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Abstract
We describe a nearly-linear time algorithm to solve the linear system L1x = b parameterized by the
first Betti number of the complex, where L1 is the 1-Laplacian of a simplicial complex K that is
a subcomplex of a collapsible complex X linearly embedded in R3. Our algorithm generalizes the
work of Black et al. [SODA2022] that solved the same problem but required that K have trivial first
homology. Our algorithm works for complexes K with arbitrary first homology with running time
that is nearly-linear with respect to the size of the complex and polynomial with respect to the first
Betti number. The key to our solver is a new algorithm for computing the Hodge decomposition of
1-chains of K in nearly-linear time. Additionally, our algorithm implies a nearly quadratic solver and
nearly quadratic Hodge decomposition for the 1-Laplacian of any simplicial complex K embedded in
R3, as K can always be expanded to a collapsible embedded complex of quadratic complexity.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Algebraic topology; Theory of computation → Design and analysis of algorithms;
Mathematics of computing → Numerical analysis

Keywords and phrases Computational Topology, Laplacian solvers, Combinatorial Laplacian, Hodge
decomposition, Parameterized Complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.23

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2205.02134

Funding The authors were supported in part by NSF grants CCF-1941086 and CCF-1816442.

Acknowledgements The authors would like to thank the reviewers for their helpful comments,
especially for an observation that improved the dependence on β in the runtime.

1 Introduction

The dth combinatorial Laplacian of a simplicial complex K is a linear operator that acts on
vectors of real numbers associated to the d-simplices of K. The dth combinatorial Laplacian
is defined as

Ld = ∂T
d ∂d + ∂d+1∂T

d+1,

where ∂d : Cd(K) → Cd−1(K) is the dth boundary map of K, and Cd(K) is the dth chain
group of K. The dth Laplacian encodes the incidence of (d − 1)-, d- and (d + 1)-simplices. In
particular, the 0th Laplacian L0 is composed of a constant map ∂T

0 ∂0, and the well-known
graph Laplacian ∂1∂T

1 . The graph Laplacian matrix and its algebraic properties have been
extensively studied in algebraic and spectral graph theory, a topic that has flourished into a
rich field with many applications in computer science such as graph clustering [25,27], graph
sparsification [29], and max flow solvers [9] (see Spielman’s book and references therein [28]).

EA
T

C
S

© Mitchell Black and Amir Nayyeri;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:blackmit@oregonstate.edu
mailto:nayyeria@eecs.oregonstate.edu
https://doi.org/10.4230/LIPIcs.ICALP.2022.23
https://arxiv.org/abs/2205.02134
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Hodge Decomposition and General Laplacian Solvers

A highlight of recent advances in algorithmic spectral graph theory is nearly-linear time
solvers for linear systems on the graph Laplacian that emerged as a result of decades of
research [2,4,11,19,21–23,30,34]. These results imply nearly-linear time solvers for the more
general class of symmetric diagonally dominant matrices. They also have triggered research
to find out which classes of linear systems admit nearly-linear time solvers [24]. Moreover,
these solvers are used for different application areas such as approximation algorithm design
and numerical analysis [5, 9].

Recent work has attempted to extend the success of graph Laplacian solvers to higher
dimensional Laplacians. Cohen et al. initiated this line of work by introducing a nearly-linear
solver for the 1-Laplacian of collapsible complexes embedded in R3 [10]. Black et al. continued
this work by considering complexes with trivial first homology that were subcomplexes of
collapsible complexes embedded in R3 [3]. The solver of Black et al. implies a nearly quadratic
solver for any complex with trivial first homology embedded in R3; they show that a complex
embedded in R3 can be extended to a collapsible embedded complex with at most quadratic
complexity.

In this paper, we extend the work of Cohen et al. and Black et al. to any subcomplex of a
collapsible complex embedded in R3, regardless of the rank of its first homology group. The
running time of our solver is nearly-linear with respect to the size of the collapsible complex,
and polynomial with respect to the rank of its first homology group. The main tool in our
paper is a new algorithm for computing the Hodge Decomposition of a 1-chain.

Computing the Hodge decomposition is a problem of independent interest since the Hodge
decomposition has found a myriad of applications in topological data analysis, numerical
analysis, and computer graphics among other areas [1, 8, 12, 13, 16, 20, 32, 33, 35]. The Hodge
decomposition can be computed exactly in O(nω) time by solving a constant number of
systems of linear equations, where ω is the matrix multiplication constant. (Approximately)
computing the Hodge decomposition in nearly-linear time has been an open question with
many possible applications.

Cohen et al. describe nearly-linear projection operators into the coboundary space and
cycle space, which implies Hodge decomposition for complexes with trivial homology as the
boundary and cycle spaces are identical in this case. In this paper, we describe projection
operators into the boundary and harmonic spaces for an arbitrary subcomplex of a collapsible
simplicial complex embedded in R3. Our boundary projection operator is key to our solver.
Our results imply 1-Laplacian solvers and projection operators for any simplicial complex
embedded in R3 that are quadratic in the size of the complex and polynomial in the first
Betti number; these follow from the fact that any complex in R3 can be extended to a
collapsible complex in R3 with a quadratic number of simplices [3, Corollary 3.3].

While this paper presents a positive result on extending graph Laplacian solvers to a
more general class of Laplacians, a recent work by Ding et al. [15] shows that solving linear
equations in arbitrary 1-Laplacians (and therefore arbitrary d-Laplacians) is as hard as
solving arbitrary sparse linear equations with bounded integer entries and bounded condition
number. An interesting open question is whether or not there exist fast solvers for other
classes of simplicial complexes.

1.1 Our Results
Let X be a collapsible simplicial complex with a known collapsing sequence embedded in R3,
and let K be a subcomplex of X. The first result of this paper is a 1-Laplacian solver for K.
Recall that L1 = ∂2∂T

2 + ∂T
1 ∂1. We define Lup

1 = ∂2∂T
2 and Ldown

1 = ∂T
1 ∂1. We refer to Lup

1
and Ldown

1 as the up-Laplacian and down-Laplacian, respectively.
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▶ Theorem 1. Let X be a collapsible simplicial complex with a known collapsing sequence
linearly embedded in R3, and let K ⊂ X be a subcomplex of X. For any ε > 0, there is an
operator LaplacianSolver(X, K, ε) such that

(1 − ε)(L1[K])+ ⪯ LaplacianSolver(X, K, ε) ⪯ (L1[K])+.

where (L1[K])+ is the pseudoinverse of the 1-Laplacian L1[K]. Fur-
ther, for any x ∈ C1, LaplacianSolver(X, K, ε) · x can be computed in
Õ

(
β3 · n · log n · log(n/(λmin(K) · λmin(X) · ε))

) 1 time, where n is the total number
of simplices in X, λmin(K) and λmin(X) are the smallest nonzero eigenvalues of Lup

1 (K)
and Lup

1 (X) respectively, and β is the rank of the first homology group of K.

This result is a generalization of Theorem 1.1 of Black et al. [3] that requires K to
have trivial first homology. Their running time depends on log(nκ/ε), with κ being the
condition number of Lup

1 (K) within the boundary space. The condition number is defined
κ = λmax(K)/λmin(K), where λmax(K) is the largest eigenvalue of Lup

1 (K), and λmin(K) is
the smallest nonzero eigenvalue of Lup

1 (K). We observe that λmax(K) is polynomially bounded
with respect to the size of the complex (Lemma 29 in the full paper.) Therefore, the log
dependence of the running time of Black et al.’s solver can be simplified to log(n/(λmin(K)·ε)).
The running time of Theorem 1, in contrast, has an extra dependence to λmin(X) within the
log, in addition to a polynomial dependence to β. For the special case that β = 0, we can
eliminate the dependence on λmin(X) with a more careful analysis and match the running
time of Black et al.

The new ingredient that makes Theorem 1 possible is an approximate projection operator
onto the boundary space. Lacking this operator, the previous papers had to assume that K

has trivial homology and use a projection into the cycle space instead.

▶ Lemma 2. Let K be a simplicial complex linearly embedded in a collapsible complex X

with a known collapsing sequence that is embedded in R3, and let Πbd be the orthogonal
projection operator into the space of boundary 1-chains in K. For any ε > 0, there is an
operator Π̃bd(ε), such that

(1 − ε)Πbd ⪯ Π̃bd(ε) ⪯ (1 + ε)Πbd.

Further, for any 1-chain x, Π̃bd(ε) · x can be computed in Õ(β3 · n · log n · log( n
λmin(X)·ε )) time,

where β is the rank of the first homology group of K, n is the total number of simplices in
X, and λmin(X) is the smallest nonzero eigenvalue of Lup

1 (X).

A key technical challenge to achieve our projection operator onto the boundary space
is computing a projection into the space of harmonic chains, formalized in part (ii) of the
following lemma. Note that our approximation guarantee for projection into the harmonic
space is weaker than the one for projection into the boundary space (more on this in the
overview).

▶ Lemma 3. Let K be a subcomplex of a collapsible simplicial complex X with a known
collapsing sequence that is linearly embedded in R3. Let β be the rank of the first homology
group of K, n be the total number of simplices in X, and λmin(X) be the smallest nonzero
eigenvalue of Lup

1 (X).

1 The Õ(·) notations hides a factor of log log n.
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(i) For any ε > 0, there is an Õ(β2 · n · log n · log( n
λmin(X)·ε )) time algorithm to compute an

orthonormal set of vectors {g̃1, . . . , g̃β} such that there exists an orthonormal harmonic
basis {g1, . . . , gβ} with ∥gi − g̃i∥ ≤ ε for all 1 ≤ i ≤ β.

(ii) For any ε > 0, there exists a symmetric matrix Π̃hr(ε) such that,

Πhr − εI ⪯ Π̃hr(ε) ⪯ Πhr + εI,

where Πhr is the orthogonal projection into the harmonic space. Moreover, for any
1-chain x, Π̃hr(ε) · x can be computed in Õ(β2 · n · log n · log( n

λmin(X)·ε )) time.

Our projection operators into the harmonic and boundary space, along with the projection
operator of Cohen et al. [10] into the coboundary space, give all the projection operators
needed to compute the Hodge decomposition of 1-chains in K.

Our harmonic projection operator is built using an orthonormal approximate harmonic
basis (part (i) of Lemma 3). Dey [14] describes a nearly-linear time algorithm for computing a
homology basis for a complex linearly embedded in R3. Black et al. [3] describe a nearly-linear
time algorithm for computing a cohomology basis for subcomplexes of collapsible complexes
embedded in R3. Our harmonic basis, though approximate, can be viewed as a complement
to these two results.

1.2 Paper organization
In addition to this introduction, the main body of this paper is a background and overview
section. To simplify the presentation, the bulk of the technical details are left for the full
version of this paper, and the overview provides a high-level description of our approaches as
well as the technical challenges and contribution of this paper. In the overview, we included
references to the technical lemmas to enable easy access to the full paper.

The background section introduces standard definitions of the concepts used in this paper.
We hope this section provides easy lookup for the reader while reading the overview section
as well as the technical part of the paper.

2 Background

In this section, we review basic definitions from linear algebra and algebraic and combinatorial
topology that are used in this paper; see references [7, 17,18,31] for further background.

2.1 Linear Algebra
Span, Basis. Let V = {v1, . . . , vk} be a set of vectors in Rn. The span of V , denoted
span(V ), is the subspace of Rn of all linear combinations of V . In particular, V spans Rn if
any vector in Rn is a linear combination of the vectors in V . We say that V is a basis for
its span if the dimension of its span equals the cardinality of V .

Linear map, projection, inverse. Let A : Rn → Rm be a linear map, represented by an
m × n matrix. Typically, we don’t make a distinction between a linear map and its matrix
representation and denote both as A. The kernel of A is ker(A) := {x ∈ Rn : Ax = 0}, and
the image of A is im(A) = {Ax : x ∈ Rm}. The rank of a linear map is the dimension of
its image.

We say that U and V orthogonally decompose W , denoted W = U ⊕ V , if (i) any
vector in U is orthogonal to any vector in V , and (ii) any vector in x ∈ W is a unique sum
of vectors in xU ∈ U and xV ∈ V , i.e. x = xU + xV . The fundamental theorem of linear
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algebra states that Rn = im(AT ) ⊕ ker(A) and Rm = im(A) ⊕ ker(AT ), where AT is the
transpose of A obtained by flipping A over its diagonal. In particular, if A : Rn → Rn is
symmetric (i.e., A = AT ), then Rn = im(A) ⊕ ker(A).

A linear map A : Rn → Rn is a projection if it is the identity for the vectors in its image,
or equivalently, AA = A. The map A is an orthogonal projection if it maps each point
of Rn to its closest point in im(A), or equivalently, AT = A = AA. Note for any subspace
U of Rn there is a unique orthogonal projection into U , denoted ΠU . If {u1, . . . , uk} is an
orthonormal basis for U , the orthogonal projection into U is the linear map ΠU =

∑k
i=1 uiu

T
i .

If a linear map A : Rn → Rm is bijective, it has a well-defined inverse denoted A−1 :
Rm → Rn where Ax = b ⇐⇒ A−1b = x. More generally, the pseudoinverse of A is
the unique linear map A+ : Rm → Rn with the following properties: (i) AA+A = A, (ii)
A+AA+ = A+, (iii) (AA+)T = AA+, and (iv) (A+A)T = A+A. Admittedly, the definition
of the pseudoinverse is not very intuitive. A more intuitive description is that A+ is the
unique linear map with the following properties: (1) A+ maps any vector y ∈ im(A) to the
unique vector x ∈ im(AT ) such that Ax = y, and (2) A+ maps any vector y ∈ ker(AT ) to 0.
While it is not true in general that (A + B)+ = B+ + A+ for linear maps A and B, this is
true if AT B = BT A = 0; see Campbell [7], Theorem 3.1.1.

Matrix norm, singular values, Loewner order. A symmetric matrix A is positive semi-
definite if xT Ax ≥ 0 for each x ∈ Rn. The Loewner Order is a partial order on the set
of n × n symmetric matrices. For symmetric matrices A and B, we say A ⪯ B if B − A is
positive semidefinite.

Let x ∈ Rn. Let p be a positive integer. The p-norm of x is ∥x∥p = (
∑n

i=1 |x[i]|p)
1
p . We

use the 1-norm and 2-norm in this paper. An important fact we will use throughout this paper
is that ∥x∥2 ≤ ∥x∥1 ≤

√
n∥x∥2. For any norm ∥·∥ on Rn, there is an accompanying operator

norm of a matrix A defined ∥A∥ = maxx:∥x∥=1∥Ax∥, or equivalently, ∥A∥ = max
x ̸=0

(∥Ax∥/∥x∥).
Unless otherwise specified, all norms in this paper will be the 2-norm.

The singular value decomposition of A : Rn → Rm for m ≥ n (resp. m ≤ n) is a
set of n (resp. m) orthornomal vectors {u1, . . . , un} ⊂ Rm called left singular vectors,
n (resp. m) orthornomal vectors {v1, . . . , vn} ⊂ Rn called right singular vectors, and n

(resp m) real numbers {σ1, . . . , σn} ⊂ R called singular values such that A =
∑n

i=1 σiuiv
T
i .

The condition number of a linear map A : Rn → Rn is κ(A) = |σmax(A)|/|σmin(A)|, where
σmax(A) and σmin(A) are the largest and smallest non-zero singular values of A.

The eigenvectors and eigenvalues of a matrix A : Rn → Rn are n vectors {v1, . . . , vn} ⊂
Rn and n real numbers {λ1, . . . , λn} such that Avi = λivi. The singular values and right
singular vectors (resp. left singular values) of a matrix A : Rn → Rn are the square roots
of the eigenvalues and eigenvectors of AT A (resp. AAT ). If a matrix A is symmetric, the
eigenvectors of A are orthogonal, and the eigenvectors and eigenvalues of A are the left and
right singular vectors and the singular values.

Determinant, Cramer’s rule, unimodularity. For any 1 ≤ i ≤ n, the determinant of
an n × n matrix A = [ai,j ]1≤i,j≤n can be defined via its Laplace expansion as det(A) =∑n

j=1
(
(−1)i+j · ai,j · det(Ai,j)

)
, where Ai,j is the (n − 1) × (n − 1) matrix obtained by

removing the ith row and jth column of A. It is well known that det(A) ̸= 0 if and only if
A is bijective. In that case, Cramer’s rule give an explicit formula for the solution of the
linear system Ax = b, which is x[i] = det(Ai)/ det(A) where Ai is the matrix obtained by
replacing the ith column of A with b.

ICALP 2022



23:6 Hodge Decomposition and General Laplacian Solvers

An n × n matrix A is unimodular if det(A) ∈ {−1, +1}. By Cramer’s rule, Ax = b

has an integer solution if A is unimodular and A and b have integer coefficients. An n × m

matrix B is totally unimodular if for any square submatrix A of B, det(A) ∈ {−1, 0, +1}.
The 1-boundary matrix of a simplicial complex (defined below) is totally unimodular [26].

2.2 Topology
Simplicial complexes. A simplicial complex K is a set of finite sets such that if τ ∈ K

and σ ⊂ τ , then σ ∈ K. A subcomplex of K is a subset L ⊂ K such that L is a simplicial
complex. The vertices of K is the set ∪σ∈Kσ. We assume there is a fixed but arbitrary
order (v1, . . . , vn) on the vertices of K.

An element σ ∈ K with |σ| = d + 1 is a d-simplex. A 0-simplex is a vertex, a 1-simplex
is an edge, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. The set of all
d-simplices in K is denoted Kd. For two simplices τ ⊂ σ, we say that τ is a face of σ.

Hodge decomposition, homology, cohomology. The dth chain group of a simplicial
complex K is the vector space Cd(K) over R with orthonormal basis Kd, and an element of
Cd(K) is a d-chain. The dth boundary map is the linear map ∂d : Cd(K) → Cd−1(K)
defined ∂dσ =

∑d
i=0(−1)i(σ \ {vki

}) for each simplex σ = {vk0 , . . . , vkd
} ∈ Kd, where we

assume vki < vkj for i < j. The dth coboundary map is ∂T
d+1 : Cd(K) → Cd+1(K).

Elements of ker ∂d (resp. ker ∂T
d+1) are cycles (resp. cocyles), and elements of im ∂d+1 (resp.

im ∂T
d ) are boundaries or null-homologous cycles (resp. coboundaries.) Two cycles

(resp. cocycles) γ1 and γ2 are homologous (resp. cohomologous) if their difference γ1 − γ2
is a boundary (resp. coboundary.)

The dth Laplacian is the linear map Ld : Cd(K) → Cd(K) defined Ld = ∂T
d ∂d+∂d+1∂T

d+1.
The dth up-Laplacian is the linear map Lup

d = ∂d+1∂T
d+1, and the dth down-Laplacian is

the linear map Ldown
d = ∂T

d ∂d.
A key fact of algebraic topology is that ∂d∂d+1 = 0, hence im ∂d+1 ⊂ ker ∂d, and

im ∂T
d ⊂ ker ∂T

d+1. The dth homology group is the quotient group Hd(K) = ker ∂d/ im ∂d+1,
and the dth cohomology group is the quotient group Hd(K) = ker ∂T

d+1/ im ∂T
d . Since

im ∂T
d ⊕ker ∂d and im ∂d+1 ⊕ker ∂T

d+1 are two orthogonal decompositions of the d-chain space,
the dth homology group and the dth cohomology group have the same rank, which is the
dth Betti number of the complex, denoted βd(K). We say two cycles are homologous
(resp. cohomologous) if they are in the same homology (resp. cohomology) class, or
equivalently, if their difference is a boundary (resp. coboundary.)

The Hodge Decomposition is the orthogonal decomposition of the dth chain group into
Cd(K) = im(∂d+1) ⊕ ker(Ld) ⊕ im(∂T

d ). The subspace ker(Ld) are the harmonic chains.
Thus, any chain x ∈ Cd(K) can be uniquely written as the sum x = xbd + xhr + xcbd where
xbd ∈ im(∂d+1), xhr ∈ ker(Ld), and xcbd ∈ im(∂T

d ).
A d-boundary basis, d-coboundary basis and d-harmonic basis are bases for the

boundary, coboundary and harmonic spaces. A d-homology basis is a maximal set of cycles
such that no linear combination of these cycles is a boundary. Similarly, a d-cohomology
basis is a maximal set of cocycles such that no linear combination of these cocycles is a
coboundary. We have the following fact.

▶ Fact 4. A set of cycles (resp. cocycles) is a homology (resp. cohomology) basis if and only
if their projection into the harmonic space is a harmonic basis.

Two cycles (resp. cocycles) are homologous (resp. cohomologous) if they have the same
harmonic part, as then their difference is a boundary (resp. coboundary). Accordingly,
the previous fact implies that for any cycle (resp. cocycle) x and any homology basis
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(resp. cohomology basis) Γ, there is a unique linear combination of the elements of Γ that is
homologous (resp. cohomologous) to x; this is the linear combination of Γ with the same
harmonic component as x.

A useful property of cohomology bases is they can be used to tell when two cycles are
homologous, as described by the following fact.

▶ Fact 5 (Busaryev et al. [6]). Let x and y be cycles (resp. cocycles), and let P be a cohomology
basis (resp. homology basis.) Then y is homologous (resp. cohomologous) to x if and only if
x · p = y · p for all p ∈ P .

Collapsibility. Let K be a simplicial complex, σ a d-simplex of K, and τ a (d−1)-simplex of
K that is a face of σ. If τ is not the face of any other simplex, we say that K collapses into
K\{σ, τ}; we refer to (σ, τ) as a collapse pair. Moreover, we say that a complex collapses
to itself. Inductively, we say that a complex K collapses into a complex K ′ if there is a
complex K ′′ such that K collapses to K ′′ and K ′′ collapses to K ′. We say that a complex
K is collapsible if it collapses to a single vertex.

When a complex K collapses to a complex K ′, we obtain a sequence of complexes
K = K0 ⊃ K1 ⊃ . . . ⊃ Kt = K ′, where for each 1 ≤ i ≤ t, Ki can be obtained from Ki−1
by removing one collapse pair. We refer to this sequence as a collapsing sequence. The
complexes K and K ′ are homotopy equivalent if one collapses to the other, thus, K and K ′

have isomorphic homology group. In particular, a collapsible complex has trivial homology
groups in every nonzero dimension.

Embeddability. A d-dimensional simplicial complex K is embedded if K ⊂ R for R a
triangulation of Rd+1. Furthermore, K is linearly embedded if there is a homeomorphism
from the underlying space |R| to Rd+1 that is linear on each simplex, i.e. each 1-simplex
is mapped to a line segment, each 2-simplex is mapped to a triangle, etc. All embedded
complexes in this paper will be linearly embedded.

We will make use of the dual graph of an embedded complex. Informally, the dual graph
of an embedded complex is the graph K∗ with vertices that are the connected components of
R \ K and edges between two vertices if there is a d-simplex in K incident to both connected
components. Alternatively, the dual graph can be defined with vertices corresponding to a
generating set of d-cycles of K. For this construction, see the definition of Lefschetz set in
the paper [3].

3 Overview

Let X be a collapsible simplicial complex embedded in R3, and let K ⊆ X be a subcomplex
of X. We study two closely related problems: (i) computing the Hodge decomposition of
the 1-chains of K, and (ii) solving a linear system L1x = b, where L1 is the 1-Laplacian
of K (in the overview section, all the operators are with respect to K unless mentioned
otherwise.) These two problems are related, as our approximate Laplacian solver uses an
approximate Hodge decomposition of the input vector x. More generally, understanding
the Hodge decomposition is key to understanding this paper as many proofs rely on some
property of the Hodge decomposition. Therefore, we begin our overview with an introduction
to the Hodge decomposition.

ICALP 2022
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3.1 The Hodge Decomposition

The Hodge decomposition is a decomposition of the chain group Cd(K) in terms of the
kernels and images of the boundary operators ∂d and ∂d+1 and their transposes. Specifically,
the problems in this paper consider the first chain group C1(K), the two boundary operators
∂2 and ∂1, and their corresponding coboundary operators ∂T

2 and ∂T
1 . The boundary operator

∂2 maps each (oriented) triangle to the edges in its boundary; similarly, ∂1 maps each edge
to its two endpoints. A key fact is that ∂1∂2 = 0, or equivalently, im(∂2) ⊆ ker(∂1). This
implies im(∂2) is orthogonal to im(∂T

1 ). The former subspace im(∂2) is called the boundary
subspace, and the latter subspace im(∂T

1 ) is called the coboundary subspace. If K has
trivial 1-homology, then im(∂2) = ker(∂1), and the boundary and coboundary spaces give a
full orthogonal decomposition of C1(K), called the Helmholtz decomposition. Otherwise,
there is a third subspace orthogonal to both the boundary and coboundary subspaces, called
the harmonic subspace. The harmonic subspace is exactly ker(L1) = ker(∂1) ∩ ker(∂T

2 ).
The boundary, coboundary, and harmonic subspaces give a full orthogonal decomposition

of C1(K) called the Hodge decomposition, which generalizes the Helmholtz decomposition.
Thus, we can express any 1-chain x as x = xcbd + xbd + xhr, where xcbd, xbd and xhr are
the coboundary, boundary and harmonic part of x and are pairwise orthogonal. The chains
xbd + xhr and xcbd + xhr are called the cyclic and cocyclic parts of x respectively. Similarly,
the space spanned by harmonic and boundary chains is called the cycle space, and the
space spanned by harmonic and coboundary chains is called the cocycle space. It is implied
by ∂1∂2 = 0 that the cycle space and cocycle space are the kernels of ∂1 and ∂T

2 , respectively.
The following figure is an illustration of the Hodge decomposition. Boundary, coboundary,
harmonic, cycle, and cocycle spaces are shown using the abbreviations bd, cbd, hr, cyc, and
cocyc respectively.

To compute the Hodge decomposition, one seeks orthogonal projection operators into
the coboundary, boundary and harmonic subspaces. Let Πcbd, Πbd, and Πhr denote these
projection operators. Cohen et al. show that for any 1-chain x, its projection into the
coboundary space, Πcbdx, and cycle space, Πcycx, can be approximated quickly with operators
Π̃cbd and Π̃cyc. These projection operators are a key ingredient of their 1-Laplacian solver, as
well as the more recent 1-Laplacian solver described by Black et al.; however, both papers are
restricted to cases where the first homology group H1(K) = 0. In this paper, we show that for
any x, its projection into the boundary space, Πbdx, can also be approximated quickly. This
new projection operator will allow us to generalize the 1-Laplacian solver of Black et al. to
complexes with arbitrary first homology. We also give an approximate projection operator
into the harmonic space, but our approximation guarantee for this projection operator is
weaker (more below).
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3.2 Laplacian Solvers
The 1-Laplacian matrix is defined L1 = ∂2∂T

2 + ∂T
1 ∂1. To solve a linear system L1x = b, one

seeks to approximate L+
1 , the pseudoinverse of L1. As the images of ∂2∂T

2 and ∂T
1 ∂1 are

orthogonal, then L+
1 = (∂2∂T

2 )+ + (∂T
1 ∂1)+ (see Campbell [7, Theorem 3.1.1]). Therefore,

one can approximate L+
1 by approximating (∂2∂T

2 )+ and (∂T
1 ∂1)+ individually. Computing

(∂T
1 ∂1)+ is purely a graph problem as ∂1 is only defined with respect to the vertices and edges of

a complex. Cohen et al. show how to approximate (∂T
1 ∂1)+ for general complexes [10, Lemma

3.2]. Approximating (∂2∂T
2 )+ is a more challenging problem that requires taking into account

the relationship between triangles and the edges. Our algorithm for approximating (∂2∂T
2 )+

relies on our new boundary projection operator, the collapsibility of X, and the embedding
of X in R3.

Cohen et al. show how to approximate (∂2∂T
2 )+ for collapsible complexes embedded in

R3. Black et al. generalize their work to obtain an approximate solver for a subcomplex of
a collapsible complex in R3 provided the subcomplex has trivial homology. Their solver is
based on the following general lemma regarding approximations of (BBT )+ for a general
matrix B.

▶ Lemma 6 (Black et al. [3], Lemma 4.1). Let B be a linear operator, let 0 ≤ ε < 1, and
let Π̃im(B) and Π̃ker⊥(B) be symmetric matrices such that (1 − ε)Πim(B) ⪯ Π̃im(B) ⪯ Πim(B),
and (1 − ε)Πker⊥(B) ⪯ Π̃ker⊥(B) ⪯ Πker⊥(B). Also, let U be a linear map such that for any
y ∈ im(B), BUy = y. We have

(1 − (2κ + 1)ε)(BBT )+ ⪯ Π̃im(B)U
T Π̃ker⊥(B)UΠ̃im(B) ⪯ (1 + κε)(BBT )+,

where κ is the condition number of BBT within the image of B.

This lemma shows the following linear operators are sufficient for approximating (∂2∂T
2 )+.

(i) An operator U that for 1-boundary y ∈ im(∂2) returns a 2-chain x = Uy such that
∂2x = y. For other vectors z /∈ im(∂2), U can return anything as long as U is still
linear.

(ii) An approximate orthogonal projection operator into im(∂T
2 ), the coboundary space of

2-chains.
(iii) An approximate orthogonal projection operator into im(∂2), the boundary space of

1-chains.

Black et al. describe an algorithm for computing U that uses the collapsibility and
embedding of the supercomplex X. Cohen et al. show that the 2-coboundary space of
embedded complexes is dual to the 1-cycle space of the dual graph, hence projection into
this space can be approximated using Π̃cyc. Finally, lacking an approximate projection into
the boundary space of 1-chains, they needed to assume that their complex has trivial first
homology (i.e. that im(∂2) = ker(∂1)) so that they can instead use the projection operator
into the cycle space of Cohen et al. The boundary projection operator described in this
paper allow us to remove that assumption to obtain a solver for any subcomplex K of X.
The running time of our new solver polynomially depends on the rank of the homology group
and nearly-linearly depends on the size of the complex. We give a complete analysis of our
solver in Appendix D of the full paper.

In the rest of this section, we sketch the high level ideas for computing our approximate
projection operators. But before we can do that, we need to explain the two notions of
approximations that are used in this paper.
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3.3 Loewner order approximation
We use the Loewner order on positive semidefinite matrices to specify the approximation
quality of our projection and pseudoinverse operators. We see two types of approximation
guarantees in this paper for an operator A: input-relative error bounds of the form
−εI ⪯ A − Ã ⪯ εI and output-relative error bounds of the form −εA ⪯ A − Ã ⪯ εA.
Note for any vector x, an input relative error bound implies ∥(A − Ã)x∥ ≤ ε∥x∥ – the
error is bounded relative to the size of the input x – while an output-relative error bound
implies ∥(A − Ã)x∥ ≤ ε∥Ax∥ – the error is bounded relative to the size of the output
Ax. An approximate operator with a small input-relative error can have arbitrarily large
output-relative error, for example when x is in the kernel of A. Further, output-relative error
bounds are stronger if the norm of ∥A∥ is at most one, i.e. ∥Ax∥ ≤ ∥x∥, which is the case for
the orthogonal projection operators of the Hodge decomposition.

We achieve an output-relative error bound for our approximation of (L1[K])+. Further, we
achieve an output-relative error bound for our approximation Π̃bd of Πbd, but an input-error
bound for our approximation Π̃hr of Πhr:

−εI ⪯ −εΠbd ⪯ Πbd − Π̃bd(ε) ⪯ εΠbd ⪯ εI, (1)

and

−εI ⪯ Πhr − Π̃hr(ε) ⪯ εI. (2)

Previously, Cohen et al. had shown approximation operators Π̃cbd and Π̃cyc for projecting
into the coboundary and cycle spaces with output-relative error bounds:

−εI ⪯ −εΠcbd ⪯ Πcbd − Π̃cbd(ε) ⪯ εΠcbd ⪯ εI, (3)

and

−εI ⪯ −εΠcyc ⪯ Πcyc − Π̃cyc(ε) ⪯ εΠcyc ⪯ εI. (4)

We use these operators multiple times in our algorithms. For simplification, we drop the
explicit mention of the parameter ε when it is clear from the context.

3.4 Projection operators
We first describe our algorithm for computing Π̃hr (an overview of Appendices A and B of
the full version of the paper). Based on that and the operator Π̃cbd of Equation (3), we show
how to compute Π̃bd (an overview of Appendix C of the full version of the paper).

3.4.1 Harmonic projection
We compute our approximate harmonic projection operator Π̃hr by computing an approximate
orthonormal basis G̃ = {g̃1, . . . , g̃β} of the harmonic space. We then define the approximate
projection into the harmonic space to be the linear map Π̃hr =

∑β
i=1 g̃ig̃i

T .
To compute G̃, our algorithm starts with a cohomology basis P = {p1, . . . , pβ}; the

algorithm for computing P is given at the end of this section. From P , it computes
H̃ = {h̃1, . . . , h̃β}, where h̃i = Π̃cycpi and Π̃cyc is the projection operator of Equation (4).
The set H̃ is an approximate harmonic basis, but it is not orthonormal. Next, we normalize
H̃ to obtain Ñ = {h̃1/∥h̃1∥, . . . , h̃β/∥h̃β∥}. Finally, we run Gram-Schmidt on Ñ to obtain G̃.
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To see why G̃ is an approximate basis for the harmonic space, let us consider a much
easier analysis assuming we can use the exact projection in the cycle space Πcyc instead
of the approximate projection Π̃cyc. Instead of H̃, Ñ and G̃, let H = {h1, . . . , hβ}, N =
{h1/∥h1∥, . . . , hβ/∥hβ∥} and G = {g1, . . . , gβ} be the sets of vectors we obtain when we use
the exact projection operator. In that case, hi = Πcycpi is the harmonic part of pi; this is
because pi is a cocycle, so projecting it into the cycle space is the same as projecting it into
the harmonic space. It follows from Fact 4 in Section 2 that G is an exact orthonormal basis
of the harmonic space, thus it defines an exact projection operator into the harmonic space.

In the real scenario where we work with the approximate projection operator Π̃cyc, two
undesirable things can happen. First, we can no longer guarantee that the vectors in Ñ are
purely harmonic, as the error introduced by the approximate operator Π̃cyc may be part
boundary. However, this is not an issue, as we can make the boundary components of Ñ

sufficiently small by approximating Π̃cyc more accurately. Second, and more importantly for
our application, the spaces spanned by N and Ñ can be very different, even if the vectors
N and Ñ are pairwise close. As an example, imagine that we have two pairs of vectors
N = {η1, η2} and Ñ = {η̃1, η̃2} such that ∥ηi − η̃i∥ < ε for i = 1, 2. We might guess that the
two spaces spanned by N and Ñ are similar as the vector are close, but if η1 and η2 are also
close, then the two vectors spaces can be drastically different. Figure 1 gives an illustration
of this, where N is the set of blue vectors and Ñ is the set of red vectors. As illustrated in
the figure, the space spanned by N and the space spanned by Ñ can be drastically different.

Figure 1 Pairwise closeness between a set of vectors N and Ñ is not enough to guarantee the
spaces spanned by N and Ñ are close! The red and blue vectors are pairwise close, but the spaces
they span are very different.

We can remedy this if we approximate Ñ within a sufficiently small error ε of N , but this
new error bound needs to take into account the similarity of the vectors in N . The question
is how accurately we need to approximate Π̃cyc to obtain a sufficently small approximation
error for Ñ . To answer this question, we define a measure of linear independence of N called
its δ-independence. Formally, we say that N is δ-independent if each vector hi/∥hi∥ ∈ N

is at distance at least δ from the span of the other vectors of N . Intuitively, larger δ means
N is more independent, in the sense that the elements are well-separated. The smaller the δ,
the more accurately we need to approximate Π̃cyc to ensure that N and Ñ will span similar
spaces. This intuition is summarized by the following lemma, showing the error in projection
into N as a function of δ, ε, and β, where ε bounds the difference between N and Ñ .
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▶ Corollary 7. Let 0 < δ < 1, and let 0 < ε <
(

δ
8β

)β

. Let N = {η1, . . . , ηβ} be a set of

δ-linearly independent unit vectors, and let Ñ = {η̃1, . . . , η̃β} be a set of unit vectors such that
∥ηi − η̃i∥ < ε. Let G = {g1, . . . , gβ} be the orthonormal basis that is the output of running
Gram-Schmidt on N , and let G̃ = {g̃1, . . . , g̃β} be the output of running Gram-Schmidt on

Ñ . Then
∥∥∥Πspan N − Πspan Ñ

∥∥∥ =
∥∥∥∑β

i=1 gig
T
i − g̃ig̃

T
i

∥∥∥ < 2 · β ·
(

8β
δ

)β

ε.

The difficulty here is actually determining a lower bound on the δ-independence of N .
We have access to the cohomology basis P , but we need the (normalized) harmonic parts
of P to be δ-independent. Note that P can be composed of vectors that are very strongly
independent, yet their harmonic parts may only be weakly independent, for example, when
the vectors of P have similar harmonic parts but very different coboundary parts.

We show that if P is composed of integer vectors with maximum length pmax, then P

being linearly independent implies that H is δ-independent for a δ ∼ 1/(pmax · n1)β , where
n1 is the number of edges in K. In addition to the properties of P , our proof of Lemma 8
relies on the total unimodularity of ∂1.

▶ Lemma 8. Let K be a simplicial complex with n1 edges such that H1(K) = β. Let
{p1, . . . , pβ} be a 1-cohomology basis for K such that each pi is an integer vector with
maximum Euclidean norm pmax. Let hi be the harmonic part of pi for 1 ≤ i ≤ β. Then

(i) ∥hi∥ ≥ 1/(√n1 · pmax)β for each 1 ≤ i ≤ β, and
(ii) {h1/∥h1∥, . . . , hβ/∥hβ∥} is

(
1/(√n1 · pmax)β

)
-independent.

Computing a Cohomology Basis. The question remains of how to find the cohomology
basis P . For this, we use an algorithm on Black et al. Dey [14] describes a nearly-linear
time algorithm for computing a homology basis composed of vectors with coordinates in
{−1, 0, +1}. Black et al. [3] describe an operator C(X, K) that when applied to a homology
basis returns a cohomology basis. We use the cohomology basis P obtained by applying the
operator C to Dey’s homology basis.

▶ Lemma 9 (Dey, Lemma [14]). For a 2-dimensional simplicial complex K linearly embedded
in R3, there exists an algorithm computing a basis for H1(K,R) in O(n log n + nβ1) time,
where n is the complexity of K. Further, the basis is composed of vectors with all coordinates
from {−1, 0, +1}.

▶ Lemma 10 (Black et al., Lemma 1.1 [3]). Let X be a collapsible simplicial complex in R3,
and let K ⊂ X be a subcomplex of X. Let β be the rank of H1(K) and let n be the total
number of simplices of X. Let Γ = {γ1, . . . , γβ} be a homology basis for K. There is a linear
operator C(X, K) such that the set CΓ = {C(X, K) · γ1, . . . , C(X, K) · γβ} is a cohomology
basis for K. Furthermore, CΓ can be computed in O(β · n) time.

While Black et al. introduced the algorithm for computing the cohomology basis P , we
bound the length of the vectors in P . We bound the length of P by combining a bound on
the length of the homology basis with the following bound on the operator norm ∥C(X, K)∥.

▶ Lemma 11. There is a constant α such that ∥C(X, K)∥ ≤ α ·n2
1n4

2/ (λmin(Lup
1 [X])) , where

λmin(L1(X)) is the smallest non-zero eigenvalue of L1(X) and n1 and n2 are the number of
edges and triangles in X respectively.

Note that the vectors in Dey’s homology basis have bounded length as they have coefficients
{−1, 0, 1}. By combining this observation, Lemma 8, and Lemma 11, we prove that the
harmonic part of P are δ-independent for an appropriate value of δ. This is summarized in
the following corollary.
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▶ Corollary 12. Let X be a collapsible complex embedded in R3 with a known collapsing
sequence and let K ⊂ X be a subcomplex of X. Let β be the rank of H1(K) and let n be the
total number of simplices in X. There is an O(n log n + βn) time algorithm for computing a
cohomology basis {p1, . . . , pβ} of K with harmonic parts {h1, . . . , hβ} such that

(i) each hi has length at least δ, and
(ii) the set {h1/∥h1∥, . . . , hβ/∥hβ∥} is δ-linearly independent,

where δ = (λmin(Lup
2 (X))/(α · n3

1n4
2))β for a constant α.

Passing this cohomology basis P to the algorithm above, we obtain H̃, Ñ , G̃, Π̃hr as
desired. The exact approximation quality of the approximate harmonic basis and approximate
harmonic projection are given in Lemma 3 in the introduction.

3.4.2 Boundary projection
It follows from the Hodge decomposition that the the projection into the boundary space
can be written Πbd = I − Πcbd − Πhr. We have approximate projections Π̃cbd and Π̃hr with
input-relative error bounds (Equations (3) and (2) respectively), so we immediately obtain a
boundary projection Πbd with input-relative error bound defined

Πbd = I − Π̃cbd − Π̃hr =⇒ −εI ⪯ Πbd − Πbd ⪯ εI.

However, we need a boundary projection operator with an output-relative bound for our solver.
Unfortunately, the operator Πbd can have arbitrarily bad output-relative error. Specifically,
for any vector x that is orthogonal to the boundary space, this operator has unbounded
output-relative error as Πbdx = 0.

We instead use Πbd as a starting point for a projection operator with bounded output-
relative error. To that end, let’s revisit the issue of input vs. output relative error. Let
x = xbd + xcocyc be any vector decomposed into its boundary and cocycle parts. The
input-relative error bound of Πbd is proportional to ∥x∥ = ∥xbd +xcocyc∥, while for an output-
relative error bound, we need the bound to be proportional to ∥Πbdx∥ = ∥xbd∥. Therefore, a
problem arises if xcocyc is much larger than xbd; provided a bound on ∥xcocyc∥/∥xbd∥, we can
accordingly modify the accuracy of our projection operators Π̃cbd(ε) and Π̃hr(ε) to ensure
Πbd has small output-relative error for x. Unfortunately, ∥xcocyc∥/∥xbd∥ can be unbounded.
To counteract this, we show that we can map x to a different vector x′ before passing it to
Πbd such that (1) x′ has the same boundary component as x (so Πbd · x = Πbd · x′), and (2)
∥x′

cocyc∥/∥x′
bd∥ is bounded.

Specifically, our boundary projection operator is defined Π̃bd = (I − PΓ)(I − PT )Πbd(I −
PT )T (I − PΓ)T , defined based on two operators PT and PΓ. The former was introduced by
Cohen et al. to obtain Π̃cyc, and the latter is introduced in this paper; we sketch the ideas of
both in this overview. The operator (I − PT )T (I − PΓ)T behaves as we need: it maps x to a
chain x′ with the same boundary component as x and a relatively bounded cocycle part. We
now describe PT and PΓ.

Let T be any spanning tree of the 1-skeleton of K. PT is the operator that maps any
1-chain to the unique 1-chain with the same boundary in T . In particular, for any 1-chain x,
(I − PT )x is a cycle.

Next, let Γ = {γ1, . . . , γβ} be a 1-homology basis in K. PΓ is the operator that maps
any 1-cycle to the unique linear combination of Γ that is in the same homology class. In
particular, for any 1-cycle x, (I − PΓ)x is a boundary.
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Now let F = (I − PT )T (I − PΓ)T , so F T = (I − PΓ)(I − PT ). Consider any vector
x = xbd + xcbd + xhr. We investigate what F does to each of the three constituents of x;
what can we say about Fxbd, Fxcbd and Fxhr? In what follows, we frequently use the fact
that for any linear map A, ker(A) and im(AT ) orthogonally decompose the domain of A.

(I − PT ) maps any 1-chain to a cycle and (I − PΓ) maps any cycle to a boundary cycle;
thus, im(F T ) is a subset of the boundary space. It follows that ker(F ) is a superset of the
orthogonal complement of the boundary space, which is the cocycle space. So, F maps any
cocycle to zero, in particular, Fxcbd = 0 and Fxhr = 0. It remains to investigate Fxbd.

PT maps any cycle to zero, so ker(PT ) includes the cycle space; hence, im(P T
T ) is a

subset of the orthogonal complement of the cycle space, which is the coboundary space. In
particular, im(P T

T ) is a subset of the cocycle space. In addition, PΓ maps all boundary cycles
to zero, so ker(PΓ) includes the boundary space; hence, im(P T

Γ ) is within the orthogonal
complement of the boundary space, which is the cocycle space. Now consider

Fxbd = (I − PT )T (I − PΓ)T xbd = Ixbd − P T
T (I − PΓ)T xbd − P T

Γ xbd = xbd + x′
cocyc,

and observe that x′
cocyc is indeed in the cocycle space as im(P T

T ) and im(P T
Γ ) are both within

this space.
Overall, Fxcbd = 0, Fxhr = 0 and Fxbd = xbd + x′

cocyc, so Fx has the same boundary
part as x. Moreover, the norm of the cocyclic part of Fx, ∥x′

cocyc∥, can now be bounded by
∥F∥·∥xbd∥, as it is produced by applying F to x. The proof of Lemma 3.2 in Cohen et al. and
Corollary 14 of this paper provide bounds on ∥I − PT ∥ and ∥I − PΓ∥ that are dependent on
the number of simplices of X, the smallest non-zero eigenvalue of the up-Laplacian of X,
and the first Betti number of K; these bounds in turn provide a bound on ∥F∥. (Note that
∥A∥ =

√
∥AAT ∥ for any linear operator A.)

▶ Lemma 13 (Cohen et al., Proof of Lemma 3.2 [10]). Let K be any simplicial complex, and
let T be a spanning tree of the 1-skeleton of K. Let PT be the operator that maps any 1-chain
x to the unique 1-chain on T with the same boundary, that is (i) PT · x ∈ C1(T ), and (ii)
∂1x = ∂1PT · x. We have (I − PT )(I − PT )T ⪯ n2

1I, where n1 is the number of edges of K.
Further, for any x, PT · x can be computed in O(n1) time.

▶ Corollary 14. Let X, K as defined. Let Γ = {γ1, . . . , γβ} be the homology basis of Lemma 9,
and let PΓ be the operator that for any cycle α returns the unique linear combination of the
cycles of Γ that is homologous to α. We have

(1 − PΓ)(1 − PΓ)T ⪯ ε · I,

for ε = (n1n2/λmin(X))c·β, where λmin(X) is the smallest non-zero eigenvalue of Lup
1 (X)

and c is a constant. Further, for any vector v, PΓ · v can be computed in O(β2n1 + βω) time.

The accuracy and time complexity of the approximate boundary solver Π̃bd are described
in Lemma 2 in the introduction.
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