using B.1 in SET. Particularly, B.1 implies that the above
total variation distance is ≤ (1 − δ)/d. Thus, if the above intuition is correct, then we can get
the subcritical growth by exploiting the condition B.1. Unfortunately, with our assumptions
about µ, it too difficult to argue that the marginal probability at z is very close to me(· | x,σ)
in our process.

To this end, we employ the teacher-student model. We consider the pair (G∗,σ∗) from
the teacher-student model. We study the propagation of disagreements for the update
process on the pair (G∗,σ∗). There, it is simpler to argue that the distribution of z is very
close to me(· | x,σ). The condition B.1 still applies here and it implies that the growth of
disagreements in G∗ is subcritical. In turn, this implies that the failure probability for the
specific update is very small. Subsequently, we employ contiguity, i.e., B.2, to argue that if
the probability of failure for the case of (G∗,σ∗) is very small, then the probability of failure
for (G,σ) cannot be much larger.
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