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Abstract
We introduce a very natural generalization of the well-known problem of simultaneous congruences.
Instead of searching for a positive integer s that is specified by n fixed remainders modulo integer
divisors a1, . . . , an we consider remainder intervals R1, . . . , Rn such that s is feasible if and only if s

is congruent to ri modulo ai for some remainder ri in interval Ri for all i.
This problem is a special case of a 2-stage integer program with only two variables per constraint

which is is closely related to directed Diophantine approximation as well as the mixing set problem.
We give a hardness result showing that the problem is NP-hard in general.

By investigating the case of harmonic divisors, i.e. ai+1/ai is an integer for all i < n, which was
heavily studied for the mixing set problem as well, we also answer a recent algorithmic question
from the field of real-time systems. We present an algorithm to decide the feasibility of an instance
in time O(n2) and we show that if it exists even the smallest feasible solution can be computed in
strongly polynomial time O(n3).
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1 Introduction

In the recent past there was a great interest in the so-called n-fold integer programs [10, 17, 19]
and 2-stage integer programs [18, 20]. The matrix A of a 2-stage integer program is
constructed by block matrices A(1), . . . , A(n) ∈ Zr×k and B(1), . . . , B(n) ∈ Zr×t as follows:

A =

 A(1) B(1) 0 ··· 0

A(2) 0 B(2) . . .
...

...
...

. . .
. . . 0

A(n) 0 ··· 0 B(n)


For an objective vector c ∈ Zk+nt

≥0 , a right-hand side b ∈ Znr, and bounds ℓ, u ∈ Zk+nt
≥0 the

2-stage integer program is formulated as

max { cTx | Ax = b, ℓ ≤ x ≤ u, x ∈ Zk+nt } .

A special case of a 2-stage integer program is given by the problem Mixing Set [6, 7, 15] (with
only two variables in each constraint) where especially r = k = t = 1 and A(1) = · · · = A(n).
Remark that 2-variable integer programming problems were extensively studied by various
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39:2 Fuzzy Simultaneous Congruences

authors, e.g. [3, 22] or [12] (with two variables in total). Mixing Set plays an important
role for example in integer programming approaches for production planning [26]. Given
vectors a, b ∈ Qn one aims to compute

min { f(s, x) | s+ aixi ≥ bi∀i = 1, . . . , n, (s, x) ∈ Z≥0 × Zn } (1)

for some objective function f . Conforti et al. [8] pose the question whether the problem can
be solved in polynomial time for linear functions f . Unless P = NP this was ruled out by
Eisenbrand and Rothvoß [13] who proved that optimizing any linear function over Mixing
Set is NP-hard. However, the problem can be solved in polynomial time if ai = 1 [15, 24] or
if the capacities ai fulfil a harmonic property [30], i.e. ai+1/ai is integer for all i < n. The
case of harmonic capacities was intensively studied - see [8, 9] for simpler approaches.

More recently, real-time systems with harmonic tasks (the periods are integer multiples
of each other) have received increased attention [5] and also harmonic periods have been
considered before [2, 11, 27, 29]. Now a recent manuscript in the field of real-time systems
by Nguyen et al. [25] gives rise to the study of a new problem. Nguyen et al. present an
algorithm for the worst-case response time analysis of harmonic tasks with constrained release
jitter running in polynomial time. The release jitter of a task is the maximum difference
between the arrival times and the release times over all jobs of the task. Their algorithm uses
heuristic components to solve an integer program that can be stated as a bounded version of
Mixing Set with additional upper bounds Bi as follows.

Bounded Mixing Set (BMS)
Given capacities a1, . . . , an ∈ Z and bounds b, B ∈ Zn find (s, x) ∈ Z≥0 × Zn such that

bi ≤ s+ aixi ≤ Bi ∀i = 1, . . . , n.

In particular they depend on minimizing the value of s which can be achieved in linear
time in case of Mixing Set. While BMS may look artificial at first sight it is not; in
fact, leading to a very natural generalization it can be restated in the well-known form of
simultaneous congruences.

Fuzzy Simultaneous Congruences (FSC)
Given divisors a1, . . . , an ∈ Z \{0} and remainder intervals R1, . . . , Rn ⊆ Z
and an interval S ⊆ Z≥0 find a number s ∈ S such that

∃ ri ∈ Ri : s ≡ ri (mod ai) ∀i = 1, . . . , n.

Obviously, this also generalizes over the well-known problem of the Chinese Remainder
Theorem (CRT). Here we give its generalized form (cf. [21]).

▶ Theorem 1 (Generalized Chinese Remainder Theorem). Given divisors a1, . . . , an ∈ Z≥1
and remainders r1, . . . , rn ∈ Z≥0 the system of n simultaneous congruences s ≡ ri (mod ai)
admits a solution s ∈ Z if and only if ri ≡ rj (mod gcd(ai, aj)) for all i ̸= j.

Furthermore, Leung and Whitehead [23] showed that k-Simultaneous Congruences (k-SC) is
NP-complete in the weak sense. Given divisors a1, . . . , an ∈ Z≥1 and remainders r1, . . . , rn ∈
Z≥0 the task is to find a number s ∈ Z≥0 and a subset I ⊆ {1, . . . , n} with |I| = k s.t. s ≡ ri

(mod ai) for all i ∈ I. Later it was shown by Baruah et al. [4] that k-SC also is NP-complete
in the strong sense.



M. A. Deppert, K. Jansen, and K.-M. Klein 39:3

α

αℓv

uv

0 αℓ
[α]
v

u
[α]
v

α

αℓv

uv

0 α

u
[α]
v

ℓ
[α]
v

Figure 1 The two possibilities for the modular projection of an interval.

Both problems BMS and FSC are interchangeable formulations of the same problem (see
Section 2). Therefore, we will use them as synonyms and we especially assume formally
that Ri = [bi, Bi]. Interestingly and to the best of our knowledge, FSC/BMS was not
considered before. However, the investigation of simultaneous congruences has always been
of transdisciplinary interest connecting a variety of fields and applications, e.g. [1, 14, 16].

Our Contribution

(a) We show that BMS is NP-hard for general capacities ai. For the reduction from Directed
Diophantine Approximation we refer to the appendix. Compared to Mixing Set this
is a stronger hardness result as BMS by itself only asks for an arbitrary feasible solution.
Remark that every feasible instance of Mixing Set may be solved by s = ∥b∥∞, x = 0.

(b) In the case of harmonic capacities (i.e. ai+1/ai is an integer for all i < n), which was
heavily studied for Mixing Set as mentioned before, we give an algorithm exploiting a
merge idea based on modular arithmetic on intervals to decide the feasibility problem of
FSC in time O(n2). See Section 3.1 for the details.

(c) Furthermore, for a feasible instance of FSC with harmonic capacities we present a
polynomial algorithm as well as a strongly polynomial algorithm to compute the smallest
feasible solution to FSC in time O(min{n2 log(an), n3}) ≤ O(n3). See Section 3.2 for
the details.

(d) Our algorithm gives a strongly polynomial replacement for the heuristic component
(which may fail to compute a solution) in the algorithm of Nguyen et al. [25]. However,
we present an algorithm to solve the problem in linear time. See Section 4 for the details.

2 Notation and General Properties

For the sake of readability we write X [α] = (X mod α) for numbers X as well as X [α] =
{ z mod α | z ∈ X } for sets X (of numbers) to denote the modular projection of some number
or interval, respectively. Extending the usual notation we also write X ≡ Y (mod α) if
X [α] = Y [α] for sets X,Y . Notice that on the one hand (X ∪ Y )[α] = X [α] ∪ Y [α] but on
the other hand be aware that (X ∩ Y )[α] ̸= X [α] ∩ Y [α] in general (cf. Lemma 9). Figure 1
depicts the structure of v[α] if v = [ℓv, uv] is an interval in Z.

The empty set is denoted by ∅. Also we use the well-tried notation t+X = { t+ z | z ∈ X }
to express the translation of a set of numbers X by some number t. For a set of sets S we
write

⋃
S to denote the union

⋃
S∈S S. Furthermore, we identify constraints by their indices.

So for i ≤ n we say that “bi ≤ s+ aixi ≤ Bi” is constraint i.

MFCS 2021
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Identity of BMS and FSC

It is important to notice that BMS allows zero capacities while FSC cannot allow zero
divisors since (mod 0) is undefined. However, consider a constraint i of BMS with ai ̸= 0. Let
bi ≤ s+ aixi ≤ Bi be satisfied and set ri = s+ aixi. Then r[ai]

i = s[ai] and ri ∈ [bi, Bi] = Ri.
Vice-versa let ri ∈ Ri s.t. ri ≡ s (mod ai). Then there is an xi ∈ Z s.t. s+ aixi = ri ∈ Ri =
[bi, Bi].

A constraint i that holds ai = 0 simply demands that s ∈ Ri. Hence, if ai = aj = 0 for
two constraints i ≠ j they can be replaced by one new constraint k defined by Rk = Ri ∩Rj .
Therefore, one may assume that there is at most one constraint i with a zero capacity ai.
However, as all our results can be lifted back to the general case with low effort we will
assume in terms of BMS that all capacities are non-zero and for FSC we make the equivalent
assumption that S = Z≥0.

With our notation we may easily express the feasibility of a value s for a single constraint
i as follows.

▶ Observation 2. A value s satisfies constraint i if and only if s[ai] ∈ R[ai]
i .

Proof. It holds that ∃ri ∈ Ri : ri ≡ s (mod ai) iff ∃ri ∈ Ri : r[ai]
i = s[ai] iff s[ai] ∈ R[ai]

i . ◀

By simply swapping the signs of the xi we may assume that ai ≥ 0 for all i. We may also
assume that the intervals are small in the sense that Bi − bi + 1 < ai holds for all i. Assume
that Bi − bi + 1 ≥ ai for an i and let s ≥ 0 be an arbitrary integer. Then bi ≤ Bi − ai + 1
and constraint i may always be solved by setting xi = ⌈(bi − s)/ai⌉ which satisfies

bi ≤ s+ ai ⌈ bi−s
ai
⌉︸ ︷︷ ︸

xi

≤ s+ ai⌈Bi−ai+1−s
ai

⌉ = s+ ai⌊Bi−s
ai
⌋ ≤ Bi.

Hence, constraint i is redundant and may be omitted. As a direct consequence there can be
at most one feasible value for each xi for a given guess s. In fact, we can decide the feasibility
of a guess s in time O(n) as for all constraints i and values xi it holds bi ≤ s+ aixi ≤ Bi

if and only if ⌈(bi − s)/ai⌉ = xi = ⌊(Bi − s)/ai⌋. So a guess s is feasible if and only if
⌈(bi − s)/ai⌉ = ⌊(Bi − s)/ai⌋ holds for all constraints i. Another consequence is that BMS
is a generalization of Mixing Set as one can always add trivial upper bounds. By smin we
denote the smallest feasible solution s that satisfies all constraints.

▶ Observation 3. For feasible instances it holds that smin < lcm(a1, . . . , an).

Proof. Let φ = lcm(a1, . . . , an). Remark that φ/ai is integral for all i. Assume that (s, x)
is a solution with s = smin ≥ φ. Let t = s− φ and yi = xi + φ/ai f.a. i. Then 0 ≤ t < smin
and t+ aiyi = s+ aixi f.a. i. So (t, y) is a solution that contradicts the optimality. ◀

3 Harmonic Divisors

Here we consider harmonic divisors in the sense that ai+1/ai is an integer for all i < n.
As we investigate some kind of a generalization of the setting of the Chinese Remainder

Theorem, it is natural to ask for a CRT for harmonic (instead of the usually coprime)
divisors and of course the (generalized) CRT answers this question; in this case we have
gcd(ai, an) = ai and so Theorem 1 reveals that if the system of n simultaneous congruences
s ≡ ri (mod ai) admits a solution then ri ≡ rn (mod an) which says that if there is any
solution then the set of all solutions is anZ+r[an]

n . However, it turns out that the investigation
of FSC is a lot more complicated.
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Figure 2 36a1 =18a2 =6a3 =3a4 =a5. The guess s is not feasible for constr. 3 and 5.

In this section we present an algorithm to decide the feasibility of an instance of FSC.
Also we show how optimal solutions can be computed in (strongly) polynomial time. Both
of these results are based on the fine-grained interconnection between modular arithmetic
on sets and the harmonic property. For some intuition Figure 2 gives a perspective on s as
an anchor for 1-dimensional lattices with basis ai which have to “hit” the intervals Ri. For
example, in the figure it holds that s+ a2 · (−1) = s− a2 ∈ R2, so the 1-dimensional lattice
(s+ a2z)z∈Z hits interval R2. Therefore, the choice of s satisfies constraint 2.

3.1 Deciding feasibility
The idea for our first algorithm will be to decide the feasibility problem by iteratively
computing modular projections from constraint i = n down to i = 1. In the following we will
say that an interval w ⊆ Z represents a set M ⊆ Z (modulo α) if w[α] = M [α]. Also a set of
intervals R represents a set M ⊆ Z (modulo α) if M [α] =

⋃
w∈R w[α]. Given an integer α ≥ 1

and two intervals v, w we need to study the structure of the intersection v[α] ∩ w[α] ⊆ [0, α).
To express it let v = [ℓv, uv], w = [ℓw, uw] and we define the basic intervals

φα(v, w) = [ℓ[α]
v , u[α]

w ] and ψα(v, w) = [max{ℓ[α]
v , ℓ[α]

w }, α+ min{u[α]
v , u[α]

w }]

for all intervals v, w. The former may be thought as the cases where v[α] and w[α] are two
overlapping intervals while the intuition for the latter are situations where v[α] and w[α] both
consist of two intervals which are in pairs overlapping. Remark that ψα(w, v) = ψα(v, w) is
always true.

▶ Lemma 4. Given an integer α ≥ 1 and two intervals v, w ⊆ Z it holds that

v[α] ∩ w[α] ∈ { ∅, v[α], w[α], ψα(v, w)[α], φα(v, w), φα(w, v),

φα(v, w) ∪̇ φα(w, v), φα(v, w) ∪̇ ψα(v, w)[α], φα(w, v) ∪̇ ψα(v, w)[α] }.

The important intuition is that such a “modulo α intersection” can always be represented
by at most two intervals. Remark that the sets in the second row are the only ones which
are represented by 2 > 1 intervals. Due to space reasons for the case distinction to prove
Lemma 4 we refer to Appendix B and especially to Figure 6.

While Lemma 4 gives structure to intersections of two modular projections of intervals,
the next lemma reveals how many intervals will be required to represent a one-to-many
intersection. We will use this bound in every step of our algorithm. We want to add that both
of these lemmas and even Lemma 6 do not depend on the harmonic property by themselves.
However, they turn out to be especially useful in this setting.

▶ Lemma 5. Let α ≥ 1, let v be an interval and let Q be a set of k ≥ 1 intervals. Then
there is a set R of at most k+1 intervals s.t. v[α] ∩ (

⋃
Q)[α] = (

⋃
R)[α].

MFCS 2021
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Proof. We simply obtain that

v[α] ∩
(⋃

Q
)[α]

=
⋃

w∈Q

(v[α] ∩ w[α]) =
⋃

w∈Q

w[α]⊆v[α]

w[α] ∪
⋃

w∈D

(v[α] ∩ w[α])

where D = {w ∈ Q | w[α] ⊈ v[α], w[α] ∩ v[α] ̸= ∅ } denotes the subset of intervals that cause
the interesting intersections with v[α] (cf. Lemma 4). Obviously, all other intersections can
be represented by at most one interval each. So we study the intersections with D. In fact,
everything gets simple if there are w1, w2 ∈ D such that v[α]∩w[α]

1 = φα(v, w1) ∪̇ψα(v, w1)[α]

and v[α] ∩ w[α]
2 = φα(w2, v) ∪̇ ψα(v, w2)[α]. By simply adapting the inequalities of the first

case distinction in the proof of Lemma 4 we find

(v[α] ∩ w[α]
1 ) ∪ (v[α] ∩ w[α]

2 )

= ([0, u[α]
v ] ∪̇ [ℓ[α]

v , u[α]
w1

] ∪̇ [ℓ[α]
w1
, α)) ∪ ([0, u[α]

w2
] ∪̇ [ℓ[α]

w2
, u[α]

v ] ∪̇ [ℓ[α]
v , α))

= [0, u[α]
v ] ∪̇ [ℓ[α]

v , α) = v[α]

which implies that v[α] ∩ (
⋃
Q)[α] = v[α] can be represented by only one interval, namely v.

Therefore, in order to get an upper bound we assume that these two types of intersections do
not come together. In more detail, we may assume by symmetry that D = D1 ∪̇D2 where

D1 = {w ∈ D | v[α] ∩ w[α] = φα(v, w) ∪̇ φα(w, v) } and

D2 = {w ∈ D | v[α] ∩ w[α] = φα(v, w) ∪̇ ψα(v, w)[α] } .

It turns out that⋃
w∈D1

(v[α] ∩ w[α]) =
⋃

w∈D1

([ℓ[α]
v , u[α]

w ] ∪̇ [ℓ[α]
w , u[α]

v ])

= [ℓ[α]
v , max

w∈D1
u[α]

w ] ∪ [ min
w∈D1

ℓ[α]
w , u[α]

v ] and⋃
w∈D2

(v[α] ∩ w[α]) =
⋃

w∈D2

([ℓ[α]
v , u[α]

w ] ∪̇ [ℓ[α]
w , α+ u[α]

v ][α])

= [ℓ[α]
v , max

w∈D2
u[α]

w ] ∪ [ min
w∈D2

ℓ[α]
w , α+ u[α]

v ][α]

which finally joins up to⋃
w∈D

(v[α] ∩ w[α]) = [ℓ[α]
v ,max

w∈D
u[α]

w ] ∪ [min
w∈D

ℓ[α]
w , α+ u[α]

v ][α].

Hence, all intersections with intervals in D may be represented by at most two intervals
in total while each other intersection can be represented by at most one interval. Thus, if
|D| = 0 then the whole intersection can be represented by at most k intervals. If |D| ≥ 1
then there are at most 2 + |Q| − |D| ≤ 2 + k − 1 = k + 1 intervals required. ◀

Let Si denote the set of all solutions s ∈ Z≥0 that are feasible for each of the constraints
i, i + 1, . . . , n. We set Sn+1 = Z≥0 to denote the feasible solutions to an empty set of
constraints. The correctness of Algorithm 1 is implied by the following fundamental lemma.
See Figure 3 for an example of a step inside the algorithm.

▶ Lemma 6. It holds true that S[ai]
i = R

[ai]
i ∩ S[ai]

i+1 for all i = 1, . . . , n.
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Figure 3 A step from i+1 to i; modular projection to [0, ai) and intersection with R
[ai]
i .

Algorithm 1 Feasibility test for FSC.
procedure Feasible(I = (a1, . . . , an, R1, . . . , Rn))

Qn ← {Rn}
for i = n− 1, . . . , 1 do

Compute set Qi s. t. (
⋃
Qi)[ai] = R

[ai]
i ∩ (

⋃
Qi+1)[ai] and |Qi| ≤ O(n− i)

if
⋃
Q1 = ∅ then

return “infeasible”
else

return “feasible”

Proof. Let r ∈ S[ai]
i . So there is a solution s ∈ Si such that r = s[ai] ∈ R[ai]

i . It holds that
Si ⊆ Si+1 which implies s ∈ Si+1 and thus r = s[ai] ∈ S[ai]

i+1.
Vice-versa let r ∈ R[ai]

i ∩ S[ai]
i+1. So there is a solution s ∈ Si+1 with s[ai] = r. From

r ∈ R[ai]
i we get s[ai] ∈ R[ai]

i . Hence, s ∈ Si and r = s[ai] ∈ S[ai]
i . ◀

▶ Theorem 7. Algorithm 1 decides the feasibility of an instance in time O(n2).

Proof. We show that
⋃
Qi ≡ Si (mod ai) for all i = n, . . . , 1. This will prove the algorithm

correct since then
⋃
Q1 ≡ S1 (mod a1) and that means

⋃
Q1 is empty if and only if S1 is

empty. Obviously it holds that
⋃
Qn ≡ Sn (mod an) since

⋃
Qn = Rn. Now suppose that⋃

Qi+1 ≡ Si+1 (mod ai+1) for some i ≥ 1. We have that (
⋃
Qi)[ai] = R

[ai]
i ∩ (

⋃
Qi+1)[ai]

where the harmonic property implies (
⋃
Qi+1)[ai] = ((

⋃
Qi+1)[ai+1])[ai] = (S[ai+1]

i+1 )[ai] = S
[ai]
i+1.

Together with Lemma 6 this yields (
⋃
Qi)[ai] = R

[ai]
i ∩ S[ai]

i+1 = S
[ai]
i and that proves the

algorithm correct. Using Lemmas 4–6 each set Qi can be computed in time O(n) and this
yields a total running time of O(n2). ◀

3.2 Optimal solutions
Unfortunately, Algorithm 1 neither calculates a solution nor it directly implies one. Here we
present an algorithm to compute the smallest feasible solution smin to FSC. However, by
searching in the opposite direction the same technique also applies to the computation of the
largest feasible solution smax < an. We start with a simple binary search approach.

▶ Corollary 8. For feasible instances smin can be computed in time O(n2 log(an)).

This can be achieved by introducing an additional constraint measuring the value of s as
follows. Let β be a positive integer. We extend the problem instance by a new constraint
with number n + 1 defined by an+1 = 2 · an, bn+1 = 0, and Bn+1 = β. Remark that this

MFCS 2021



39:8 Fuzzy Simultaneous Congruences

β-instance admits the same set of solutions as the original instance as long as β is large
enough, e.g. β = an (cf. Observation 3). Consider a feasible solution to the β-instance where
β ≤ an. It holds that

2anxn+1 = an+1xn+1 ≤ s+ an+1xn+1 ≤ Bn+1 = β ≤ an

which implies xn+1 ≤ ⌊ 1
2⌋ = 0. However, if xn+1 < 0 then s ≥ an+1 · |xn+1| and therefore the

solution s′ = s+ an+1xn+1 with x′
n+1 = 0 and x′

i = xi − (an+1/ai)xn+1 for all i = 1, . . . , n
is better than s and x′

n+1 = 0.
Thus we may assume generally that xn+1 = 0 which allows us to measure the value of

s using the upper bound β. We use β to do a binary search in the interval [0, an] using
Algorithm 1 to check the β-instance for feasibility. The smallest possible value for β then
states the optimum value and that proves Corollary 8. However, with additional ideas we
are able to achieve strongly polynomial time. We want to give some helpful intuition first.

Clearly, after revealing the intervals in Q1 with Algorithm 1 a straightforward idea is to
try tracing them back to a small solution for s, but routing through the modulus operations
appears to become a non-polynomial bottleneck.

However, the following idea is a first step to end up with a constraint aggregation
approach. Given the projections A[ab] and B[a] of two sets A,B ⊆ Z one can compute
the intersection A[a] ∩ B[a] in at least two ways; primitively we compute (A[ab])[a] = A[a]

and then intersect it with B[a], but also we can intersect A[ab] with b translated copies
B[a], a + B[a], . . . , (b − 1)a + B[a] of B[a] before computing the [a]-projection. In fact, the
following lemma seems to be a characteristic property of modular arithmetic on sets.

▶ Lemma 9. For all numbers a, b ∈ Z≥1 and sets A,B ⊆ Z it holds

A[a] ∩B[a] =
(
A[ab] ∩

b−1⋃
i=0

(ia+B[a])
)[a]

.

Proof. Let x be a number. Then it holds

x ∈

(
A[ab] ∩

b−1⋃
i=0

(ia+B[a])
)[a]

⇔ ∃y ∈ A[ab] : y ∈
b−1⋃
i=0

(ia+B[a]) ∧ x = y[a]

⇔ ∃y ∈ A[ab] : y[a] ∈ B[a] ∧ x = y[a]

⇔ x ∈ A[a] ∩B[a]

where the last equivalence follows from (A[ab])[a] = A[a]. ◀

Since the right side can be written as the modular projection of a union of intersections
we can find a sensible strengthening; in fact, for arbitrary sets X,M0, . . . ,Mm−1 it holds
that

m−1⋃
i=0

(X ∩Mi) =
m−1⋃
i=0

(X ∩ (Mi \
i−1⋃
j=0

(X ∩Mj))).

While the left-hand side may not, the right-hand side is always a disjoint union. Taking into
account the modular projections this leads to the following corollary.

▶ Corollary 10. For all numbers a, b ∈ Z≥1 and sets A,B ⊆ Z it holds A[a] ∩ B[a] =
(
⋃b−1

i=0 Di)[a] where Di = A[ab] ∩ Yi and Yi = ia+ (B[a] \
⋃i−1

j=0 D
[a]
j ) for all i = 0, . . . , b− 1.
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R
[an]
n :

an−10 an

Y0 =R
[an−1]
n−1 Y2 Y3

an−10 an
D0 D2 D3

Figure 4 An example of four required intervals to represent R
[an−1]
n−1 ∩R

[an−1]
n in Lemma 13.

We will use Corollary 10 to aggregate constraints in order to reduce the problem size.
The following observation gives a first bound for the smallest feasible solution smin.

▶ Observation 11. For feasible instances it holds that smin ∈ R[an]
n .

This is true since in the harmonic case smin < lcm(a1, . . . , an) = an due to Observation 3
which then implies that smin = s

[an]
min ∈ R

[an]
n using Observation 2. Motivated by Observation 11

the idea is to search for smin in the modular projection R[an]
n by aggregating the penultimate

constraint n − 1 into the last constraint n. In fact, the number of required intervals to
represent both constraints can be bounded by a constant. A fine-grained construction then
enforces the algorithm to efficiently iterate the feasibility test on aggregated instances to
find the optimum value.

▶ Theorem 12. For feasible instances smin can be computed in time O(n3).

Remark that the set of feasible solutions for the last two constraints is Sn−1 = R
[an−1]
n−1 ∩

(R[an]
n )[an−1] = R

[an−1]
n−1 ∩R[an−1]

n . Therefore, the next lemma states the crucial argument of
the algorithm.

▶ Lemma 13. The intersection R
[an−1]
n−1 ∩R[an−1]

n can always be represented by the disjoint
union U ⊆ R[an]

n of only constant many intervals in R
[an]
n such that

(a) U [an−1] = R
[an−1]
n−1 ∩R[an−1]

n and
(b) u ≡ r (mod an−1) implies u ≤ r for all u ∈ U , r ∈ R[an]

n .
Here the former property states that indeed the intervals in U are a proper representation
for the last two constraints. The important property is the latter; in fact, it ensures that
U is the best possible representation in the sense that U consists of the smallest intervals
possible (see Figure 4).

Proof of Lemma 13. (a). By defining Di = Yi ∩R[an]
n and

Yi = ian−1 + (R[an−1]
n−1 \

i−1⋃
j=0

D
[an−1]
j )

for all i ∈ {0, . . . , an/an−1 − 1} Corollary 10 proves the claim (cf. Figure 4). (b) follows by
construction.

It remains to show that
⋃

i Di is the union of only constant many disjoint intervals.
Apparently, the intervals are disjoint by construction.

We claim that there are at most three non-empty sets Di. Assume there are at least four
non-empty translates Di, namely Di, Dj , Dk, Dℓ. Then, since Rn is an interval it holds for
at least two p, q ∈ {i, j, k, ℓ} that the full interval translates Fp = [pan−1, (p+ 1)an−1) and
Fq = [qan−1, (q + 1)an−1) are subsets of R[an]

n . For p (and also for q) we get

MFCS 2021
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D[an−1]
p = ( Yp︸︷︷︸

⊆Fp

∩R[an]
n )[an−1] = Y [an−1]

p = R
[an−1]
n−1 \

p−1⋃
j=0

D
[an−1]
j

which implies with
⋃p−1

j=0 D
[an−1]
j ⊆ R[an−1]

n−1 that

p⋃
j=0

D
[an−1]
j = D[an−1]

p ∪
p−1⋃
j=0

D
[an−1]
j = R

[an−1]
n−1 .

Then it follows
⋃p

j=0 D
[an−1]
j = R

[an−1]
n−1 =

⋃q
j=0 D

[an−1]
j . W.l.o.g. let p < q. Then Dq =

Yq ∩R[an]
n is empty since

Yq = qan−1 +

R[an−1]
n−1 \

q−1⋃
j=0

D
[an−1]
j

 ⊆ qan−1 +
(
R

[an−1]
n−1 \R[an−1]

n−1

)
is empty and we have a contradiction.

Using the same case distinctions as in the proof of Lemma 4 one can show that each set
Di consist of at most two intervals. Therefore, all the non-empty sets Di consist of at most
3 · 2 = 6 intervals in total. In fact, one can improve this bound to a total number of at most
4 intervals (see Figure 4) by a more sophisticated case distinction. ◀

This admits an algorithm using an aggregation argument as follows. For constraints n and
n− 1 we use Lemma 13 to compute disjoint intervals E1, . . . , Ek ⊆ R[an]

n (representing the
constraints n and n− 1) where k ≤ C for a small constant C. If k ≥ 1 then use Algorithm 1
to check the feasibility of the instances I1, . . . , Ik defined by

(Ij) min { s | s[ai] ∈ R[ai]
i ∀i = 1, . . . , n− 2, s[an] ∈ E[an]

j , s ∈ Z≥0 } .

If none of the instances I1, . . . , Ik admits a solution then the original instance can not be
feasible. Assume that there is at least one feasible instance. Now, since E1, . . . , Ek are disjoint
exactly one of them contains the optimum value for s. W.l.o.g. assume that E1 < · · · < Ek.
Then there is a smallest index j such that Ij is feasible and we solve Ij recursively to find
the optimum value. Together this yields an algorithm running in time n ·C · O(n2) = O(n3).

4 Uniprocessor Real-Time Scheduling

In real-time systems an important question is to ask for the worst-case response time of
a task system. While the complexity is pseudo-polynomial in general [28], Nguyen et al.
proposed a new algorithm [25] to compute it in polynomial time for preemptive sporadic
tasks τ1, . . . , τn with harmonic periods Ti ≥ 0 and job processing times Ci ≥ 0 running
on a uniprocessor platform. The worst-case response time is the first point in time where
t = Cn +

∑n−1
i=1 Ci · ⌈t/Ti⌉. Be aware that they assume the harmonic property in the opposite

direction, i.e. Ti/Ti+1 ∈ Z. Their algorithm even allows the task execution to be delayed by
some release jitter Ji. However, their algorithm depends on a heuristic component which may
fail to compute correct solutions [25, Section 5.5, 6]. In fact, the fundamental computation
problem can be expressed as a BMS instance which immediately implies a robust approach
in time O(n3) with our algorithm. Nevertheless, it can be solved even more efficiently in
time O(n) which we describe here. The overall result will be the following theorem.
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▶ Theorem 14. The worst-case response time of a harmonic task real-time system with
constrained release jitter can be computed in polynomial time.

We adapt the notation of Nguyen et al. and extend it to our needs. The jobs of task τi

have the processing time Ci and we define ci =
∑n−1

t=i+1 Ct to accumulate the last of them.
The utilization of task τi is denoted by Ui = Ci/Ti and it holds that

∑n−1
t=1 Ut < 1. In [25,

Section 5.4.1] Nguyen et al. describe that also x1 = 1 may be assumed. The system to solve
(eq. (55), (56)) is described in [25, Section 5.5]:

min {xn | Ji + Tixi ≤ Jn + Tnxn,

Jn + Tnxn − ci ≤ Ji + Tixi ∀i ≤ n− 1 } (2)

which can be formulated as the following BMS instance:

min
{
xn

∣∣∣∣ ⌈Ji − Jn

Tn

⌉
≤ xn −

Ti

Tn
xi ≤

⌊
Ji − Jn + ci

Tn

⌋
∀i ≤ n− 1

}
(3)

▶ Lemma 15. If i < j ≤ n and (ci + cj)/Tj < 1 then in terms of variable xi there is at most
one feasible value for variable xj.

Proof. If j < n then by combining the constraints for i and j in (2) we find

Tixi + Ji − Jn ≤ Tjxj + Jj − Jn + cj and
Tjxj + Jj − Jn ≤ Tixi + Ji − Jn + ci

which with the harmonic property and the integrality of xj yields

Ti

Tj
xi +

⌈
Ji − Jj − cj

Tj

⌉
≤ xj ≤

Ti

Tj
xi +

⌊
Ji − Jj + ci

Tj

⌋
. (4)

However, if j = n then cj =
∑n−1

t=n+1 Ct = 0 and thus (4) follows from (2) too (cf. (3)). Now
by simply dropping the roundings we obtain in both cases that

Ti

Tj
xi +

⌊
Ji − Jj + ci

Tj

⌋
−
(
Ti

Tj
xi +

⌈
Ji − Jj − cj

Tj

⌉)
≤ ci + cj

Tj
< 1

which proves the claim. ◀

According to (4) we define interval bounds ℓ(i)
j (z) and u(i)

j (z) to denote the feasible values
for variable xj in terms of variable xi where z states a value for variable xi, i.e.

ℓ
(i)
j (z) = Ti

Tj
z +

⌈
Ji − Jj − cj

Tj

⌉
and u

(i)
j (z) = Ti

Tj
z +

⌊
Ji − Jj + ci

Tj

⌋
.

Thus, (4) is equivalent to xj ∈ [ℓ(i)
j (xi), u(i)

j (xi)] and if (ci + cj)/Tj < 1 then it either holds
that ℓ(i)

j (xi) = xj = u
(i)
j (xi) or there is no solution at all.

Fortunately, there is always a sequence of variables such that the value of every next
variable can be determined by the value of the current variable. The following lemma is
crucial.

▶ Lemma 16. If i < n and k = max { t ≤ n | Ti+1 = Tt } then there is at most one feasible
value for variable xk.

MFCS 2021



39:12 Fuzzy Simultaneous Congruences

x1 xi xi+1 xk xn

Figure 5 The variable revealing flow with vertical lines between blocks of equal periods.

Proof. If k < n− 1 then it holds by the harmonic property and the maximality of k that
Tk ≥ 2Tk+1 ≥ 2Tk+2 ≥ · · · ≥ 2Tn−1 and thus Tt/Tk ≤ 1/2 for all t = k+ 1, . . . , n− 1. Hence,

ci + ck

Tk
=

n−1∑
t=i+1

Ut
Tt

Tk
+

n−1∑
t=k+1

Ut
Tt

Tk
=

k∑
t=i+1

Ut
Tt

Tk︸︷︷︸
=1

+2
n−1∑

t=k+1
Ut

Tt

Tk︸︷︷︸
≤1/2

≤
n−1∑

t=i+1
Ut < 1.

If otherwise k ≥ n− 1 then ck = 0 and hence

ci + ck

Tk
= ci

Tk
=

n−1∑
t=i+1

Ut
Tt

Tk︸︷︷︸
=1

=
n−1∑

t=i+1
Ut < 1.

By Lemma 15 this proves the claim. ◀

This gives rise to the following algorithm. By iterating Lemma 16 and starting with
x1 = 1 we can reveal the last variable of each block of indices of equal periods (cf. Figure 5).
Finally, this reveals the variable xn and we only need to assure that the value of xn admits
feasible values for variables which are not revealed so far. Apparently we may restate the
constraints of (2) as⌈

Jn − Jj − cj + Tnxn

Tj

⌉
≤ xj ≤

⌊
Jn − Jj + Tnxn

Tj

⌋
∀j = 1, . . . , n− 1.

Therefore, we can simply compare these bounds to assure the existence of a feasible value for
each variable xj . See Algorithm 2 for a formal description.

Algorithm 2 Variable revealing flow.
procedure Reveal

x1 ← 1
k ← 1
while k < n do

i← k

k ← max { t ≤ n | Ti+1 = Tt }
if ℓ

(i)
k (xi) ̸= u

(i)
k (xi) then

return −1
else

xk ← ℓ
(i)
k (xi) ▷ Lemma 16

for j = 1, . . . , n− 1 do
if
⌈

Jn−Jj −cj +Tnxn

Tj

⌉
>
⌊

Jn−Jj +Tnxn

Tj

⌋
then ▷ no feasible solution for xj

return −1
return xn
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▶ Observation 17. By a more sophisticated investigation the number of index blocks of equal
periods can be bounded by a constant and thus, the while loop reveals xn in constant time.
Therefore, the final feasibility test appears to be the only computational bottleneck.
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A Hardness of BMS

We reduce from Directed Diophantine Approximation with rounding down. For
any vector v ∈ Rn let ⌊v⌋ denote the vector where each component is rounded down, i.e.
(⌊v⌋)i = ⌊vi⌋ for all i ≤ n.

Directed Diophantine Approximation with rounding down (DDA↓)
Given: α1, . . . , αn ∈ Q+, N ∈ Z≥1, ε ∈ Q, 0 < ε < 1
Decide whether there is a Q ∈ { 1, . . . , N } such that ∥Qα− ⌊Qα⌋∥∞ ≤ ε.

Eisenbrand and Rothvoß proved that DDA↓ is NP-hard [13]. In fact, every instance of
DDA↓ can be expressed as a BMS instance, which yields the following theorem.

▶ Theorem 18. BMS is NP-hard (even if bi = 0 for all i with ai ̸= 0).

Proof. Write αi = βi/γi for integers βi ≥ 0, γi ≥ 1 and set λ =
∏

j βj . Then λ/αi =
(λ/βi)γi ≥ 0 is integer. Let M denote the following instance of BMS:

0 ≤ Q′ − (λ/αi) · yi ≤ ⌊(λ/αi) · ε⌋ ∀i = 1, . . . , n (5)
λ ≤ Q′ − 0 · yn+1 ≤ λ ·N (6)
0 ≤ Q′ − λ · yn+2 ≤ 0 (7)

Q′, yi ∈ Z ∀i = 1, . . . , n+ 2

http://arxiv.org/abs/1912.01161
https://lup.lub.lu.se/search/ws/files/10751577/bare_conf.pdf
https://lup.lub.lu.se/search/ws/files/10751577/bare_conf.pdf
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0 α0

w[α]:
v[α]:

v[α] ∩ w[α]:
0 α1.1 0 α1.2 0 α1.3

0 α2.1

w[α]:
v[α]:

v[α] ∩ w[α]:
0 α2.2 0 α2.3 0 α3

Figure 6 Examples for the cases of the case distinction in the proof of Lemma 4.

So let Q ∈ { 1, . . . , N } with ∥Qα − ⌊Qα⌋∥∞ ≤ ε be given. We obtain readily that
Q′ = λQ and y = (⌊Qα1⌋, . . . , ⌊Qαn⌋, 0, Q) defines a solution of M since

0 ≤ Qαi − ⌊Qαi⌋ ≤ ε if and only if 0 ≤ λQ− (λ/αi) · ⌊Qαi⌋︸ ︷︷ ︸
∈Z

≤ (λ/αi) · ε.

Vice-versa let (Q′, y) be a solution to M. We see that (5) implies that

0 ≤ Q′ − (λ/αi) · yi ≤ ⌊(λ/αi) · ε⌋ ≤ (λ/αi) · ε

and by (7) we get Q′ = λ ·yn+2 which then implies 0 ≤ yn+2αi−yi ≤ ε < 1 for all i ≤ n. Now,
since yi is integer, there can be only one value for yi, i.e. yi = ⌊yn+2αi⌋. By Q′ = λ · yn+2
and (6) we get yn+2 ∈ {1, . . . , N} and by setting Q = yn+2 this yields ∥Qα− ⌊Qα⌋∥∞ ≤ ε
and that proves the claim. ◀

B Omitted proofs

Proof of Lemma 4. We do a case distinction (see Figure 6) as follows. We only look at
the non-trivial case, i.e. v[α] ∩ w[α] /∈ {∅, v[α], w[α] }, which especially implies |v| < α and
|w| < α.

We start with the case that neither v[α] nor w[α] is an interval, i.e. u
[α]
v < ℓ

[α]
v and

u
[α]
w < ℓ

[α]
w . Then it cannot be that u[α]

w ≥ ℓ[α]
v and u[α]

v ≥ ℓ[α]
w since that implies ℓ[α]

v ≤ u[α]
w <

ℓ
[α]
w ≤ u[α]

v . Hence, there are three cases as follows.
Case 1.1. u[α]

w < ℓ
[α]
v and u

[α]
v < ℓ

[α]
w . Then the intersection equals

[0,min{u[α]
v , u[α]

w }] ∪̇ [max{ℓ[α]
v , ℓ[α]

w }, α) = [max{ℓ[α]
v , ℓ[α]

w }, α+ min{u[α]
v , u[α]

w }][α]

= ψα(v, w)[α].

Case 1.2. u[α]
w ≥ ℓ[α]

v and u
[α]
v < ℓ

[α]
w . Then the intersection equals

[0, u[α]
v ] ∪̇ [ℓ[α]

v , u[α]
w ] ∪̇ [ℓ[α]

w , α) = [ℓ[α]
v , u[α]

w ] ∪̇ [ℓ[α]
w , α+ u[α]

v ][α] = φα(v, w) ∪̇ ψα(v, w)[α].

Case 1.3. u[α]
w < ℓ

[α]
v and u[α]

v ≥ ℓ[α]
w . By symmetry we get v[α]∩w[α] = φα(w, v)∪̇ψα(v, w)[α].

Now, w.l.o.g. assume that v[α] is an interval, i.e. ℓ[α]
v ≤ u

[α]
v , while w[α] consists of two

intervals, i.e. u[α]
w < ℓ

[α]
w . Then there are three cases as follows.
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Case 2.1. ℓ[α]
v ≤ u[α]

w < u
[α]
v < ℓ

[α]
w . Then the intersection equals [ℓ[α]

v , u
[α]
w ] = φα(v, w).

Case 2.2. u[α]
w < ℓ

[α]
v < ℓ

[α]
w ≤ u[α]

v . Then the intersection equals [ℓ[α]
w , u

[α]
v ] = φα(w, v).

Case 2.3. ℓ[α]
v ≤ u[α]

w < ℓ
[α]
w ≤ u[α]

v . Then the intersection is

[ℓ[α]
v , u[α]

w ] ∪̇ [ℓ[α]
w , u[α]

v ] = φα(v, w) ∪̇ φα(w, v).

Clearly, if both v[α] and w[α] are intervals (Case 3) (which are not disjoint) then their
intersection is either φα(v, w) or φα(w, v). ◀
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