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Abstract
A secret-sharing scheme allows to distribute a secret s among n parties such that only some predefined
“authorized” sets of parties can reconstruct the secret s, and all other “unauthorized” sets learn
nothing about s. For over 30 years, it was known that any (monotone) collection of authorized
sets can be realized by a secret-sharing scheme whose shares are of size 2n−o(n) and until recently
no better scheme was known. In a recent breakthrough, Liu and Vaikuntanathan (STOC 2018)
have reduced the share size to 20.994n+o(n), and this was further improved by several follow-ups
accumulating in an upper bound of 1.5n+o(n) (Applebaum and Nir, CRYPTO 2021). Following these
advances, it is natural to ask whether these new approaches can lead to a truly sub-exponential
upper-bound of 2n1−ε

for some constant ε > 0, or even all the way down to polynomial upper-bounds.
In this paper, we relate this question to the complexity of computing monotone Boolean functions

by monotone real circuits (MRCs) – a computational model that was introduced by Pudlák (J. Symb.
Log., 1997) in the context of proof complexity. We introduce a new notion of “separable” MRCs
that lies between monotone real circuits and monotone real formulas (MRFs). As our main results,
we show that recent constructions of general secret-sharing schemes implicitly give rise to separable
MRCs for general monotone functions of similar complexity, and that some monotone functions (in
monotone NP) cannot be computed by sub-exponential size separable MRCs. Interestingly, it seems
that proving similar lower-bounds for general MRCs is beyond the reach of current techniques.

We use this connection to obtain lower-bounds against a natural family of secret-sharing schemes,
as well as new non-trivial upper-bounds for MRCs. Specifically, we conclude that recent approaches
for secret-sharing schemes cannot achieve sub-exponential share size and that every monotone
function can be realized by an MRC (or even MRF) of complexity 1.5n+o(n). To the best of our
knowledge, this is the first improvement over the trivial 2n−o(n) upper-bound. Along the way, we
show that the recent constructions of general secret-sharing schemes implicitly give rise to Boolean
formulas over slice functions and prove that such formulas can be simulated by separable MRCs of
similar size. On a conceptual level, our paper continues the rich line of study that relates the share
size of secret-sharing schemes to monotone complexity measures.
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1 Introduction

Secret-sharing schemes were originally presented by Shamir and Blakley [45, 11] at 1979,
and since then have become a central cryptographic tool with a wide range of applications
including secure multiparty computation protocols [8, 16], threshold cryptography [20], access
control [37], attribute-based encryption [25, 52], and oblivious transfer [46, 49]. From a
technical point of view, secret-sharing schemes can be viewed as a distributed analog of
encryption. That is, given a secret message s the goal is to “split” it to n shares, s1, . . . , sn

and store each share on a different device (“party”) so that the secret can be recovered given
“sufficiently many” different shares, whereas a “small” coalition of parties should not be able
to learn anything about the secret in an information-theoretic sense. (See Definition 8 for a
formal definition of secret-sharing schemes.)

More formally, in its general form [28], the problem is parameterized by a monotone
function f : {0, 1}n → {0, 1} that specifies which coalitions should be able to recover the
secret: A coalition A is authorized if its characteristic vector xA is accepted by f , and is
unauthorized otherwise.1 For example, in the canonical case of threshold secret-sharing the
function f is a threshold function that accepts all the strings whose Hamming weight exceeds
a certain threshold. For this case, Shamir’s polynomial-based scheme [45] provides a solution
whose complexity, measured as the total share-size

∑
i |si|, is quasi-linear, O(n log n), in the

number of parties n.

The complexity of general secret-sharing schemes

Determining the share size of secret-sharing schemes realizing general monotone functions
is a basic, well-known, open problem in information-theoretic cryptography. For almost 30
years, since the pioneering work of Ito et al. [28], all known upper-bounds on the secret-
sharing cost of f (measured as the best achievable share-size) have been tightly related to
the computational complexity of f measured under various computational models such as
monotone formula size and monotone span-program size [9, 32, 10]. Consequently, when
f is taken to be a worst n-bit monotone function, these constructions lead to exponential
upper-bounds of 2n(1−o(1)).

In the past few years, the seemingly tight correspondence between computational com-
plexity and secret-sharing complexity was challenged. In a breakthrough result, Liu and
Vaikuntanathan [35] (hereafter referred to as LV) showed, for the first time, that it is possible
to construct secret-sharing schemes in which the total share size is 2cn+o(n), for some constant
c < 1. This shows that the secret-sharing complexity of worst-case monotone functions is

1 Monotonicity here means that for any A ⊂ B it holds that f(xA) ≤ f(xB). It is not hard to see that
a non-monotone function does not admit a secret-sharing scheme, and therefore this requirement is
necessary.
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significantly smaller than their computational complexity, which is known to be 2n(1−o(1)),
even with respect to liberal models such as Boolean circuits. The latter bound can be proved
via a standard counting argument [42], see, for example, [30, Chapter 1]. While the original
LV result achieved an exponent of c ≈ 0.994, subsequent works [1, 2, 3] have shown that the
secret-sharing complexity can be significantly improved culminating in an upper bound of
1.5n+o(n) [3]. Following these advances, it is natural to ask how much additional progress
can be made using these new tools. Specifically,

Can we use “LV-based techniques” to obtain general secret-sharing schemes with truly
sub-exponential upper-bound of 2n1−ε for some constant ε > 0?

1.1 Our Results

Formulas over slices

To answer the above question, we introduce a new natural monotone complexity measure.
For a monotone function f , denote by FS(f) the size of the smallest formula over slices (FOS)
that computes f , where a formula over slices is a formula such that each gate computes some
(k, ℓ)-slice function g : {0, 1}ℓ → {0, 1} that takes arbitrary values on inputs of Hamming
weight k, rejects lighter inputs, and accepts heavier inputs. The values of k (the weight of
the gate) and ℓ (the fan-in of the gate) can vary between different gates in the formula and
are allowed to be arbitrarily large. Since AND/OR gates are also slice functions, FS(f) is
upper-bounded by the size of the (standard) monotone formula that computes f . Of course,
the FOS model is much stronger. The number of (n/2, n)-slices is 2( n

n/2), and so, by counting,
even a single slice gate cannot be simulated by a small (e.g., sub-exponential) monotone
circuit.

Recent secret-sharing yield formulas over slices

In the full version of the paper, we show that all known non-linear constructions [35, 1, 2, 3, 7]
of secret-sharing schemes with non-trivial share size (2cn for a constant c < 1) give rise to
FOS of similar size.2 That is, we show that these constructions implicitly take the following
route: (1) Realize f via a 2cn-size formula F whose gates are taken from a sub-family
of slice functions that has a relatively cheap secret-sharing implementation (a.k.a. CDS
protocols) [36]; (2) Use a generic transformation from formulas to secret-sharing (à la [9], see
the full version of the paper for details) that yields a secret-sharing scheme with share size 2cn.
While [35] already observed that their scheme can be described under the above framework,
this observation is less apparent for some of the subsequent constructions, e.g., [2, 3, 7].3
Specifically, based on [2], we prove the following theorem.

▶ Theorem 1. Every monotone function f : {0, 1}n → {0, 1} can be computed by a constant-
depth FOS F of size 1.5n+o(n) = 20.585n+o(n).

2 There are some linear constructions that are not captured by this framework (e.g., in the appendix
of [2]), however for such linear constructions an exponential lower-bound of 2n/2 is known [4].

3 The latter works develop “immunization” tools that allow to take simple secret-sharing schemes and turn
them into “robust” schemes that can be employed several times while re-using the same randomness.
Somewhat surprisingly, these tools can be eventually translated to FOS constructions; see the full
version of the paper.

ITCS 2022
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From FOS to monotone real circuits (MRCs)

Getting back to our motivating question, we ask whether it is possible to prove a sub-
exponential upper-bound on FS(f) for a general n-bit monotone function. We cope with
this question by turning FOS into monotone real circuits (MRCs) [40]. MRCs generalize the
standard notion of monotone Boolean circuits by making use of fan-in 2 monotone real gates
that compute arbitrary real-valued operators g : R × R → R that are monotone over the
reals, i.e., for every x ≤ x′ and y ≤ y′, it holds that g(x, y) ≤ g(x′, y′). A beautiful result
of Rosenbloom [43] shows that any slice function SL : {0, 1}n → {0, 1} can be computed by
a read-twice monotone real formula (MRF) FSL of size O(n).4 Consequently, any FOS F

can be converted into an MRC F ′ of similar size. The resulting circuit has many gates of
fan-out 2 (originating from the read-twice inputs of FSL) and so it is not an MRF. (Indeed,
we do not know whether FOS can be simulated by MRFs with polynomial overhead.) This
is unfortunate since for MRCs the best known lower-bounds are sub-exponential 2nε for
constants ε < 1 (based on extensions of Razborov’s approximation method [41, 40]). No
better lower bounds are known for MRCs (even for implicit functions). For MRFs one can
hope to prove stronger lower-bound via communication complexity methods [31, 33].

Separable MRCs

We bypass the above problem by observing that the circuit F ′, which is obtained by computing
a formula F over Rosenbloom’s formulas FSL, has small separators. Roughly speaking, every
rooted sub-circuit F ′

0 of F ′ can be “broken” to k = O(1) sub-circuits each containing at most
α-fraction of the nodes of F ′

0 for some constant α < 1. This notion of “separable circuits”
generalizes the notion of formulas (for which k = 2 and α = 2/3). Indeed, in the context
of Boolean circuits, it is known that separability can be used to “balance” the circuit and
turn it into a formula of comparable size [22]. While we do not know how to prove a similar
result for separable MRCs, we can show that formula lower-bound techniques extend to
this case as well. Specifically, we prove that the size of separable MRCs is exponential in
the randomized communication complexity of the corresponding KW-game, extending the
result of Krajíc̆ek [33] that was originally proved for MRFs. Together with a randomized
communication complexity lower bound of Göös and Pitassi [24], we derive the following
result. (See Section 3.)

▶ Theorem 2. There exists a function in monotone NP that requires size 2Ω(n/ log2 n) formulas
over slice gates. Moreover, this holds even for formulas that use both slice gates and monotone
real gates.

We do not know whether logarithmic terms in the exponents can be shaved, but we
observe that if the bound is tight and the fan-in of the slice gates is bounded by a polynomial
in n, then one can obtain an interesting improvement on the rate of secret-sharing schemes
for very long secrets. In fact, such an improvement can be obtained even if the upper-bound
is 2o(n/ log n) and even if only the weight of the slice gates is restricted to poly(n) but the
fan-in may be arbitrary. (See Section 5.)

4 A monotone real circuit computes a Boolean function f : {0, 1}n → {0, 1} if for every binary input
x ∈ {0, 1}n the circuit outputs the Boolean value f(x). Note that the intermediate values induced on
internal wires may not be binary.
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▶ Theorem 3. Suppose that the function f : {0, 1}n → {0, 1} can be computed by a FOS of
size 2o(n/ log n) over slice functions of weight bounded by poly(n). Then, for a sufficiently
long secret s, the function f can be realized with share size 2o(n) · |s|.

We mention that currently we do not have non-trivial upper-bounds on the rate of worst-case
secret-sharing (even for very long secrets) apart from the ones that follow from the case of
single-bit secrets (e.g., 1.5n+o(n) · |s|).

Moving back to upper-bounds, we observe that existing secret-sharing schemes also
give rise to non-trivial MRCs and even MRFs. In particular, by plugging in Rosenbloom’s
construction in the FOS obtained by Theorem 1, and by exploiting the fact that the depth
of the FOS of Theorem 1 is constant, we derive the following upper-bound on the worst-case
complexity of MRFs for n-bit functions (also known as the Shannon function [30] of MRFs).

▶ Corollary 4. Every monotone function f : {0, 1}n → {0, 1} can be computed by an MRF
F of size 1.5n+o(n) = 20.585n+o(n).

To the best of our knowledge, this is the first non-trivial improvement over the naive 2n−o(n)

bound, even for the case of MRCs. An even more dramatic improvement can be obtained for
“typical” monotone functions based on the results of Beimel and Farràs [6]. Specifically, all
but o(1)-fraction of all n-bit monotone functions can be realized by an MRF of size 2Õ(

√
n).

(See the full version of the paper.)

Secret-sharing vs. MRCs

While the worst-case upper bounds for MRCs and secret-sharing schemes are currently
equal, we observe that for concrete functions secret-sharing complexity and MRC size can be
separated. Specifically, in Section 4, we show that secret-sharing complexity can be super-
polynomially cheaper than MRC size and exponentially cheaper than FOS and MRF sizes.
On the other direction, we derive an almost quadratic separation, that is, we construct an
MRF of size O(n) for an explicit function that, by [18], requires total share size Ω(n2/ log n);
this is the best possible given that existing secret-sharing lower-bounds [18]. We note that
there are concrete functions for which the share size of the best known secret-sharing scheme
is super-polynomially larger than the MRC size. Most notably, the best secret-sharing
construction of (n/2, n)-slices has share size of 2Õ(

√
n) [36, 35], whereas such functions can

be realized by a single slice gate, i.e., a linear size MRC (or even MRF). We further present
a 2Ω(n) gap for the case of uniformly chosen DNFs of Ω(n) width. We prove that the same
gap also exists, perhaps more surprisingly, between FOS and secret-sharing. Along the way,
we prove that MRCs are closed under duality – an interesting property that may be useful
elsewhere. (See Appendix A.)

Conclusion and open questions

Our work continues the rich line of study that relates the share size of secret-sharing
schemes to monotone complexity measures. We import lower-bounds from the computational
complexity world to the domain of secret-sharing schemes and use recent constructions of
secret-sharing schemes to obtain new algorithmic results for several monotone computational
models. Our results highlight several interesting open questions in both domains. We list
some of them here.

First, it will be interesting to better understand the power of formulas over slices (possibly
with some bound on the fan-in). What is the relation between such formulas and monotone
real formulas? As far as we know these two models may be incomparable. Also, we know how

ITCS 2022
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to balance FOS, so is it possible to balance MRFs as well? On the secret-sharing front, it is
natural to ask whether one can beat the FOS lower bound. One potential route is to replace
some of the existing steps with “non-FOS-able realizations”. Most notably, as mentioned in
Footnote 3, one of the important ingredients in recent constructions is some form of “robust”
secret-sharing for simple functions (a.k.a. robust CDS protocols) [2]. While we showed that
the main instantiations of this primitive can be cast as FOS, one may still hope to find other
realizations that do not have this feature. Indeed, some linear and quadratic realizations of
this primitive [2, 7] do not seem to have a “FOS interpretation”, though these constructions
are currently too expensive to be useful.

1.2 Other Related Work

Monotone real circuits

Monotone real circuits were defined by Pudlák [40], whose motivation was proof complexity
applications, i.e., proving lower bounds for cutting planes proofs. Exponential lower bounds
for monotone real circuits were obtained in [40, 26, 48, 29, 23]. Specifically, for a function
f : {0, 1}n → {0, 1}, the best lower bound is 2Ω̃(n1/3) [48] (this function is only partially
explicit). For an explicit function the best known lower bound is 2Ω(n1/4√

ln n) [29, 30]. Hrubes̆
and Pudlák [27] proved that if an n-bit function can be computed by a monotone real circuit
of size s using k-ary monotone gates, then it can be computed by a monotone real circuit
(with real gates with fan-in 2) of size O(snk−2).

Real communication protocols

A beautiful characterization by Karchmer and Wigderson [31] shows that a Boolean function
f has a monotone formula of size s if and only if the monotone Krachmer-Wigderson (KW)
game associate with f (see Definition 9) has communication complexity log s. Krajíc̆ek [33]
defined real communication protocols in which the 2 parties have access to a greater-than
oracle, and proved that the real communication complexity of the monotone KW game of a
function f is at most logarithmic in the size of the monotone real formula that computes f .

Hrubes̆ and Pudlák (HP) [27] considered a restricted class of real communication protocols
and showed that, for every monotone function f , the minimal real communication complexity
of monotone KW game that can be achieved by such protocols equals to the monotone
real circuit complexity of f . (It is unknown whether any Krajíc̆ek’s type protocol can be
translated into an HP-type protocol.) Chattopadhyay et al. [15] proved a lower bound of
Ω(n) on the complexity of a real communication protocol for an n-bit function; however their
lower bound is not for the monotone KW game of a function and therefore it does not imply
lower bounds for monotone real formulas.

Balancing formulas

There are many papers showing how to balance a formula starting with the work of Spira [47],
who proved that any Boolean formula F of size s can be simulated by an equivalent
formula of depth O(log s). There are several results improving or extending Spira’s theorem,
e.g., [12, 44, 53, 13, 50, 14, 22]. Specifically, Wegener [53] proved the statement for monotone
Boolean formulas. Furthermore, Gál and Jang [22] showed how to balance circuits with small
segregators, and, in particular, circuits with small separators.
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Lower bounds for secret-sharing schemes

The best known lower bound on the share size of secret-sharing schemes is far from the
exponential upper bounds on the share size described above. Csirmaz [17, 18] proved that
there is an explicit monotone function f : {0, 1}n → {0, 1} that requires total share size
of Ω(n2/ log n) times the size of the secret in any secret-sharing scheme realizing it. No
better lower bounds are known for secret-sharing schemes (even for non-explicit monotone
functions). Better lower bounds are known for linear secret-sharing schemes, which are
schemes based on monotone span programs [32]. Pitassi and Robere [39] showed an explicit
n-bit function (for every n) that requires share size of 2Ω(n) times the length of the secret in
any linear secret-sharing scheme realizing it. Furthermore, Babai, Gál, and Wigderson [4]
showed that for almost all monotone functions, the share size in any linear scheme for one-bit
secrets over any finite field is Ω(2n/2) times the length of the secret. Furthermore, Beimel
and Ishai [10] observed that if a monotone function can be realized by an efficient linear
secret-sharing scheme, then the function has a (non-monotone) NC-circuit.

2 Preliminaries

In this section we define the circuits and formulas we consider in this work. We start with
the definition of monotone real formulas and circuits, introduced in [40].

▶ Definition 5 (Monotone real circuits and formulas). A monotone real function f : Rn → R
is a real function in which for every two inputs x = (x1, . . . .xn), x′ = (x′

1, . . . , x′
n) ∈ Rn such

that xi ≤ x′
i for every i ∈ [n], it holds that f(x) ≤ f(x′). A monotone real gate G takes as

an input n values x1, . . . , xn ∈ R, computes some monotone real function f : Rn → R, and
returns f(x1, . . . , xn) as an output. A monotone real circuit (MRC) C is a circuit in which
each gate is a monotone real gate G with fan-in 2 and for every input x ∈ {0, 1}n the output
of the circuit C is Boolean. A monotone real formula (MRF) is a monotone real circuit
whose DAG is a tree.

Note that in an MRC/MRF the inputs and outputs are Boolean, while the values on
internal edges can be any real numbers. We allow AND and OR gates and other Boolean
gates in an MRC with the convention that their inputs are always Boolean. Taking monotone
real gates with fan-in 2 is the more common definition of MRCs and it will help us prove our
lower bounds. Furthermore, in our constructions of MRFs the fan-in of all gates is 2.

We continue with the definition of slice gates and formulas over slice gates. Throughout
the paper, we denote the Hamming weight of a string y by wt(y).

▶ Definition 6 (Slice gates and formulas over slice gates). A (k, n)-slice function f : {0, 1}n →
{0, 1} is a monotone function such that for every y ∈ {0, 1}n:

If wt(y) < k, then f(y) = 0.
If wt(y) = k, then f(y) can be either 0 or 1.
If wt(y) > k, then f(y) = 1.

We refer to k as the weight of the gate. A (k, n)-slice gate is a monotone gate computing
a (k, n)-slice function. A formula over slice gates (FOS) is a formula F whose gates are
slice gates; we stress that each slice gate in F can have different values for k and n (and in
particular the fan-in of each slice gate is arbitrary).

ITCS 2022



8:8 Secret Sharing, Slice Formulas, and Monotone Real Circuits

▶ Example 7. An AND gate with n inputs is an (n, n)-slice gate.5 An OR gate with n

inputs is a (1, n)-slice gate. Another example of a slice gate computing a k-threshold function
(i.e., computing the function TRk : {0, 1}n → {0, 1} such that TRk(y) = 1 if and only if
the string y contains at least k ones). However, slice gates can compute a richer class of
functions and the number of (k, n)-slice functions is 2(n

k).

In this paper, we define the size of a circuit/formula as the number of gates in the
circuit/formula (including input gates). This convention is used both for circuits with
monotone real gates and for formulas over slice gates. We note that since monotone real
circuits have fan-in 2, our definition of monotone real circuit size is essentially equivalent to
the definition that counts the total number of edges in the circuit. Furthermore, the same is
true for formulas.

We recall the definition of generalized secret-sharing schemes.

▶ Definition 8. An n-party secret-sharing scheme, with domain of secrets S such that
{0, 1} ⊆ S and finite domains of shares S1, . . . , Sn, is a randomized (possibly inefficient)
algorithm D that maps a secret s ∈ S to a vector of shares (s1, . . . , sn) ∈ S1 × · · · × Sn.
We say that D realizes a (possibly partial) monotone function f over {0, 1}n if for every
x ∈ {0, 1}n and every pair of secrets s, s′ ∈ S the random variables (s1, . . . , sn) obtained by
invoking D on s, and the random variables (s′

1, . . . , s′
n) obtained by invoking D on s′ satisfy

the following properties:
Correctness. If f(x) = 1 then the random variables sx = (si)i:xi=1 and s′

x = (s′
i)i:xi=1 have

disjoint supports, that is, one can recover the secret from the shares sx.
Privacy. If f(x) = 0 then the random variable sx is identically distributed to the random

variable s′
x, that is, the shares sx do not disclose any information on the secret.

The secret size in a secret-sharing scheme D is defined as log |S|, the share size of the scheme
D is defined as the size of the largest share, i.e., max1≤i≤n{log |Si|}, and the total share size
is defined as the sum of the sizes of the shares , i.e.,

∑
1≤i≤n log |Si|. The information ratio

(resp., total information ratio) of the scheme is defined as the ratio between the share size
(resp., total share size) and the secret size.6

For more information on secret-sharing schemes, one can refer to, e.g., [5].

3 Lower Bounds for Formula Size over Slice Gates

In this section, we prove Theorem 2 by showing that there exists a function in monotone NP
that requires size 2Ω(n/ log2 n) formulas over slice gates.

Our result goes through monotone real circuits. First, a result of Rosenbloom [43] shows
that any slice function over k bits can be computed by an O(k)-size O(log k)-depth read-twice
monotone real formulas. Therefore, a formula over slices of size s can be transformed into a
monotone real circuit of size O(s). While this transformation preserves the size it may blow
up the depth of the circuit.7 This is unfortunate since we only know how to prove strong
(almost-exponential) lower-bounds against low-depth circuits.

5 It is also an (n − 1, n)-slice gate.
6 The maximal/total share-size measures essentially ignore the bit-length of the secret, whereas the

maximal/total information-ratio measures normalize the bit length of the longest share/sum of the
shares by the length of the secret, and are therefore more suitable to the case of long secrets.

7 To illustrate this point, consider a balanced formula over slices of size s = O(2n0.8
) that consists of slice

gates whose fan-in is 2n0.5
that are connected sequentially in a path of length n0.8. (All other gates are

fan-in 2 gates.) Each slice gate can be replaced by Rosenbloom’s monotone real read-twice formula
whose depth is O(n0.5), leading to a monotone real circuit of depth O(n0.5 · n0.8) > n.
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To overcome this problem, we observe that the monotone real circuit that we get can be
separated into smaller sub-circuits by deleting 2 gates. This fact enables us to construct a
balanced real protocol for the monotone Karchmer-Wigderson (KW) game whose complexity
is O(log s). (See Section 3.1.) We then prove a lower bound on the complexity of real
protocols for the monotone KW game of an explicit function, using a lower bound of Göös
and Pitassi [24] on the randomized monotone KW game of this function. (See Section 3.2.)
By combining these steps, we obtain 2Ω(n/ log2 n) size lower bounds on the size of separable
monotone real circuits for an explicit function, thus, implying the same lower bounds for
formulas over slices.

3.1 Converting a Formula over Slice Gates to a Real Protocol for the
Monotone KW Game

To prove our results, we need the following definitions.

▶ Definition 9 (Monotone KW games [31]). Let f : {0, 1}n → {0, 1} be a monotone function.
The monotone KW game associated with f is a two-player communication game. Alice
receives an input u ∈ f−1(1) and Bob receives an input v ∈ f−1(0), and they communicate
in order to find an index i such that ui > vi.

▶ Definition 10 (Real communication protocols). In a real communication protocol, de-
terministic Alice and Bob interact via a referee. At the start Alice has a binary string
u ∈ U ⊆ {0, 1}n and Bob has v ∈ V ⊆ {0, 1}n. At round i, Alice and Bob each send a real
number ai(u) and bi(v), respectively, to a referee, where ai(u) depends on u and the bits sent
by the referee so far, and similarly bi(v) depends on v and the bits sent by the referee so far.
The referee sends to both players 1 if ai(u) > bi(v) and otherwise it sends 0. Each player
does not see the numbers sent by the other player. At the end of the protocol both players
should know the value of the function or the same solution to the search problem that they are
solving. The complexity of the protocol is the maximum number of rounds (or equivalently
the number of bits sent by the referee) over all inputs of Alice and Bob of length n.

Krajíc̆ek [33] showed that if a function has a monotone real formula of size s, then the
associated monotone KW game can be solved by a real protocol with complexity O(log s).
We generalize this result to monotone real circuits that have small separators. A similar
result for Boolean circuits has been proved by Gál and Jang [22]. In the following, we say
that a directed-acyclic graph (DAG) G = (V, E) has a root (or a source) if there exists a
vertex s ∈ V such that for every v ∈ V there is a path from s to v in G. Clearly, a DAG has
at most one root. We say that a vertex v is reachable from a vertex u if there is a path from
u to v.

▶ Definition 11. A DAG G = (V, E) with a root is (α, k)-separable if for every sub-graph
G′ = (V ′, E′) of G (i.e., V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′)) that has a root there exist k

vertices a1, . . . , ak in V ′ such that:
For every ℓ ∈ [k], the number of vertices reachable in G′ from aℓ is at most α|V ′|.
If we remove the out-going edges of the vertices a1, . . . , ak from G′, then the number of
vertices reachable from the root of G′ in the resulting graph is at most α|V ′|.

▶ Example 12. A well-known result states that every directed binary tree is (2/3, 1)-separable,
i.e., it contains a vertex that separates the tree to two components, each component of size
at most 2/3 of the size of the original tree. To see this, we start at the root of the tree T and
follow a path through the tree, always going to the sub-tree of larger size. The procedure
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stops whenever we hit a vertex u such that the sub-tree, Tu, rooted at u has a size less than
2/3 times the size of the entire tree T . Since u is the largest child of a vertex whose sub-tree
has size at least 2/3 times the size of T , it follows that Tu has size at least 1/3 times the
size of T , and therefore we can separate T into two components, T − Tu and Tu, where each
component has size between 1/3 and 2/3 times the size of T .

We next prove that for every monotone real circuit of size s that is separable, the monotone
KW game of the function computed by the circuit has a real protocol with complexity O(log s).
Specifically, we use the balancing technique, introduced by Spira [47] for Boolean formulas
and used by Krajíc̆ek [33] for constructing real protocols from monotone real formulas.

▶ Lemma 13. Let f : {0, 1}n → {0, 1} be a monotone function computed by a monotone
real circuit C of size s. If the DAG of C is (α, k)-separable, then the monotone KW game
associated with f can be computed by a real protocol with complexity O(k log1/α s).

Proof. We use C to construct a real protocol for the monotone KW game with complexity
O(k log1/α s). In this protocol, Alice is given u ∈ f−1(1), Bob is given v ∈ f−1(0), and they
want to find an index j such that uj > vj .

We first make the following easy but important observation. The function h computed at
the root of C has the property that h(u) > h(v). Furthermore, for every internal vertex a

of C with children b, c, if ha(u) > ha(v) (where ha is the function computed at vertex a),
then either hb(u) > hb(v) or hc(u) > hc(v). This holds by monotonicity, because ha(x) is by
definition a monotone function of hb(x) and hc(x).

For a circuit C, we consider the rooted DAG G whose vertices are the gates of the circuit
(including the input gates), and for each internal gate there are edges directed from the gate
to its input gates. Given inputs u, v, we color each vertex a of G by Red or Blue, where Red
means that the function computed at this vertex has ha(u) > ha(v) and Blue otherwise. We
say that a path is Red if all its vertices are Red. By the above observation, the root of G is
colored Red, and for each vertex that is Red, at least one of its children is Red, and thus
there must exist a Red path from any Red node (in particular, the root) to a Red leaf. A
Red leaf is what we are after since each leaf is labeled by a coordinate j and if it is Red, then
we must have uj > vj as desired. This leads to a simple real protocol where Alice and Bob
traverse a Red path from the root to a leaf; however, the complexity of this protocol is the
depth of G (i.e., the maximal length of a path from the root to a leaf), which can be O(s).

We design an efficient real protocol finding a Red leaf in iterations, using the fact that
the players can determine in one round whether any particular vertex is colored Red or Blue.
At iteration i, the parties hold a sub-graph Gi of G of size at most αis; this sub-graph has a
root whose color is Red and contains a Red path from every red vertex to a Red leaf. So
after O(log1/α s) iterations, Alice and Bob will have arrived at a Red leaf labeled by some
coordinate j where uj > vj as desired.

Iteration i = 0

Alice and Bob are at the root vertex of the graph G that computes f and by definition it is
Red.

Iteration i

In the beginning of the iteration, Alice and Bob are at a Red vertex rooted at a sub-graph
Gi of G of size at most αis and do the following:
1. Find k vertices a1, . . . , ak that separate the sub-graph Gi.
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2. For ℓ = 1 to k do:
Alice locally computes the value of the monotone function computed by vertex aℓ in C

on her input u, and similarly Bob locally computes the value on his input v. They
send these values to the referee, who tells them which is larger. If Alice’s value is
larger, then aℓ is Red, so they take Gi+1 = Gaℓ

, the sub-graph rooted at aℓ in Gi, and
continue to the next iteration.

3. Otherwise, a1, . . . , ak are Blue. Alice and Bob take the sub-graph Gi+1, obtained from
Gi by removing all out-going edges of aℓ for each ℓ ∈ [k], and removing all vertices not
reachable from the root of Gi. Clearly, Gi+1 is a rooted DAG whose root is Red. As we
removed sub-graphs rooted at Blue vertices, each Red vertex in Gi+1 has a Red path to
a leaf.

In each of the cases in the iteration i, the number of vertices of the sub-graph Gi+1 is at
most α times the number of vertices Gi. Thus, after O(log1/α s) iterations, Alice and Bob
reach a Red leaf. As each iteration contains at most k rounds, the theorem follows. ◀

We show that if f has a monotone formula over slice gates of size s, then the real commu-
nication complexity of the associated monotone KW game is at most O(log s). By Lemma 13,
it suffices to show that every monotone formula over slice gates of size s can be converted to
a monotone real circuit of size O(s) whose DAG is (5/6, 2)-separable. This is done using the
following result of Rosenbloom [43], showing that monotone real formulas can compute the
class of all slice functions very efficiently. We provide a proof sketch of this result since we
use specific properties of Rosenbloom’s construction.

▶ Theorem 14 ([43]). Every slice gate with fan-in t can be computed by a read-twice fan-in-2
monotone real formula of size O(t) and depth O(log t).

Proof sketch. Given x = (x1, . . . , xt), associate with it two integers p(x) = wt(x) · 2t + b(x)
and m(x) = wt(x) · 2t − b(x) where wt(x) is the number of 1’s in x and b(x) is the integer
represented by the string x, i.e., b(x) =

∑t
i=1 2i−1xi. The mapping x 7→ (p(x), m(x)) has

the following useful feature. For every pair of distinct strings u ̸= v, if wt(u) < wt(v), then
the pair (p(u), m(u)) is strictly smaller than the pair (p(v), m(v)) (i.e., both p(u) < p(v)
and m(u) < m(v)); On the other hand, if wt(u) = wt(v), then the pair (p(u), m(u)) is
incomparable to the pair (p(v), m(v)) (i.e., p(u) < p(v) if and only if m(u) > m(v)).

Now if f is a slice function (defined on inputs of weight k) then there is a monotone
function G from R2 to {0, 1} such that G(p(x), m(x)) = f(x) for all x ∈ {0, 1}n for which
wt(x) = k. Furthermore, p(x) =

∑t
i=1(2t + 2i−1)xi and m(x) =

∑t
i=1(2t − 2i−1)xi. Thus,

both p(x) and m(x) can be computed by a binary tree whose vertices compute (weighted)
addition over the reals. Thus, any slice gate can be simulated by a monotone real formula
with addition gates computing p(x) and m(x) and the top real gate computing G on these
inputs. ◀

Let m(x) and p(x) be the functions from the proof sketch of Theorem 14. In the sequence,
we will refer to the tree computing m(x) as the left tree and to the tree computing p(x) as
the right tree. Furthermore, for each vertex a in the left tree, we will refer to the analogous
vertex in the right tree as the twin of a.

Given a formula over slice gates, we can replace each slice gate with the monotone real
formula of Rosenbloom. However, since this formula is read-twice, we get a monotone real
circuit. Thus, we cannot directly apply the results of [33] that hold for monotone real formulas
to obtain a lower bound for formulas over slice gates. We exploit the structure of the circuit
and the structure of Rosenbloom’s formula to prove that the DAG of the resulting monotone
real circuit is separable by two vertices.
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An example of a simple slice formula F . The formula has 5 input bits and one slice gate with
fan-in 4.

The formula F after the Rosenbloom transformation is applied to its slice gate. The slice gate
becomes a tree of real gates, and the DAG structure is transformed from a formula to a circuit.
The (real) gates a and its twin t(a) are an example of separators for the circuit’s DAG.

Figure 1 An example of a balancing step that goes through the Rosenbloom transformation.

▶ Lemma 15. Let f : {0, 1}n → {0, 1} be a monotone function computed by a size s formula
over slice gates and monotone real gates. Then the monotone KW game associated with f

can be computed by a real protocol with complexity O(log s).

Proof. Let F be a size s formula over slice gates and monotone real gates computing f . We
replace each slice gate in F with the read-twice monotone real formula of Rosenbloom and
get a monotone real circuit C of size O(s) computing f . We next prove that G = (V, E) – the
DAG of C – is (5/6, 2)-separable. Let G′ = (V ′, E′) be a sub-graph of G that contains a root.
Construct from G′ a tree T = (VT , ET ) by merging each pair of twins in G′ to one vertex (if
a vertex does not have a twin in G′ we keep it in the tree). Clearly, 0.5|V ′| ≤ |VT | ≤ |V ′|. As
in Example 12, T has a vertex a that separates it to two sub-trees of size at least 1/3|VT | and
at most 2/3|VT |. If a is a merge of two twins a1, a2 in G′, then take these two twins as the
separating set in G′. Otherwise take a as the separating set. See Figure 1 for an illustration
of such a graph and a separating set in it. We prove that this is a good separating set by
showing that (1) the number of vertices not reachable from the root of G′ after removing the
separating set is at least 1/6|V ′|, and (2) the number of vertices not reachable by each of the
vertices in the separating set is at least 1/3|VT | ≥ 1/6|V ′|.

Let us start with (1). As the number of vertices reachable from the root of T after
removing a is at most 2/3|VT |, the number of vertices not reachable from the root of T after
removing a is at least 1/3|VT | ≥ 1/6|V ′|. Thus, the number of vertices not reachable from
the root of G′ after removing the separating set is at least 1/6|V ′|. Similarly, to see that
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(2) holds, observe that the number of vertices not reachable in G′ by each of the vertices in
the separating set is at least 1/3|VT | ≥ 1/6|V ′|. This implies that the number of vertices
reachable in G′ by each of the vertices in the separating set and by the root after removing
the separating set is at most 5/6|V ′|.

Since the DAG of C is (5/6, 2)-separable, then by Lemma 13, the monotone KW game
associated with f can be computed by a real protocol with complexity O(log s). ◀

3.2 Completing the Proof of the Lower Bounds for Formula Size over
Slice Gates

Next we show that real protocols can be simulated by randomized protocols in the plain
model.8 This lemma was originally proved in [33].

▶ Lemma 16. A real communication protocol for the monotone KW game for f : {0, 1}n →
{0, 1} with complexity d implies a randomized communication protocol for the monotone KW
game with complexity O(d log n).

Proof. If d ≥ n/ log n the theorem is trivial since the monotone KW game can be solved
by a (deterministic) protocol with complexity O(n). Thus, in the sequence we assume that
d ≤ n/ log n.

We will show that every round of a real protocol can be simulated by a randomized
communication protocol of cost O(log n). Recall that a round in the real protocol consists of
Alice and Bob each sending arbitrary real numbers a, b (which depend on their respective
inputs and the communication so far) to a referee, who responds with 1 if a > b and 0
otherwise. Although these values can be any real numbers, in each round i there are at most
2n values c1, c2, . . . , c2n that Alice and Bob can send to the referee in the (deterministic)
real protocol (i.e., one value per each input). Assume that these values are sorted, i.e.,
c1 < c2 < · · · < c2n . Assume that in round i, Alice sends cj and Bob sends ck, and the
referee returns 1 if cj > ck, which is true if and only if j > k. Thus, we can replace the
message of Alice by j and the message of Bob by k, i.e., all numbers are n bit strings. Since
this is just the greater-than (GT) function, it can be computed by a randomized protocol for
GT, whose complexity for an error ε is O(log n + log ε−1) [38, 51]. We will want the overall
error to be bounded by a constant, so we will set ε = O(1/d). Thus, the GT protocol for
simulating one round costs O(log n + log d) = O(log n) (since d ≤ n/ log n) so the cost of
simulating d rounds is O(d log n). ◀

Göös and Pitassi [24] proved that there is a function f in monotone NP that requires
monotone circuit depth Ω(n/ log n), and therefore monotone formula size 2Ω(n/ log n). This
is equivalent to proving that the deterministic communication complexity of the monotone
KW game of f is Ω(n/ log n). However, Göös and Pitassi proved that this lower bound also
applies to the randomized communication complexity of the monotone KW game of f ; this
gives the best known lower bound for the randomized complexity of a monotone KW game
of a function.

▶ Theorem 17 (Implicit in [24]). There is a function f in monotone NP such that the
randomized communication complexity of the monotone KW game for it has complexity
Ω(n/ log n).

8 For the definition of randomized protocols see, e.g., [34].
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We are ready to complete the proof of Theorem 2, the lower bound on the size of a
formula over slice gates and monotone real gates.

Proof of Theorem 2. Consider the function f from Theorem 17, and suppose for contra-
diction that f is computable by a formula over slice gates and monotone real gates of size
2o(n/ log2 n). By Lemma 15, this implies that the monotone KW game for f has a real
communication protocol of cost o(n/ log2 n), and by Lemma 16, the monotone KW game
for f has a constant-error randomized protocol of cost o(n/ log n). But this contradicts
Theorem 17, and thus f requires size 2Ω(n/ log2 n) formulas over slice gates and monotone real
gates. ◀

4 Secret Sharing and Monotone Real Computation are Incomparable

In this section, we show that for some monotone functions f , there are provable gaps between
the secret-sharing complexity (measured as the total share size of a secret sharing scheme
that realizes f), the MRC complexity, and the MRF complexity. Thus, we separate these
complexity measures.

4.1 Secret Sharing can be Super-Polynomially Cheaper than Monotone
Real Circuits

Let OddFactorn denote the monotone function that takes n = v2 inputs representing the
edges of a bipartite graph X with v vertices in each part, and outputs 1 if and only if the
graph X has an odd factor, i.e., a spanning sub-graph such that all vertices have an odd
degree in the sub-graph. Existing results can be used to show that the function OddFactorn

demonstrates a super-polynomial gap between secret-sharing complexity and Monotone Real
Circuits complexity.

▶ Theorem 18. The function OddFactorn has a secret-sharing scheme with total share size
n, but any MRC that computes OddFactorn must be of size nΩ(log n) and any MRF that
computes OddFactorn must be of size 2Ω(

√
n/ log n). Moreover, the latter bound holds also for

formulas that employ both real gates and slice gates.

Proof. By [4], OddFactorn can be realized by a linear secret-sharing scheme with a one-bit
secret, a one-bit share per party, and total share size n. In the same paper it is shown that
OddFactorn requires a monotone circuit of size nΩ(log n), by reducing it to a lower bound by
Razborov [41] for the perfect matching function. Fu [21] extended Razborov’s lower bound
to monotone real circuits.

To prove the last part, we note that [4] also show that OddFactorn requires a monotone
formula of size 2Ω(

√
n). This lower bound goes through a lower bound of Ω(

√
n) for the

deterministic monotone KW game of OddFactorn. The proof of [4] is by reduction to the
randomized communication complexity of the disjointness function, and actually extends
to randomized monotone KW games. Therefore, by Lemmas 15 and 16, we can get a lower
bound of 2Ω(

√
n/ log n) for the size of monotone real formulas (that may also employ slice

gates) for OddFactorn. ◀

4.2 Monotone Real Formulas can be Cheaper than Secret Sharing
We prove the following theorem.
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▶ Theorem 19. There exists a monotone function that can be computed by an MRF of size
O(n) but requires a total share size of Ω(n2/ log n) for any secret-sharing scheme. Moreover,
the function has O(n2) min-terms and therefore it can be computed by a polynomial-size
monotone DNF.

Improving the gap in Theorem 19 requires proving better lower-bounds of ω(n2/ log n)
for secret sharing schemes – a task that remains open since Csirmaz’s works in the mid-
nineties [17, 18]. It should be mentioned, however, that there are candidates that seem to
demonstrate a gap of 2Ω̃(

√
n) (e.g., slice functions) or even a gap of 2Ω(n) (see Appendix A).

Recall that a ≤ b for two strings a, b ∈ {0, 1}k if ai ≤ bi for every 1 ≤ i ≤ n and a < b if
a ≤ b and there is at least one index j such that aj < bj . A min-term of a monotone function
f is an assignment b such that f(b) = 1 and f(a) = 1 for every a < b. A monotone function
is totally defined by its min-terms.

The following function will be used as a building block in the gap theorem.

▶ Definition 20 (The simple Csirmaz function Cn [17]). For every n ∈ N, let k be the largest
integer such that 2k ≤ n. The function Cn is parameterized by some non-increasing ordering
(y0, . . . , y2k−1) of all strings of length k. Here non-increasing means that

for every i < i′, it holds that yi ̸≤ yi′
. (1)

The function Cn : {0, 1}n+k → {0, 1} is the monotone function whose min-terms are 1i ◦
0n−i ◦ yi for i = 0, . . . , 2k − 1, that is, the i-th minterm contains i ones concatenated with
n − i zeros, concatenated by yi.

The simple Csirmaz function is not fully defined as the order of the strings
(y0, y1, . . . , y2k−1) is not specified. In the next claim we choose a specific order that will
enable us to construct a small MRF for it. The construction borrows ideas from [43] (see
Theorem 14).

▷ Claim 21. There exists a non-increasing ordering over k-bit strings for which the
corresponding function Cn has an MRF F of size O(n). Moreover, if we parse the input to
the function as (x, y) ∈ {0, 1}n × {0, 1}k, the MRF will have the following form:

F (x, y) := G(Fb(x), Fp(y)),

where the size of Fb is O(n), the size of Fp is O(k), and G is a monotone real gate.

Proof. We define the following ordering of the strings of length k using the function p defined
above:

p(y1, . . . , yk) =
k∑

i=1
(2k + 2i−1)yi,

that is p(y1, . . . , yk) = wt(y1, . . . , yk) · 2k + b(y1, . . . , yk), where wt(y1, . . . , yk) is the weight of
a string, and b(y1, . . . , yk) is the integer represented by the string (yk, . . . , y1). We order the
strings according to their p-value from largest to smallest (i.e., y1 = 1k is the k-bit string that
achieves the maximal value of p among all k-bit strings). This order is well defined since p is
injective. We next argue that if i < i′ then yi ̸≤ yi′ as required by the definition. We prove
the counter-positive. If yi < yi′ , then wt(yi) < wt(yi′), which implies that p(yi) < p(yi′)
since each 1 in the input contributes to p a huge summand of 2k and b(yi) < 2k. It follows
that i′ < i, as required.
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Before constructing an MRF for Cn we make the following observation. Parse the input
to Cn as (x, y) ∈ {0, 1}n × {0, 1}k. Recall that Cn(x ◦ y) = 1 if and only if x ◦ y is bigger
than some minterm 1j ◦ 0n−j ◦ yj of Cn. Letting i denote the index for which y = yi, this
happens if and only if x ≥ 1j ◦ 0n−j and yi ≥ yj , thus j ≥ i. Thus, Cn(x ◦ yi) = 1 if and
only if the first i bits of x are 1. We will use this characterization in order to compute Cn.

Let Fb and Fp be MRFs that compute the functions b : {0, 1}n → R and p : {0, 1}k → R
respectively. Recall that b returns the integer represented by x = (x1, . . . , xn) with the first
bits being the most significant ones and notice that the first i bits in x = (x1, . . . , xn) are
1 if and only if b(x1, . . . , xn) ≥

∑n
j=n−i 2j−1. Further, observe that both b and p can be

realized with complexity of O(n) and O(k), respectively. (In both cases, we simply use a
tree over-weighted addition gates.) Consider the formula

F (x, y) := G(Fb(x), Fp(y)),

where G(u, v) is a real gate that acts as follows: For v ∈ {0, . . . , 2k−1}, recover i, s.t.,
v = p(yi) and then output 1 if u ≥

∑n
j=n−i 2j−1 and output 0 otherwise. By the above

observations, F computes Cn.
It remains to show that G(u, v) is a monotone function.9 Clearly, G(u, v) is monotone

in u. To see that G is monotone in its second argument, assume v > v′ and there is
some u such that G(u, v′) = 1. We need to prove that G(u, v) = 1. Let v = p(yi) and
v′ = p(yi′). Since p(yi) = v > v′ = p(yi′) and G(u, v′) = 1, it must be that i < i′

and u ≥
∑n

j=n−i′ 2j−1 >
∑n

j=n−i 2j−1, thus G(u, v) = 1. Overall, F is an MRF of size
O(n + k) = O(n). ◁

Csirmaz [17] proved that in any secret-sharing scheme realizing the function Cn there is
at least one party whose share size is Ω(n/ log n). (This lower bound holds for any order
satisfying (1).) Based on Cn, Csirmaz later introduced in [18] the following function, C ′

n,
and showed that in any secret-sharing scheme realizing this function the total share size is
Ω(n2/ log n).

▶ Definition 22 (The full Csirmaz function C ′
n). For every n ∈ N, define a monotone function

C ′
n over inputs in {0, 1}2n as follows: Let k be the largest integer such that 2k ≤ n and

L = ⌊n/k⌋, and define

C ′
n(x1, . . . , x2n−k·L, y1,1, . . . , y1,k, . . . , yL,1, . . . , yL,k) =

L∨
ℓ=1

Cn(x1, . . . , xn, yℓ,1, . . . , yℓ,k).

▶ Lemma 23 (MRF for the full Csirmaz function). There exists a non-increasing ordering
over k-bit strings for which the corresponding function C ′

n has an MRF of size O(n).

Proof. Define the following MRF:

F ′(x1, . . . , x2n−k·L, y1,1, . . . , y1,k, . . . , yL,1, . . . , yL,k) = G

(
Fb(x1, . . . , xn), max

1≤ℓ≤L
{Fp(yℓ,1, . . . , yℓ,k)}

)
,

where Fb(x), Fp(y), and G(·, ·) are the MRFs that were defined in Claim 21. We claim
that F ′ computes C ′

n. If C ′
n(x1, . . . , x2n−k·L, y1,1, . . . , y1,k, . . . , yL,1, . . . , yL,k) = 1, then there

exists an ℓ0 such that Cn(x1, . . . , xn, yℓ0,1, . . . , yℓ0,k) = 1, thus, by Claim 21,

G(Fb(x1, . . . , xn), Fp(yℓ0,1, . . . , yℓ0,k)) = 1,

9 Formally speaking, we only defined G over the domain R× [0, 2k−1] and we will show that it is monotone
over this domain. One can then easily extend G to R × R while maintaining monotonicity.
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and (since G is monotone) F ′ returns 1. On the other hand, if

F ′(x1, . . . , x2n−k·L, y1,1, . . . , y1,k, . . . , yL,1, . . . , yL,k) = 1,

then let ℓ0 be such that

Fp(yℓ0,1, . . . , yℓ0,k) = max
1≤ℓ≤L

{Fp(yℓ,1, . . . , yℓ,k)},

thus, G(Fb(x1, . . . , xn), Fp(yℓ0,1, . . . , yℓ0,k)) = 1; by Claim 21,
Cn(x1, . . . , xn, yℓ0,1, . . . , yℓ0,k) = 1, i.e., C ′

n returns 1.
Recalling that the size of Fb and Fp is linear in the number of corresponding inputs, we

conclude that the total complexity of F ′ is 1 + |Fb| + L · |Fp| = O(n + L · k) = O(n) (as
L = ⌊n/k⌋). ◀

As already mentioned, by [18], the total share size in any secret-sharing scheme realizing
C ′

n is Ω(n2/ log n). Furthermore, it is not hard to verify that has at most O(n2) min-terms
(since Cn has only O(n) min-terms), and so C ′

n can be computed by a polynomial-size
monotone DNF. Thus, Theorem 19 follows from Lemma 23.

5 Secret Sharing from FOS for Long Secrets – Proof of Theorem 3

Suppose that the function f : {0, 1}n → {0, 1} can be computed by a FOS of size 2o(n/ log n)

over slice gates of weight bounded by poly(n). In this section, we prove that for sufficiently
long secrets s, the function f can be realized with share size 2o(n) · |s| (i.e., it has a secret-
sharing scheme with information ratio 2o(n)).

As a first step, we show that every FOS F of size S can be balanced into a FOS F ′

of depth D = O(log S) and size S′ = O(poly(S)) over slice gates with similar fan-in. The
following theorem provides a more general statement that applies to any monotone formula
over unbounded fan-in gates. We note that when all gates have fan-in 2 the following
technique is very similar to the one used by Spira [47], with a different trade-off between the
depth and size of the balanced formula.

▶ Lemma 24 (Balancing monotone formulas over unbounded gates). Let F be a monotone
formula of size S with Boolean gates of unbounded fan-in computing a monotone function f .
Then, there is a monotone formula F ′ of depth O(log S) and size O(poly(S)) computing the
same function f . The gates of F ′ are the gates of F , AND gates, and OR gates.

Proof. We construct the balanced formula F ′ recursively, where in each step we identify
a gate in the formula F that divides F into sub-formulas of at most half the size of F ,
and continue recursively to balance each of these sub-formulas. The depth of the balanced
formula F ′ is at most 3 log size(F ), as in each step we add at most 3 to the depth of F ′,
where the number of steps in the recursion is at most log size(F ).

We denote F = G(F1, . . . , Fk), where G is the root-gate of F and F1, . . . , Fk are the
sub-formulas rooted at the children of G.

We start with the simple case in which ∀i ∈ [k] : size(Fi) ≤ size(F )
2 . In this case, we

continue to balance each sub-formula Fi recursively to an equivalent formula F ′
i of depth

3 log |Fi| and output F ′ = G(F ′
1, . . . , F ′

k), and by induction we get that

depth(F ′) = 1+max
i∈[k]

depth(F ′
i ) ≤ 1+max

i∈[k]
3 log size(Fi) ≤ 1+3 log size(F )

2 ≤ 3 log size(F ).

Otherwise, there exists a sub-formula Fi such that size(Fi) ≥ size(F )
2 . Thus, we find a

gate g in the formula F such that
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1. The size of the sub-formulas rooted at g is at least size(F )
2 , and

2. The size of each of the sub-formulas H1, . . . , Hℓ rooted at the children of g is less than
size(F )

2 .
We can simply find such a gate g by traversing the formula F starting from the root G and
choosing the child whose sub-formula is of size at least size(F )

2 . If such a child does not exist,
we have found g.

For b ∈ {0, 1}, let F̂b be the formula F where we replace the sub-formula rooted at g by
the constant b. The value of g selects if the formula F outputs F̂0 or F̂1, that is,

f = (F̂0 ∧ g(H0, . . . , Hℓ) ) ∨ (F̂1 ∧ g(H0, . . . , Hℓ)).

As noted by [53], for a monotone formula, if F̂0(x) = 1 then F̂1(x) = 1 and f(x) = 1 regardless
of the value of g(H0, . . . , Hℓ). This implies that f can be expressed by the monotone formula

f = F̂0 ∨ (F̂1 ∧ g(H0, . . . , Hℓ)).

Notice that size(F̂b) ≤ size(F )
2 for b ∈ {0, 1} and size(Ĥi) ≤ size(F )

2 for i ∈ [ℓ]. Thus, we
construct the balanced formula F ′ by recursively balancing the formulas F̂0 and F̂1 and
getting balanced formulas F̂ ′

0 and F̂ ′
1 respectively, recursively balancing the sub-formulas

H1, . . . , Hℓ and getting balanced sub-formulas H ′
1, . . . , H ′

ℓ respectively, and letting

F ′ = F̂ ′
0 ∨ (F̂ ′

1 ∧ g(H ′
0, . . . , H ′

ℓ)).

Then, by induction we get that

depth(F ′) ≤ 3 + max{depth(F̂ ′
0), depth(F̂ ′

1), max
i∈[ℓ]

depth(H ′
i)}

≤ 3 + max{3 log size(F̂0), 3 log size(F̂1), max
i∈[ℓ]

3 log size(Hi)}

≤ 3 + 3 log size(F )
2 = 3 log size(F ). ◀

Using Lemma 24, we prove Theorem 3.

Proof of Theorem 3. Suppose that the function f : {0, 1}n → {0, 1} can be computed by
a FOS F of size 2o(n/ log n) over slice gates of weight bounded by poly(n). By Lemma 24,
f can be computed by a FOS F ′ of depth D′ = o(n/ log n) and size S′ = 2o(n/ log n) over
slice gates of weight bounded by poly(n). It is shown in [1] that any (k, ℓ)-slice function
can be realized with information ratio of I = k2 for long secrets, i.e., for secrets of length
t = 2Ω(nk) there is a secret-sharing scheme realizing the slice function with share size
O(k2t). We can use the construction of [9] (which uses a formula to construct a secret-
sharing scheme) to F ′ and derive a secret-sharing scheme whose total information ratio is
O(S′ID′) = 2o(n/ log n) poly(n)o(n/ log n) = 2o(n), as required. ◀
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A Improved MRF and FOS Sizes via Duality for Some Function
Families

In this section, we present a 2Ω(n) gap between the best known share size in secret-sharing
schemes and the sizes of FOSs and MRFs for uniformly chosen DNFs of Ω(n) width. Along
the way, we prove that MRCs and FOSs are closed under duality – an interesting property
that may be useful elsewhere.

To simplify the discussion in this section, we will view the inputs and outputs of Boolean
functions as −1 and 1 instead of 0 and 1, where each 0 is simply replaced with −1. The dual
of a Boolean function f : {0, 1}n → {0, 1}, denoted D(f), is the Boolean function

D(f)(x1, . . . , xn) = −f(−x1, . . . , −xn).

We will also extend this definition to functions f : Rn → R. For a gate G, we denote by
D(G) the dual gate of G.

We list a few examples of duality in the Boolean world. The dual of OR is AND and
vice versa, the dual of (k, n)-threshold functions are (n − k + 1)-threshold functions, and
the dual of any (k, n)-slice function is the corresponding (n − k, n)-slice function. It is a
long-standing open question whether the share size of a secret-sharing scheme realizing f

and its dual are the same for every monotone function. See, e.g., [19]. The state of affairs
today is that some functions have secret-sharing schemes with significantly smaller share
sizes than known schemes for their duals. We will show that the answer to the analogues
question for circuits and formulas over monotone real gates and slice gates is positive:

▷ Claim 25. Let C be a circuit with gates G1, . . . Gk that computes a function f : Rn → R.
Then, a circuit C ′ with the same structure and with every gate Gi replaced with D(Gi)
computes the function D(f).

Proof. We prove the claim by induction on the depth of the circuit. For the base case where
the circuit has only one gate the claim is trivial. We then assume that the claim holds for
circuits of depth d, and consider the root gate G of a circuit C of depth d + 1 that computes
the function f . Denote by G1, . . . , Gk the children of G. For every i ∈ [k], it holds that
Gi is the root of a circuit Ci of depth at most d that computes some function fi. That is,
f(x) = G(f1(x), . . . , fk(x)). By our assumption, for every i ∈ [k], if we replace all gates in
Ci with their duals, we will get a circuit C ′

i computing D(fi). Then, when we also replace
the root G with its dual, we will get a circuit C ′ that computes

D(G)[D(f1)(x), . . . , D(fk)(x)] = −G[−(−f1(−x)), . . . , −(−fk(−x))] = −G[f1(−x), . . . , fk(−x)],

which equals D(f) as desired. ◁

▶ Lemma 26 (Duality for circuits with real gates and slice gates). If a Boolean function f has
a circuit C with slice gates and monotone real gates of size s, then the dual of f , D(f), has
a circuit C ′ with the same structure and size s (but with different specifications for the slice
gates and the real gates). Furthermore, if C contains only slice gates, then C ′ has only slice
gates, and if C contains only real gates, then C ′ has only real gates.

Proof. Note that when G is a monotone real gate then D(G) also computes a monotone
real function: If x < y, then −y < −x, and since G is monotone, D(G)(x) = −G(−x) ≤
−G(−y) = D(G)(y). As mentioned before, it is also clear that when G is a slice gate then
D(G) computes a slice function (with a different slice parameter). Thus, Claim 25 implies
the lemma. ◀
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We next discuss an application of Lemma 26.

▶ Definition 27 (The (a, k, n)-DNF distribution [3]). For positive integers n, a ≤ n, and
1 ≤ k ≤

(
n
a

)
, we define the (a, k, n)-DNF distribution over monotone functions f : {0, 1}n →

{0, 1} as follows: Sample k distinct n-bit strings y1, . . . , yk of Hamming weight a, and take
f to be the monotone function whose minterms are y1, . . . , yk.

Applebaum and Nir [3] showed that if share sizes were the same for monotone functions
and their duals, better secret-sharing schemes could be realized for the above distribution
of functions (with high probability over the choice of the function). Similar to the other
constructions discussed in the full version of the paper, their construction first implicitly
constructs constant depth formulas over slice gates for some functions. Then they assume
that the duals of these functions have secret-sharing schemes with the same share size, and
under this assumption constructs better secret-sharing schemes for functions sampled from
the (a, k, n)-DNF distribution. By Lemma 26, the constant depth formulas over slice gates
have corresponding constant depth formulas over slice gates for the dual functions. Thus,
plugging these constant depth FOSs for the dual functions in the constant depth formula of [3]
over slice gates results in a constant depth FOS for functions from (a, b, n)-DNF distribution
of size O(20.491n) for every values of a = a(n) and b = b(n). In addition, these FOSs can be
translated to MRFs using the construction of Rosenbloom [43], obtaining a constant depth
formula over real gates for functions from (a, b, n)-DNF distribution of size O(20.491n).10

To conclude, for FOSs and MRFs we get the following theorem, which is the FOS or MRF
version of [3, Theorem 6.2]. While [3, Theorem 6.2] contains an assumption on secret-sharing
schemes (which might or might not hold),11 the statement in the next theorem has no
assumptions.

▶ Theorem 28. For every functions a = a(n), b = b(n), a function sampled from the
(a, b, n)-DNF distribution has a FOS and an MRF of size at most 20.491n+o(n) with probability
1 − 2−Ω(n).12

In contrast, the best known secret-sharing upper-bound for the (a, b, n)-DNF distribution
(for arbitrary a, b) is 20.5n+o(n).

10 Alternatively, we can translate the construction of [3] using the result of [43] and apply Lemma 26 for
formulas over real gates.

11 The slice functions used in all known secret-sharing constructions are very sparse, i.e., (k, n)-slices where
k << n; it is not known how to realize their dual “dense” slices, where k is close to n, with similar
share sizes. Moreover, it is not clear if such construction exists.

12 The value 0.491 is the one for which the following equation holds: 1
2 H2(λ) − (1 − λ) H2( λ

1−λ ) = 0.
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