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Abstract
We study the fundamental online k-server problem in a learning-augmented setting. While in the
traditional online model, an algorithm has no information about the request sequence, we assume
that there is given some advice (e.g. machine-learned predictions) on an algorithm’s decision. There
is, however, no guarantee on the quality of the prediction and it might be far from being correct.

Our main result is a learning-augmented variation of the well-known Double Coverage algorithm
for k-server on the line (Chrobak et al., SIDMA 1991) in which we integrate predictions as well as
our trust into their quality. We give an error-dependent competitive ratio, which is a function of a
user-defined confidence parameter, and which interpolates smoothly between an optimal consistency,
the performance in case that all predictions are correct, and the best-possible robustness regardless
of the prediction quality. When given good predictions, we improve upon known lower bounds for
online algorithms without advice. We further show that our algorithm achieves for any k an almost
optimal consistency-robustness tradeoff, within a class of deterministic algorithms respecting local
and memoryless properties.

Our algorithm outperforms a previously proposed (more general) learning-augmented algorithm.
It is remarkable that the previous algorithm crucially exploits memory, whereas our algorithm is
memoryless. Finally, we demonstrate in experiments the practicability and the superior performance
of our algorithm on real-world data.
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1 Introduction

The k-server problem is one of the most fundamental online optimization problems. Manasse
et al. [36, 35] introduced it in 1988 as a generalization of other online problems, such as
the prominent paging problem, and since then, it has been a corner stone for developing
new models and techniques. We follow this line and investigate the k-server problem in the
recently evolving framework of learning-augmented online computation.

We consider the k-server problem on the line, in which there are given k distinct serv-
ers s1, . . . , sk located at initial positions on the real line. A sequence of requests r1, . . . , rn ∈ R
is revealed online one-by-one, that is, an algorithm only knows the current (unserved) request,
serves it and only then sees the next request; it has no knowledge about future requests. To
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serve a request, (at least) one of the servers has to be moved to the requested point. The
cost of serving a request is defined as the distance traveled by the server(s). The task is to
give an online strategy of minimum total cost for serving a request sequence.

In standard competitive analysis, an online algorithm A is called µ-competitive if for
every instance I, there is some constant c depending only on the initial configuration such
that A(I) ≤ µ ·Opt(I)+c, where A(I) denotes the cost of A on I whereas Opt(I) is the cost
of an optimal solution that can be obtained when having full information about I in advance.

Manasse et al. [36] gave a strong lower bound which rules out any deterministic online
algorithm with a competitive ratio better than k. They also stated the famous k-server
conjecture in which they conjecture that there is a k-competitive online algorithm for the
k-server problem in any metric space and for any k. The conjecture has been proven to be
true for special metric spaces such as the line [16], considered in this paper, the uniform
metric space (paging problem) [43] and tree metrics [17]. For the k-server problem on the
line, Chrobak et al. [16] devised the DoubleCoverage algorithm and proved a best possible
competitive ratio k. For a given request, DoubleCoverage moves the (at most) two
adjacent servers towards the requested point until the first of them reaches that point.

The past decades have witnessed a rapid advancement of machine learning (ML) methods,
which nowadays can be expected to predict often – but not always – uncertain data with good
accuracy. The lack of guarantees on the predictions and the need for trustable performance
guarantees lead to the area of learning-augmented online algorithms. This recently emerging
research area investigates online algorithms that have access to predictions, e.g., on parts of
the instance or the algorithm’s execution, while not making any assumption on the quality
of the predictions. Formally, we assume that a prediction has a certain quality η ≥ 0. In
the context of learning theory one may think of the loss of a prediction with respect to the
ground truth. Accordingly, η = 0 refers loosely speaking to the case where the prediction
was correct. In the field of learning-augmented algorithm this quantity is called prediction
error. An algorithm does not know what quality a prediction has, but we can use it in the
analysis to measure an algorithm’s performance depending on η. If a learning-augmented
algorithm is µ(η)-competitive for some function µ, we say that the algorithm is α-consistent
if α = µ(0) and β-robust if µ(η) ≤ β for any prediction with prediction error η [40].

Very recently, Antoniadis et al. [2] proposed learning-augmented online algorithms for
general metrical task systems, a generalization of our problem. Their algorithm relies on
simulating several online algorithms in parallel and keeping track of their solutions and cost.
This technique crucially employs additional memory which can be a serious drawback in
practice when decisions must be made without access to the history.

In this work, we introduce memory-constrained learning-augmented algorithms for
the k-server problem on the line. An algorithm A is intuitively memory-constrained, if the
decision for the next move of A only depends on the current situation (server positions,
request and prediction). It is especially independent of previous requests. However, as the
algorithm is allowed to move a server to any point of the real line, it could use its position
to encode any information at a negligible cost. This issue is often addressed by forbidding
algorithms to move several servers per request (hence, restricting to so-called lazy algorithms)
which leads to the classical memoryless property, although variations of this definition
exist [24]. A downside of this restriction is that deterministic memoryless algorithms cannot
be competitive, and there is no distinction between the type of information gathered by
DoubleCoverage and unconstrained information encoding. This difference has been
nevertheless acknowledged by informally considering DoubleCoverage as memoryless [22],
although noting immediately that such a definition for a non-lazy algorithm is cumbersome.
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In order to allow the behavior of DoubleCoverage, we formally define memory-constrained
algorithms as algorithms allowed to move several servers, making decisions independently of
previous requests, but with an erasable memory: for any set of k distinct points and any
starting configuration, there exists a finite sequence of requests among these k points after
which each point contains exactly one server. We will refer to such a sequence as a force
to these k points. This definition is quite general as it allows to pre-move some servers as
DoubleCoverage does, and even allows information encoding, but provides a possibility
to erase any information gathered. The algorithms we design will not abuse information
encoding, but our lower bounds will hold in this context.

Further Related Work

The past few years have exhibited several demonstrations of the power of learning-augmented
algorithms improving on traditional online algorithms. Studied online problems include
caching [33, 41, 2, 45], ski rental [40, 19, 44, 46, 8], scheduling [40, 6, 39, 27, 46, 20, 5],
secretary problems [4, 18], matching [28, 26], sorting [32], online covering [7], and possibly
more by now. Learning-augmented algorithms have proven to be successful also in other
areas, e.g., to speed up search queries [25], in revenue optimization [37], and bloom filters [38].

More than a decade ago, Mahdian et al. [34] demonstrated performance improvements for
online allocation algorithms when there is access to an accurate solution estimation. They
further bounded the case where the estimation is inaccurate. While these bounds essentially
correspond to consistency and robustness, they did not precisely measure the prediction
quality. Yet they introduced a parameter to express the tradeoff between both bounds. In
the recent field of learning-augmented algorithms, Kumar et al. [40] initiated the use of a
similar parameter λ ∈ [0, 1]. It can be interpreted as an algorithm’s indicator of trust in
the given predictions: smaller λ indicates stronger trust and gives a higher priority to a
better consistency at the cost of a worse robustness, and vice versa. Such parameterized
consistency-robustness tradeoff has become standard for expressing the performance of
learning-augmented algorithms when aiming for constant factors [40, 44, 46, 1, 8, 7, 4, 20].

As mentioned, Antoniadis et al. [2] provide a general learning-augmented framework for
any metrical task systems which includes the k-server problem. Applied to the line metric,
they devise a learning-augmented algorithm that crucially requires memory and obtains a
9-consistent and 9k-robust algorithm.

The k-server problem has been studied also in the context of reinforcement learning (RL),
originating at [21] and including hierarchical RL learning [29] as well as deep RL learning [31].

The classical online k-server problem without access to predictions has been studied
extensively, also in general metric spaces. The best known deterministic algorithm is the
WorkFunction algorithm [23] with a competitive ratio of 2k − 1. For several special metric
spaces there are even tighter bounds known for this algorithm [10, 47]. When allowing
randomization, a Ω(log k/ log log k) lower bound holds [9] and a (log k)O(1)-competitive
randomized algorithm is conjectured [22]. Restricting further to memoryless randomized
algorithms increases the lower bound on the competitive ratio exponentially to k [22] and
some recent efforts focus on a more general variant in this setting [14].

The power of DoubleCoverage goes beyond its optimality for the k-server problem
in tree metrics [17]. Recently, Buchbinder et al. [13] showed that it is a best possible
deterministic algorithm for the more general k-taxi problem, even in general metric spaces
using an embedding into hierarchically separated trees.

ITCS 2022
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Our Contribution

We design learning-augmented memory-constrained online algorithms for the k-server prob-
lem on the line. Firstly, we define some more notation and the precise prediction model. We
denote a server’s name as well as its position on the line by si, for i ∈ {1, 2 . . . , k}. A config-
uration Ct = (s1, . . . , sk) ∈ Rk is a snapshot of the server positions at a certain point in time.
For a given instance, a k-server algorithm outputs a sequence of configurations C1, . . . , Cn

(also called schedule) such that for every t = 1, . . . , n, we have rt ∈ Ct. We denote the
initial configuration by C0. The objective function can be expressed as

∑n
t=1 d(Ct−1, Ct),

where d(Ct−1, Ct) denotes the cost for moving the servers from Ct−1 to Ct. We assume
w.l.o.g. s1 ≤ . . . ≤ sk, as server overtakings can be uncrossed without increasing the total cost.

We employ a prediction model that predicts algorithmic choices of an optimal algorithm,
that is predicting which server should serve a certain request. Given an instance I composed of
the request sequence r1, . . . , rn, we define a prediction for I as a sequence of indices p1, . . . , pn

from the set {1, . . . , k}. If s1, . . . , sk are the servers of some learning-augmented algorithm,
we call spt the predicted server for the t-th request. We call the algorithm that simply
follows the predictions FtP, that is, it serves each request by the predicted server (to simplify
computations, we still remove overtakings as mentioned above, which is equivalent to relabel
servers by their position order). We denote its cost by FtP(I). We define the prediction
error η = FtP(I) − Opt(I) as quality measure for our predictions. Note that this error
definition is independent of our algorithm.

Our main result is a parameterized algorithm for the k-server problem on the line with an
error-dependent performance guarantee that – when having access to good-quality predictions
– beats the known lower bound for deterministic online algorithms.

▶ Theorem 1. Let λ ∈ [0, 1]. We define β(k) =
∑k−1

i=0 λ−i, for λ > 0, and β(k) = ∞,
for λ = 0. Further, let

α(k) =
{

1 + 2λ + 2λ2 + . . . + 2λ(k−1)/2 if k is odd
1 + 2λ + 2λ2 + . . . + 2λk/2−1 + λk/2 if k is even.

Let η denote the total prediction error and Opt the cost of an optimal solution. Then, there
exists a learning-augmented memory-constrained online algorithm for the k-server problem
on the line with a competitive ratio of at most

min
{

α(k)
(

1 + η

Opt

)
, β(k)

}
.

In particular, the algorithm is α(k)-consistent and β(k)-robust, for λ > 0.

Interpreting both bounds as functions of λ ∈ [0, 1] illustrates that α(k) interpolates
monotonously between 1 and k while β(k) grows from k as λ decreases. This matches our
expectation on a learning-augmented online algorithm, as it improves in consistency but loses
in robustness compared to the best possible online algorithm. From another perspective, for
a fixed value of λ, α(k) is bounded by a constant (equal to 1 + 2

1−λ ) which highlights the
algorithm consistency but this comes at the price of an exponential dependency on k for β(k).

To show this result, we design an algorithm that carefully balances between (i) the wish
to simply follow the predictions (FtP) which is obviously optimal if the predictions are
correct, i.e. is 1-consistent, and (ii) the best possible online algorithm when not having access
to (good) predictions DoubleCoverage [16], which is k-robust. An additional challenge is
to preserve the memory-constrained property. We achieve this, by generalizing the classical
DoubleCoverage [16] in an intuitive way. Essentially, our algorithm LambdaDC includes
the information about predicted servers and our trust into them by varying server speeds.
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The analysis of our algorithm is tight. On the technical side, our analysis builds on the
powerful potential function method, as does the analysis of the classical DoubleCover-
age [16]. While LambdaDC is quite simple (a precise definition follows), the analysis is
much more intricate and requires a careful re-design for the learning-augmented setting. Our
main technical contribution is the definition and analysis of different parameterized potential
functions for proving robustness and consistency, that capture the different speeds for moving
servers and the accordingly more difficult tracing of the server moves.

We remark that our performance bound also holds [30] (with an additional factor of 2 on
the error) using the error measure of Antoniadis et al. [2]. Their error definition sums up the
distances between the configurations of Opt and FtP after every request, thus, it may seem
more intuitive as server positions are compared instead of solution costs. However, our error
definition allows to establish learnability results and also simplifies some analyses.

While our result is tailored to the k-server problem, the framework by Antoniadis et al. [2]
is designed for more general metrical task systems. Interestingly, one of their methods is
a deterministic combination of DoubleCoverage and FtP, we refer to it as FtP&DC.
It is shown that FtP&DC is 9-consistent and 9k-robust. Our methods differ substantially.
While FtP&DC carefully tracks states and costs of the simulated individual algorithms,
LambdaDC is a simple algorithm that only requires knowledge of the current configuration.
Further, LambdaDC has a better performance for k < 20 and an appropriate parameter λ

(e.g., k = 19 and λ = 0.83), but does not offer such a good tradeoff for larger k. Actually, this is
unavoidable for a certain class of memory-constrained algorithms, that includes LambdaDC.

Indeed, we complement our main result with an almost matching lower bound on the
consistency-robustness tradeoff. We construct a non-trivial bound for the class of memory-
constrained algorithms that satisfy an additional locality property; its precise definition is
formulated in Section 5. Intuitively, the locality property enforces an algorithm to achieve a
better competitive ratio for a subinstance served by fewer servers. Other locality restrictions
have been required before to establish lower bounds, e.g., for matching on the line, see [3].

▶ Theorem 2. Let λ ∈ (0, 1], ρ(k) =
∑k−1

i=0 λi and β(k) =
∑k−1

i=0 λ−i. Let A be a learning-
augmented locally-consistent and memory-constrained deterministic online algorithm for
the k-server problem on the line. Then, if A is ρ(k)-consistent, it is at least β(k)-robust.

Algebraic transformations (see Appendix B) show that α(k) < 2ρ(k), which implies that
LambdaDC achieves a tradeoff within a factor of at most 2 of the optimal consistency-
robustness tradeoff (among locally-consistent and memory-constrained algorithms). For k = 2,
LambdaDC achieves the optimal tradeoff (among memory-constrained algorithms).

We demonstrate the power of our approach in empirical experiments on real-world data.
We show that for a reasonable choice of λ our method outperforms the classical online
algorithm DoubleCoverage as well as the algorithm in [2] for nearly all prediction errors.

Finally, we address the learnability of our predictions, even though this is not the focus
of our work. We show that a static prediction sequence is PAC-learnable. We show a bound
on the sample complexity that is polynomial in the number of requests, n, and the number
of servers, k, and we give a learning algorithm with a polynomial running time in n, k and
the number of samples.

ITCS 2022
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2 Algorithm and Roadmap for the Analysis

The Algorithm LambdaDC

We generalize the classical DoubleCoverage [16] by including the information about
predicted servers as well as our trust into this advice, in an intuitive way. If a request rt

appears between two servers, the one closer to the predicted server pt moves by a greater
distance towards the request – as if it traveled at a higher speed.

Formally, we define LambdaDC for a given λ ∈ [0, 1] as follows. If rt < s1 or rt > sk,
then LambdaDC only moves the closest server. Otherwise, we have si < rt < si+1. If pt ≤ i,
then LambdaDC moves si with speed 1 and si+1 with speed λ towards rt until one server
reaches the request. If pt ≥ i + 1, the speeds of si and si+1 are swapped. Hence, LambdaDC
equals FtP (with shortcuts) for λ = 0, and DoubleCoverage for λ = 1. Using nonintegral
values for λ gives an algorithm that interpolates between both.

Potential Function Analysis

The analysis of our algorithm builds on the powerful potential function method, as does the
analysis of the classical DoubleCoverage [16].

Our potential analysis follows the well-known interleaving moves technique [11]. To
compare two algorithms A and B in terms of competitiveness, we simulate both in parallel
on some instance I. Then, we employ a potential function Φ which maps at every time t

the state of both algorithms (i.e. the algorithms current configurations) to a value Φt ≥ 0,
the potential at time t. We define ∆Φt = Φt − Φt−1. Let ∆Bt(I) resp. ∆At(I) denote the
cost A resp. B charges for serving the request at time t and let µ > 0. For every request rt,
we assume that first B serves the request, and second A. If

(i) the move of B increases Φ by at most µ · ∆Bt(I), whereas
(ii) the move of A decreases Φ by at least ∆At(I),

we can use a telescoping sum argument to conclude A(I) ≤ µ · B(I) + Φ0. Note that if B is
the optimal algorithm, µ is equal to the competitive ratio of A since Φ0 only depends on C0.

To show an error-dependent competitive ratio in the learning-augmented setting, we
follow three steps. We show first that the cost of LambdaDC is close to the cost of FtP,
that is Alg(I) ≤ α(k) · FtP(I) + c for some c > 0 and for every instance I. Note that this
corresponds to the consistency case as FtP is the optimal algorithm if η = 0. Second we plug
in the definition of our prediction error η to bound the cost of FtP by the cost of the fixed
optimal solution (fixed with respect to the definition of η) and η. Combining both results
yields the first part of the competitive ratio of Theorem 1. Lastly we prove a robustness
bound, i.e. a general bound independent of the prediction, on the cost of LambdaDC with
respect to Opt. All additive constants in the competitive ratios only depend on the initial
configuration of the servers, being zero if all servers start at the same position.

The potential functions we use to analyze LambdaDC are inspired by the potential
function in the classical analysis of DoubleCoverage [16]. It is composed of a matching
part Ψ, summing the distances between the server positions of an algorithm and the reference
algorithm (Opt, FtP) and a spreadness part Θ, summing the distances between an algorithms
server positions. To incorporate the more sophisticated server moves at different speeds, we
introduce multiplicative coefficients to both parts. The main technical contribution lies in
identifying the proper weights and performing the much more involved analysis.
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Lower Bounds for LambdaDC

Our analysis is tight w.r.t the given bounds on consistency and robustness.

▶ Lemma 3. LambdaDC is at least α(k)-consistent and β(k)-robust.

Proof. We give two separate instances for consistency and robustness.
(i) Consider k servers initially at positions 0, 1, −1, 2, −2, . . . and the request sequence of

length k + 1 at positions 0.5, 0, 1, −1, 2, −2, . . . . There is a solution of cost 1 that
only moves the server that is initially at 0.
LambdaDC serves the first request by moving the optimal server from 0 to 0.5 and
additionally the one from 1 to 1 − λ/2. With the second request, the first server is
moved back to 0, having moved a total distance of 1, and the server from −1 moves
to −1 + λ/2. For the third request, the server from original position 1 returns to this
position, etc. Each server moves back to its initial position i after moving a total
distance of λ|i|. Repeating this example gives the lower bound on the consistency.

(ii) Consider k servers initially at positions β(i) =
∑k−1

i=0 λ−i, for i ∈ {1, . . . , k}, and the
request sequence of length k + 1 at positions 0, β(1), β(2), . . . , β(k). There is a
solution of cost 2 that only moves the server that is initially at 1. Consider predictions
corresponding always to the rightmost server at the highest position.
LambdaDC serves the second request by moving both servers from 0 and β(2) to β(1)
as the closest server moves by a distance of 1 and the furthest server, which is predicted,
moves by a distance of 1/λ. Similarly, for each request except the last one, both servers
neighboring the request end up serving the request simultaneously. So the i-th server
moves by a total distance of 2/λi−1. Repeating this example gives the lower bound on
the robustness. ◀

Organization of the Paper

For ease of exposition, we first consider the setting of 2 servers in Section 3. Then, we extend
the techniques to the general setting in Sections 4 and 5 while maintaining the same structure
as for k = 2. We illustrate and discuss the results of computational experiments in Section 6,
and, finally, talk about PAC learnability of our predictions in Section 7.

3 Full Analysis for Two Servers

3.1 Error-dependent Competitive Ratio of LambdaDC
We show the theoretical guarantees of LambdaDC claimed in Theorem 1 restricted to two
servers. We denote the cost of LambdaDC for some instance I by Alg(I), and the cost for
serving a request rt by ∆Algt(I). If t is clear from the context then we omit the index.

▶ Theorem 4. For any parameter λ ∈ [0, 1], LambdaDC has a competitive ratio of at most

min
{

(1 + λ)
(

1 + η

Opt

)
, 1 + 1

λ

}
.

Thus, it is (1 + λ)-consistent and (1 + 1/λ)-robust.

We follow the three-step approach outlined in the previous section. The definition of η

immediately gives for any instance I and prediction with error η that FtP(I) = Opt(I) + η.
With Lemmas 5 and 6 this implies Theorem 4. We firstly compare the algorithm to FtP.

ITCS 2022
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▶ Lemma 5. For any instance I and λ ∈ [0, 1], there is some c ≥ 0 that only depends on the
initial configuration such that Alg(I) ≤ (1 + λ) · FtP(I) + c.

Proof. Let I be an arbitrary instance and let servers start at positions s0
1 and s0

2. If λ = 0,
LambdaDC only shortcuts FtP’s moves, hence Alg(I) ≤ FtP(I). Now assume that λ > 0.
Let s1, s2 be LambdaDC’s servers and x′

1, x′
2 be FtP’s servers. We simulate I in parallel

for both algorithms. At every time t, we map the configurations of both algorithms to a
non-negative value using the potential function

Φ = 1 + λ

λ
(|s1 − x′

1| + |s2 − x′
2|)︸ ︷︷ ︸

Ψ (matching part)

+ |s1 − s2|.︸ ︷︷ ︸
Θ (spreadness part)

Suppose that a new request arrives. First, FtP serves the request. Assume that x′
1 moves

and charges cost ∆FtP. Since LambdaDC remains in its previous configuration, |x′
1 − s1|

increases by at most ∆FtP, and Φ increases by at most (1+λ)/λ·∆FtP. Second, LambdaDC
moves. Assume by scaling the instance that the algorithm serves the request after exactly
one time unit, i.e., the fast server moves distance 1 and the slow server distance λ. We
distinguish whether the request is between the algorithm’s servers or not, and prove in each
case that Φ decreases by at least 1/λ · ∆Alg.
(a) Suppose the request is not between the servers s1 and s2; say, it is left of s1. Then

LambdaDC moves only s1 and ∆Alg = 1. Either x′
1 or x′

2 covers the request, hence
moving s1 decreases Ψ by (1 + λ)/λ while it increases Θ by 1. Thus,

∆Φ ≤ −1 + λ

λ
+ 1 = − 1

λ
= − 1

λ
· ∆Alg.

(b) Suppose the request is between s1 and s2, and suppose that s1 is predicted. LambdaDC
moves both servers and ∆Alg = 1 + λ. This means that x′

1 already covers the request.
Thus, moving s1 towards the request decreases Ψ by (1 + λ)/λ, while s2 increases Ψ by
at most (1 + λ)/λ · λ. Also, Θ decreases by 1 + λ. We can conclude that

∆Φ ≤ 1 + λ

λ
(−1 + λ) − (1 + λ) = − 1

λ
(1 + λ) = − 1

λ
· ∆Alg.

Summing over all rounds, we obtain Alg(I) ≤ (1 + λ)FtP(I) + λ|s0
1 − s0

2|. ◀

Finally, we give a robustness guarantee for LambdaDC’s performance independently of
the prediction quality.

▶ Lemma 6. For any instance I and λ ∈ (0, 1], there is some c ≥ 0 that only depends on the
initial configuration such that Alg(I) ≤ (1 + 1/λ) · Opt(I) + c.

The proof of this claim is similar to the proof of Lemma 5 with the crucial difference that
the reference algorithm is unknown. Hence, the multiplicative factor is larger but relative to
the optimal solution and, thus, independent of the prediction error.

Proof. Let I be an arbitrary instance and let λ ∈ (0, 1]. Let s1, s2 be LambdaDC’s servers
and x1, x2 the servers of an optimal algorithm. We define

Φ = (1 + λ) (|s1 − x1| + |s2 − x2|)︸ ︷︷ ︸
Ψ

+ |s1 − s2|︸ ︷︷ ︸
Θ

.

Upon arrival of a request, first the optimal algorithm moves and Φ increases by at most
(1 + λ) · ∆Opt. Second LambdaDC moves and, by scaling the instance, we assume that the
request is served after exactly one time unit. We distinguish whether the request is between
the algorithm’s servers or not, and show that in each case Φ decreases by at least λ · ∆Alg.
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(a) Let the request be not between the servers, say on the left of s1. Either x1 or x2 covers
the request, hence moving s1 decreases Ψ by 1 + λ while it increases Θ by 1. Thus,

∆Φ ≤ −(1 + λ) + 1 = −λ = −λ · ∆Alg.

(b) Let the request be between s1 and s2, and suppose that s1 is predicted. The request is
covered by x1 or x2. In the worst case (x2 covers the request), moving s1 towards the
request increases Ψ by at most 1 + λ, while s2 decreases Ψ only by (1 + λ)λ. Also, Θ
decreases by 1 + λ. Put together,

∆Φ ≤ (1 + λ)(1 − λ) − (1 + λ) = −λ(1 + λ) = −λ · ∆Alg. ◀

3.2 Optimality of LambdaDC: the Consistency-Robustness Tradeoff

We now show that LambdaDC is optimal for two servers, in the sense that no memory-
constrained algorithm can achieve a better robustness-consistency tradeoff. As we target
memory-constrained algorithms, at any time, we can use force requests, cf., Section 1, to
enforce the algorithm to place its servers at prescribed locations.

▶ Theorem 7. Let A be a learning-augmented memory-constrained algorithm for the 2-server
problem on the line and let λ ∈ (0, 1]. If A is (1 + λ)-consistent, it is at least (1 + 1/λ)-robust.

Proof. Let λ ∈ (0, 1] and A be a (1 + λ)-consistent, memory-constrained algorithm for
the 2-server problem on the line. This means for every instance I, A(I) ≤ (1+λ) ·Opt(I)+ν

if η = 0, where ν depends on the initial configuration. Let a, b and c be consecutive points on
the line at position −1, 0 and L ≥ 1 + 1/λ, and (a, b) the algorithm’s initial configuration.

Consider the instance I∞ which is composed of a force to (a, c), followed by arbitrarily
many alternating requests at b and a. Clearly, an optimal solution for instance I∞ is to
move the right server to c and then immediately back to b with a total cost of 2L.

Assume that A gets this optimal solution as prediction. A moves one server to c for the
first request. Since the consistency implies that A(I∞) ≤ (1 + λ)Opt, at some point in
time A has to move the right server to b. Denote the instance which ends at this point in
time by I. Note that A(I∞) ≥ A(I). Let nL denote the number of times in instance I where
the left server moves from a to b and back to a (cost of 2). Since the right server pays at
least L for moving from c to b, we conclude A(I) ≥ 2nL + 2L. The consistency of A leads
to 2nL + 2L ≤ (1 + λ)2L + ν, which means nL ≤ λL + ν/2.

We now construct another instance Iω by concatenating ω copies of instance I, each
starting by the force to (a, c). We call such a copy an iteration, and in each iteration we use
the same predictions as in instance I. A has to pay at least L for the force, as the right
server was previously on b, and then A follows the same behavior as in I in each iteration. So
A(Iω) ≥ ω · (2nL + 2L). Another solution for instance Iω is to move the right server to c in
the beginning with cost L and leave it there, while the left server alternates between a and b.
Hence, Opt(Iω) ≤ L + ω · 2(nL + 1). Indeed, b is requested nL + 1 times per iteration: nL

where A uses the left server and one where it uses the right server. The ratio is then

A(Iω)
Opt(Iω) ≥ ω · (2nL + 2L)

L + ω · 2(nL + 1)
ω→∞−−−−→ 2nL + 2L

2(nL + 1) = 1 + L − 1
nL + 1 ≥ 1 + L − 1

λL + ν
2 + 1

L→∞−−−−→ 1 + 1
λ

,

which implies that A is at least (1 + 1/λ)-robust. ◀
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s1 s2 s3 s4 · · · sk−2 sk−1 sk
ℓ = 0

ℓ = 1 ℓ = 2 ℓ = 2 ℓ = 1 ℓ = 0

ℓ = 0
ℓ = 1 ℓ = 3 ℓ = 2 ℓ = 1

Figure 1 Visualization of all incident δij-weights of the servers s1 and s2. The thickness (resp.
color) of an arc indicates the influence of the corresponding distance in Φ.

4 The General Case with k Servers: Upper Bound

We present two lemmas which imply Theorem 1. The novelty lies in designing appropriate
potential functions that capture the server movements at different speeds. This takes
substantially more technical care than in the 2-server case but builds on the same ideas.

In the first step of the analysis, we compare the performance of LambdaDC and FtP.

▶ Lemma 8. For every instance I and λ ∈ [0, 1], there is some c > 0 that only depends on
the initial configuration such that Alg(I) ≤ α(k) · FtP(I) + c.

Let I be an arbitrary instance. Note that λ = 0 implies Alg(I) ≤ FtP(I) as LambdaDC
can only shortcut FtP’s moves. So, we now assume that λ ∈ (0, 1]. We define a new potential
function Φ as follows. Let s1, . . . , sk be the servers of LambdaDC and let x′

1, . . . , x′
k be the

servers of FtP. For 1 ≤ i < j ≤ k and ℓ = min{j − i, k − (j − i)} − 1 we define δij = λℓ, see
Figure 1. Then,

Φ = α(k)
λ

·
k∑

i=1
|si − x′

i|︸ ︷︷ ︸
Ψ

+
∑
i<j

δij |si − sj |.︸ ︷︷ ︸
Θ

Intuitively, the leading coefficient of Ψ comes from the targeted competitive ratio. Then,
in Θ, the coefficient in front of each term depends on the number of interleaving servers.
Following the idea of Lemma 3, when LambdaDC moves a server by a distance of 1 as in
Opt, its neighbor moves by a distance of λ. Hence, correcting the position of this neighbor
means that the next server moves by a distance λ2. Therefore, this geometric decrease in the
consequences of a movement also appears in the expression of Θ. The symmetric increase
when j − i grows is more difficult to explain intuitively, but is required to compensate the
modifications of Ψ. The coefficients of Θ are illustrated in Figure 1.

We carefully analyze in the full version of this paper how the potential changes when FtP
and LambdaDC move servers. Further, we give a robustness guarantee for LambdaDC for
any error.

▶ Lemma 9. For any instance I and λ ∈ (0, 1], there is some c ≥ 0 that only depends on the
initial configuration such that Alg(I) ≤ β(k) · Opt(I) + c.

Proving the general upper bound on the competitive ratio, independent of the prediction
error, is much more intricate than in the two-server case and than the consistency proof.
Again, our key ingredient is a carefully chosen potential function Φ. We generalize the
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function used for the consistency bound even further by refining the weights, in particular,
adding server-dependent weights to the term Ψ measuring the distance between the positions
of the algorithm’s servers and the optimal servers.

Let λ ∈ (0, 1]. Fix k, let β = β(k) =
∑k−1

i=0 λ−i, and let s1, . . . , sk be the servers of
LambdaDC and let x1, . . . , xk be the servers of an optimal solution. The potential function is

Φ = βγ

(
k∑

i=1
ωi|si − xi|

)
︸ ︷︷ ︸

Ψ

+
∑
i<j

δij |si − sj |︸ ︷︷ ︸
Θ

.

We specify the weights in this function as follows. For a pair of servers si, sj with 1 ≤ i < j ≤ k,
let ℓ = min{j − i, k − (j − i)} − 1 and δij = (λℓ + λk−2−ℓ)/(1 + λk−2).

The intuition of the weights in the spreadness part Θ is the same as in the consistency
potential function above. However, the new weights ωi in the matching part Ψ (defined
below) require the more complex weights δij compared to the simpler λℓ weights.

Further, we define d⌈k/2⌉ = 0 if k is odd and for all 1 ≤ i ≤ ⌊k/2⌋ let

di = dk+1−i = 2
1 + λk−2

k−1−i∑
ℓ=i−1

λℓ.

We demonstrate in the full version of this paper that these values correspond to the change of Θ
when a server of LambdaDC moves. Let γ = d1/(β − 1), ω1 = ωk = 1 and for 2 ≤ i ≤ ⌈k/2⌉
we define the server-individual weights

ωi = ωk+1−i =


2λ
∑i/2−1

j=1 d2j − 2
∑i/2−1

j=1 d2j+1 + λdi + (2 + λ)γ
βγλ

if i is even, and

2λ
∑(i−1)/2

j=1 d2j − 2
∑(i−3)/2

j=1 d2j+1 − di + γ

βγ
if i is odd.

In the full version of this paper we prove Lemma 9 by exhaustively reviewing all possible
moves and bounding the corresponding change of Φ. Establishing a constant upper bound of
the ω-weights yields a general upper bound on the increase of Φ independently of the choice
of the optimal solution’s server. We further choose the scaling parameter γ such that the
decrease of Φ exactly matches the required lower bound for the case where the request is
outside of the convex hull of LambdaDC’s servers. The remaining cases are split among the
possible locations where a request can appear between two servers of LambdaDC, and we
show in each case that Φ decreases enough. Intuitively, the ω values are defined such that a
wrong prediction gives a tight bound on the decrease of Φ for LambdaDC’s move, while a
correct prediction still guarantees a loose bound.

5 The Consistency-Robustness Tradeoff

In this section we give a bound on the consistency-robustness tradeoff, as stated in Theorem 2.
Our bound holds for memory-constrained algorithms that satisfy a certain locality property,
which includes LambdaDC. Informally, we require that a k-server algorithm with a certain
consistency µ(k) shall have a consistency µ(k′) on a sub-instance that it serves with k′ < k

servers. The rationale is to prevent the mere presence of additional unused workers to allow
the algorithm to perform poorly on a subinstance served by few servers, as µ(k′) < µ(k).
Hence, such algorithms are expected to present a better performance on a modified instance
where some extreme servers are removed and side-effects due to their presence are simulated.
In the following, we make this intuition precise and sketch our worst-case construction.
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Given an algorithm A which is µ(k)-consistent for the k-server problem, we define
the notion of locally-consistent. Given an instance of the k-server problem served by
algorithm A, consider any subset S′ of k′ consecutive servers. We construct an instance I ′

of the k′-server problem based on I and S′: If a request of I is predicted to be served by
a server in S′ then this request is replicated in I ′. Otherwise, I ′ requests the position of
the closest server among S′ after A served this request in I (in order to take into account
side-effects due to additional servers in the original instance). Let FtP(I ′) be the cost of
solving I ′ following the original predictions of I ′ (using the closest server among S′ if a
server outside of S′ was initially predicted). An algorithm is locally-consistent if its total
cost on I restricted to the servers in S′ is at most µ(k′) · FtP(I ′) + c, where c can be upper
bounded based only on the initial configuration. We further require that if the initial and
final configurations differ by a total distance of ε, then c = O(k′ε). Note that LambdaDC
is locally-consistent as its behavior in I restricted to the servers in S′ is equal to its behavior
in I ′ with k′ servers.

The proof of Theorem 2 generalizes ideas from the 2-server case (Section 3.2) in a highly
non-trivial way. We only sketch the main idea and refer to the full version of this paper
for details. Let A be a memory-constrained and locally-consistent deterministic algorithm.
We construct an instance that starts with k equidistant servers. First, a point far on the
right is requested. Then the initial server locations are requested following specific rules until
the rightmost server comes back. Predictions correspond to the server initially at the point
requested. The consistency of A limits the possible cost paid before the rightmost server
comes back. The locally-consistent definition allows, with technical care, to link the distance
traveled by two neighboring servers: the left one travels a total distance at most λ times the
right one (plus negligible terms). An offline solution can afford to initially shift all servers
to the right, and then move only the leftmost server, which A could not move much. We
then repeat this instance, and use the memory-constrained and deterministic characteristics
of A to eliminate constant costs and show the desired robustness lower bound, again with
technical care.

6 Experiments

We supplement our theoretical results by empirically comparing our learning-augmented
algorithm LambdaDC with the classical online algorithm ignoring predictions DoubleCov-
erage [16] and the previously proposed prediction-based algorithm FtP&DC [2] on real
world data. We implemented FtP&DC with the hyperparameter γ equal to 1. The instances
are based on the BrightKite-Dataset [15], which is composed of sequences of coordinates of
app check-ins. This dataset was used previously to evaluate and compare learning-augmented
algorithms for caching problems [2, 33]. We extract sequences of 1000 checkins, normalize
the latitudes to the interval [0, 4000], and use these values as the positions of the requests on
the line. All servers start at the same initial random position.

We generate synthetic predictions in a semi-random fashion. Fix two parameters p,
the number of bins, and b, the bin size, and an instance. Our goal is to generate evenly
distributed predictions, i.e., in each bin i ∈ {1, . . . , p} there are at least five predictions with
relative error between (i − 1)b and ib. For that we iteratively sample many predictions with
an increasing number of wrong choices with respect to the optimal solution. While this
procedure does not find all predictions, especially these with the largest relative error, it
gives a good tradeoff between running time and range of prediction error. Additionally, we
use an optimal solution of the instance as the perfect prediction. We set p = 10 and b as
high as we find for at least 40 instances of such predictions. Other instances are discarded.
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Figure 2 Results for k = 2 and b = 1.

0 5 10 15 20 25
Eta / Opt

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Em
pi

ric
al

 c
om

pe
tit

iv
e 

ra
tio

FtP&DC
DC
LDC (  = 0.00)
LDC (  = 0.10)
LDC (  = 0.50)

(a) non-lazy.

0 5 10 15 20 25
Eta / Opt

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Em
pi

ric
al

 c
om

pe
tit

iv
e 

ra
tio

FtP&DC
DC
LDC (  = 0.00)
LDC (  = 0.10)
LDC (  = 0.50)

(b) lazy.

Figure 3 Results for k = 50 and b = 3.

We implement all algorithms in lazy and non-lazy variants. The mean empirical compet-
itive ratios for k = 2 and k = 50 are displayed in Figures 2 and 3. They show well that, for a
reasonable choice of λ (0.1 ≤ λ ≤ 0.5), LambdaDC outperforms both DoubleCoverage
and FtP&DC for almost all generated prediction errors. This is true even if laziness is
allowed. We suspect that FtP&DC only makes few expensive resets in our instances, while
LambdaDC benefits from many cheap improvements of a lazy execution.

7 PAC Learnability of Predictions

While our results show the applicability of untrusted predictions, it is a natural question
whether such predictions are actually learnable.

In Appendix A, we show that for our model a static prediction sequence is PAC learnable
in an agnostic sense using empirical risk minimization. That is, given an unknown distribution
over request sequences which we can sample, we can find a prediction that is close to the
best possible prediction for this distribution in terms of prediction error using a bounded
number of samples.

▶ Theorem 10. For any ϵ, δ ∈ (0, 1), a known initial configuration C0 and any distribution D
over the sequences of n requests of known extent, there exists an algorithm which, given an
i.i.d. sample of D of size m ∈ O

( 1
ϵ2 · (n log k − log δ)η2

max
)
, returns a prediction τp ∈ H in

polynomial time depending on k, n and m, such that with probability of at least (1 − δ) it
holds Eσ∼D[ησ(τp)] ≤ Eσ∼D[ησ(τ∗)] + ϵ, where τ∗ = arg minτ∈H Eσ∼D[ησ(τ)].
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We remark that a pre-computed static prediction does not include information about the
partially revealed input. Thus, this is a rather weak prediction and may not help LambdaDC
much. The existence of an adaptive prediction policy which can be efficiently learned remains
an open question. Such a policy would provide much more valuable information to our
learning-augmented online algorithm.

8 Conclusion

We show the power of (untrusted) predictions in designing online algorithms for the k-
server problem on the line. Our algorithm generalizes the classical DoubleCoverage
algorithm [16] in an intuitive way and admits a (nearly) tight error-dependent competitive
analysis, based on new potential functions, and outperforms other methods from the literature.
While we can show PAC learnability for static predictions, we leave open whether possibly
more powerful adaptive prediction models are learnable.

Clearly, it would be interesting to see whether our results generalize to more general
metric spaces than the line. In fact, in a full version we show that our upper bounds for
the 2-server problem can be extended to tree metrics and we expect that an extension to k

servers is possible. However, for more general metrics our current approach seems not to
generalize well. Further, we focused on memory-constrained algorithms, leaving open a more
precise quantification of the power of memory. Finally, the recent success on randomized
k-server algorithms [12] raises the question whether and how randomized algorithms can
benefit from (ML) predictions.
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A PAC Learnability of Predictions

We show that our predictions are PAC learnable in an agnostic sense with a sample complexity
polynomial in the number of requests and we give an efficient learning algorithm. Let D be
an unknown distribution of sequences of n requests represented by points in the interval
[0, 1]. Here we assume a bounded line as a metric (scaled to [0, 1]), which is a restriction but
natural in most applications. Further, we assume that we can sample i.i.d. sequences from D.

Let H = {1, . . . , k}n denote a hypothesis class containing all possible static predictions,
i.e., the set of all k-server solutions for request sequences of length n. Let C0 be a known
initial configuration. The prediction error for a prediction τ ∈ H on a request sequence σ is
defined as ησ(τ) = FtP(σ, τ) − Opt(σ), where FtP(σ, τ) is the total cost of following the
prediction τ on the sequence σ starting in C0, and Opt(σ) is the cost of an optimal solution
on σ starting in C0. Then, ησ(τ) ≤ ηmax ≤ n for all possible sequences σ and for all τ ∈ H.

We argue that we can use a classical empirical risk minimization (ERM) learning method,
see, e.g., [42]. The ERM method uses a training set S = {σ1, . . . , σm} of i.i.d. samples
from D. Then, it determines a prediction τp ∈ H that minimizes the empirical error
ηS(τ) = 1

m

∑m
j=1 ησj

(τ). Since our hypothesis class is finite and the error function bounded,
classical results imply that our predictions are PAC learnable in an agnostic sense with a
polynomial sample complexity. Further, we show that the problem of finding the prediction
minimizing the empirical error within the training set can be reduced to an offline k-
server problem on a modified request sequence σ̃ of length n, where the distance between
the ℓth and ith request in σ̃ is given by 1

m

∑m
j=1 d(σj(ℓ), σj(i)). This problem can be solved

efficiently [16].
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▶ Theorem 10. For any ϵ, δ ∈ (0, 1), a known initial configuration C0 and any distribution D
over the sequences of n requests of known extent, there exists an algorithm which, given an
i.i.d. sample of D of size m ∈ O

( 1
ϵ2 · (n log k − log δ)η2

max
)
, returns a prediction τp ∈ H in

polynomial time depending on k, n and m, such that with probability of at least (1 − δ) it
holds Eσ∼D[ησ(τp)] ≤ Eσ∼D[ησ(τ∗)] + ϵ, where τ∗ = arg minτ∈H Eσ∼D[ησ(τ)].

Proof. Since the hypothesis class H is finite with |H| = kn, and our non-negative error
function is bounded by ηmax, classical results, see e.g. [42], imply that H is agnostically
PAC-learnable using the ERM algorithm with a sample complexity of

m ≤
⌈

2 log(2|H|/δ)η2
max

ϵ2

⌉
∈ O

(
(n log k − log δ)η2

max
ϵ2

)
.

That is, given a sample of size at least m, the ERM algorithm outputs with a probability of
at least (1 − δ) a prediction τp such that Eσ∼D[ησ(τp)] ≤ Eσ∼D[ησ(τ∗)] + ϵ holds, where τ∗ =
arg minτ∈H Eσ∼D[ησ(τ)].

It remains to describe an efficient implementation of the ERM algorithm for our setting.
Let S = {σ1, . . . , σm} be a sample drawn i.i.d. from D. We assume that this can be
done in polynomial time in m. For a sequence σj ∈ S let σj(i) be the position of the
ith request in σj . We further define for 1 ≤ ℓ ≤ i ≤ n and 1 ≤ k′ ≤ k the distance
functions δj(ℓ, i) = |σj(ℓ) − σj(i)| and γj(k′, i) = |C0(k′) − σj(i)|. The empirical error of a
prediction τ is in our setting defined as

ηS(τ) = 1
m

m∑
j=1

ησj
(τ) = 1

m

m∑
j=1

FtP(σj , τ) − Opt(σj).

The ERM algorithm outputs the prediction τp ∈ H that minimizes ηS(τ) as a function over H.
Since iterating over all predictions in H takes exponential time, we compute τp differently.
To do so, we first observe that 1

m

∑m
j=1 Opt(σj) is independent of τ , thus minimizing ηS(τ)

can be reduced to minimizing

1
m

m∑
j=1

FtP(σj , τ) = 1
m

m∑
j=1

k∑
k′=1

n∑
i=1

ξτ
k′,i · γj(k′, i) +

i∑
ℓ=1

χτ
k′,i,ℓ · δj(ℓ, i)

=
k∑

k′=1

n∑
i=1

ξτ
k′,i ·

 1
m

m∑
j=1

γj(k′, i)

+
i∑

ℓ=1
χτ

k′,i,ℓ · 1
m

m∑
j=1

δj(ℓ, i), (1)

where χτ
k′,i,ℓ ∈ {0, 1} indicates (i.e. is equal to 1) that server k′ serves the ith request of σj

directly after the ℓth request of σj in τ and ξτ
k′,i ∈ {0, 1} indicates that the ith request of σj

is the first one that server k′ serves in τ .
We now demonstrate that we can efficiently compute a prediction τ ∈ H that minimizes (1).

Indeed, observe that (1) is equal to the total cost of the solution τ for the k-server instance that
starts in C0 and serves a sequence σ̃ of length n, where the distance between the ℓth and ith
request in σ̃ is given by δ′(ℓ, i) = 1

m

∑m
j=1 δj(ℓ, i) and the distance between the ith request

in σ̃ and the initial position of server k′ is given by γ′(k′, i) = 1
m

∑m
j=1 γj(k′, i). But this

means that any optimal solution τ̃ for this instance also minimizes (1). Clearly, τ̃ ∈ H, and
an optimal solution for a k-server instance with known distance functions can be computed
in O(kn2) time using a min-cost flow algorithm [16]. ◀

B Bound between Consistencies

▶ Lemma 11. For every λ ∈ [0, 1], α(k) < 2ρ(k).
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Proof. First note that for λ = 1, α(k) = k = ρ(k). Now suppose that λ < 1. Applying the
formula for the finite geometric series gives

ρ(k) = 1 − λk

1 − λ
.

We now prove the result based on the parity of k. Assume that k is even. Recall that

α(k) = 1 + 2
k/2−1∑

i=1
λi + λk/2 = 1 + 2λ − λk/2

1 − λ
+ λk/2

and, thus,

α(k)
ρ(k) = (1 + λk/2)(1 − λ) + 2(λ − λk/2)

1 − λk
= 1 + λ − λk/2 − λk/2+1

1 − λk
< 2.

Assume that k is odd, then

α(k) = 1 + 2
(k−1)/2∑

i=1
λi = 1 + 2λ − λ(k+1)/2

1 − λ
,

and we conclude that

α(k)
ρ(k) = 1 − λ + 2(λ − λ(k+1)/2)

1 − λk
= 1 + λ − 2λ(k+1)/2

1 − λk
< 2. ◀
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