
Type-Theoretic Constructions of the Final
Coalgebra of the Finite Powerset Functor
Niccolò Veltri #

Department of Software Science, Tallinn University of Technology, Estonia

Abstract
The finite powerset functor is a construct frequently employed for the specification of nondeterministic
transition systems as coalgebras. The final coalgebra of the finite powerset functor, whose elements
characterize the dynamical behavior of transition systems, is a well-understood object which enjoys
many equivalent presentations in set-theoretic foundations based on classical logic.

In this paper, we discuss various constructions of the final coalgebra of the finite powerset functor
in constructive type theory, and we formalize our results in the Cubical Agda proof assistant. Using
setoids, the final coalgebra of the finite powerset functor can be defined from the final coalgebra of
the list functor. Using types instead of setoids, as it is common in homotopy type theory, one can
specify the finite powerset datatype as a higher inductive type and define its final coalgebra as a
coinductive type. Another construction is obtained by quotienting the final coalgebra of the list
functor, but the proof of finality requires the assumption of the axiom of choice. We conclude the
paper with an analysis of a classical construction by James Worrell, and show that its adaptation to
our constructive setting requires the presence of classical axioms such as countable choice and the
lesser limited principle of omniscience.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Constructive mathematics

Keywords and phrases type theory, finite powerset, final coalgebra, Cubical Agda

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.22

Supplementary Material Software (Source Code):
https://github.com/niccoloveltri/final-pfin

Funding This work was supported by the Estonian Research Council grant PSG659 and by the ESF
funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).

Acknowledgements We thank Henning Basold, Tarmo Uustalu, Andrea Vezzosi and Niels van der
Weide for valuable discussions.

1 Introduction

The powerset functor, delivering the set of subsets of a given set, plays a fundamental role in
the behavioral analysis of nondeterministic systems [26], which include process calculi such
as Milner’s calculus of communicating systems [23] and π-calculus [24]. A nondeterministic
system is determined by a function c : S → P S, called a coalgebra, from a set of states
S to the set P S of subsets of S. The function c associates to each state x : S a set of
new states c x reachable from x, so it represents the transition relation of an unlabelled
transition system. Adding labels to transitions is easy, just consider coalgebras of the form
c : S → P (A × S) or c : S → (A → P S) instead, where A is a set of labels. In many
applications, the set of reachable states is known to be finite, so the powerset functor P can
be replaced by the finite powerset functor Pfin delivering only the set of finite subsets.

The behavior of a finitely nondeterministic system starting from a given initial state is
fully captured by the final coalgebra of Pfin. Elements of the final coalgebra are execution
traces obtained by iteratively running the coalgebra function modelling the system on the

© Niccolò Veltri;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 22; pp. 22:1–22:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:niccolo@cs.ioc.ee
https://orcid.org/0000-0002-7230-3436
https://doi.org/10.4230/LIPIcs.FSCD.2021.22
https://github.com/niccoloveltri/final-pfin
https://github.com/niccoloveltri/final-pfin
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


22:2 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

initial state. The resulting traces are possibly infinite trees with finite unordered branching.
Several formal constructions of the final coalgebra of Pfin and other finitary set functors exist
in the literature, developed using various different techniques [6, 2, 32, 33, 3]. Adámek et al.
collect and compare all these characterizations in their recent book draft [4, Chapter 4]. All
these constructions take place in set theory, and reasoning is based on classical logic.

In this work we present various definitions of the final coalgebra of the finite powerset
functor in constructive type theory, which have all been formalized in the Cubical Agda proof
assistant [30]. Cubical Agda is an implementation of cubical type theory [10], which in turn
is a particular presentation of homotopy type theory with support for univalence and higher
inductive types (HITs). The choice of Cubical Agda as our foundational setting, over other
proof assistants based on Martin-Löf type theory or the calculus of constructions such as
plain Agda, Coq or Lean, lays in the fact that both univalence and HITs play an important
role for both encoding and reasoning with the finite powerset datatype in homotopy type
theory [17]. In our development we also take advantage of Cubical Agda’s support for
coinductive types [30].

First, we study the construction of the finite powerset as a setoid [7], i.e. a pair of a
carrier type and an equivalence relation on the carrier. This is inspired by Danielsson’s
setoid of finite multisubsets [13]. The final coalgebra of the finite powerset in this setting
arises as a setoid with the final coalgebra of the List functor as carrier, whose elements are
non-wellfounded trees with finite ordered branching. The equivalence relation on the latter
type relates trees that differ only in the order and multiplicity of their subtrees.

Working with setoids, therefore associating a specific equality relation to each type and
ensuring that all constructions respect this relation, is not in the spirit of homotopy type
theory, where the spotlight is on the notion of propositional equality, also called path equality
in this setting. We then consider Frumin et al.’s presentation of the finite powerset datatype
as a HIT, Pfin A, formally delivering the free join semilattice on A [17]. It is well-known
that coinductive types can be employed for the construction of M-types, i.e. final coalgebras
of polynomial functors. We show that coinductive types can be used in a similar way for
defining the final Pfin-coalgebra. This construction works since in Cubical Agda HITs are
implemented as usual inductive types, in which higher path constructors depend on additional
interval names and satisfy two matching conditions on endpoints [11, 9]. In other words,
HITs are part of the grammar of strictly positive types and as such they are allowed to
appear in the domain type of destructors of coinductive types.

An alternative construction of the final coalgebra of the finite powerset functor (as a
type) is obtainable by performing a quotient operation on the final setoid coalgebra, i.e.
quotienting the final List-coalgebra by the equivalence relation relating trees containing the
same subtrees, possibly in different order and with different multiplicity. This construction is
possible in homotopy type theory due to the existence of a set quotient operation definable
as a HIT [27]. We show that the resulting quotient type is indeed a fixpoint of Pfin, but the
proof of its finality requires the assumption of the full axiom of choice.

The last part of the paper is devoted to the analysis of a classical set-theoretic construction
of the final Pfin-coalgebra by James Worrell [33]. It is well known that the chain of iterated
applications of Pfin on the singleton set does not stabilize after ω steps [2]. This is in antithesis
with the case of polynomial functors, whose final coalgebras (a.k.a. M-types in type theory)
always arise as ω-limits, a fact that can also be proved in homotopy type theory [5]. Worrell
showed that the final Pfin-coalgebra can be obtained by iterating applications of Pfin for extra
ω steps, i.e. as the (ω + ω)-limit of the chain. Elements of the ω-limit are represented by
non-wellfounded trees with unordered but possibly infinite branching, while the (ω+ω)-limit



N. Veltri 22:3

corresponds to the subset of these trees with finite branching at all levels. We study Worrell’s
construction in our constructive setting and show that the (ω + ω)-limit is indeed the final
Pfin-coalgebra modulo the assumption of classical principles such as axiom of countable
choice and the lesser limited principle of omniscience (LLPO). Notably, Worrell’s iterated
construction is inherently classical: the injectivity of the canonical Pfin-algebra on the ω-limit
is equivalent to LLPO. In particular, it is impossible to prove that the (ω + ω)-limit is a
subset of the ω-limit, as in Worrell’s construction, without the assumption of LLPO.

All the material presented in the paper have been formalized in the Cubical Agda proof
assistant. The code is freely available at https://github.com/niccoloveltri/final-pfin.

2 Type Theory and Cubical Agda

Our work takes place in homotopy type theory (HoTT) [27]. Practically, we formalize our
constructions in Cubical Agda [30]. This is an implementation of cubical type theory [10], a
particular flavor of HoTT with support for univalence, function extensionality and higher
inductive types. What follows is a brief description of basic notions employed in our work.
More details on programming in Cubical Agda can be found in Vezzosi et al.’s paper [30].

A few words on notation. We write Type for the universe of small types. We use Agda
notation for dependent function types (x : A) → B x, where B is a type family of type
A→ Type. Implicit arguments of functions are enclosed in curly brackets. We write =df for
definitional equality and we denote judgemental equality by ≡. We reserve the use of the
equality symbol = for path equality. Given an element of a dependent sum type

∑
x : A. B x,

we denote its two projections by fst and snd. The unit type is 1 with unique inhabitant
tt, the empty type is ⊥. The type of Boolean values is Bool with elements true and false,
and the binary sum of types A and B is A + B. The type of natural numbers is N with
constructors zero and suc, the type of lists with entries in A is List A with constructors [ ]
and (::). The unique function from a type A into the unit type is called ! : A→ 1.

2.1 Univalence, Path Types, Higher Inductive Types

In cubical type theory, and therefore Cubical Agda, univalence is a theorem stating that
equality of types corresponds to equivalence. A function f : A→ B is an equivalence if it
has contractible fibers, i.e. if the preimage of any element in B under f is a singleton type.
Any function underlying a type isomorphism defines an equivalence. Writing A ≃ B for the
type of equivalences between A and B, univalence states that the canonical function of type
A = B → A ≃ B is an equivalence. In particular, there is a function ua : A ≃ B → A = B

which turns equivalences into equalities. From any proof of equality built as ua e we need to
be able to extract the equivalence e, so the representation of equality needs to accommodate
such information. Cubical type theory takes inspiration from the cubical interpretation of
HoTT [10] and represents equalities as paths, i.e. functions out of an interval object.

In Cubical Agda there is a primitive interval type I required to be a De Morgan algebra
with two endpoints i0 and i1. This is used in the implementation of the primitive type
Path A x y of path equalities between elements x : A and y : A, which we always denote
by x = y. A path type is similar to a function type with domain I: an element p : x = y is
eliminated by application to an interval element r : I, returning p r : A. Unlike a function
type, this application can compute even when p is unknown by using the endpoints x and y
stored in the type: p i0 reduces to x, while p i1 reduces to y. The introduction of a path is
done via lambda abstraction λ i : I. t : x = y, but this causes the extra requirement to match
the endpoints: t[i0/i] ≡ x and t[i1/i] ≡ y.

FSCD 2021

https://github.com/niccoloveltri/final-pfin


22:4 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

The identification of equalities with special functions from an interval type allows the
provability of the function extensionality principle, stating that pointwise equal functions are
equal. The proof consists of simply swapping the order of the two input arguments:

funExt : {f g : A → B} → ((x : A) → f x = g x) → f = g

funExt p i x=df p x i

A characteristic feature of homotopy type theory, together with Voevodsky’s univalence,
is the presence of higher inductive types (HITs) [27]. A HIT is a type whose constructors
inductively generate both its elements and its (higher) paths. We introduce three HITs:
propositional truncation, set quotient and finite powerset (the latter in Section 4.1).

First, we introduce three classes of types: the contractible types, which have a unique
inhabitant up to path equality, the (mere) propositions, for which any two elements are path
equal, and the sets, whose path types are propositions. The collections of propositions is
called hProp =df

∑
A : Type. isProp A. We follow the informal convention of identifying a

proposition with its underlying type (i.e. its first projection).

isContr A=df
∑

x : A. (y : A) → x = y

isProp A=df (x y : A) → x = y

isSet A=df (x y : A) → isProp (x = y)

The propositional truncation of a type A is the HIT generated by the following constructors:

x : A
|x| : ∥A∥

x, y : ∥A∥
squash x y : x = y

∥A∥ is the proposition associated to type A, in which all elements of A have been unified
thanks to the path constructor squash. Using propositional truncation, we can define an
uninformative existential quantifier ∃x : A. B x=df ∥

∑
x : A. B x∥.

The set quotient of a type A by a (proof-relevant) relation R : A→ A→ Type is the HIT
generated by the following constructors:

x : A
[x] : A/R

x, y : A r : R x y

eq/ r : x = y

x, y : A/R p, q : x = y

squash/ p q : p = q

The element [x] is the R-equivalence class of x, while the path constructor eq/ states that
R-related elements have path equal equivalence classes. The 2-path constructor squash/
forces A/R to be a set.

HITs are supported in cubical type theory [11] and have been implemented in Cubical
Agda, where they can be introduced using the syntax of inductive types. Path constructors
are considered as point constructors depending on extra interval names and satisfying the
required matching conditions on endpoints. Functions out of HITs can be defined via pattern
matching, where now the user has to deal with the extra cases of higher path constructors.
For example, propositional truncation is a functor, and its action on functions is defined as

map∥ : (A → B) → ∥A∥ → ∥B∥
map∥ f |x| =df |f x|
map∥ f (squash x y i) =df squash (map∥ f x)(map∥ f y) i

2.2 Coinductive Types
Agda has native support for coinductive types specified by strictly positive functors, and
this support has been extended to Cubical Agda as well. As an example, which will be
employed in the successive sections, consider the type Tree consisting of finitely-branching



N. Veltri 22:5

record Tree : Type where
coinductive
field

subtreesL : List Tree

record TreeB (t u : Tree) : Type where
coinductive
field

subtreesBL : List TreeB (subtreesL t) (subtreesL u)

Figure 1 Agda definitions of infinite trees and tree bisimilarity.

non-wellfounded trees defined as the final coalgebra of the List functor. In Agda, the latter is
encoded as a coinductive record with one destructor subtreesL, returning the subtrees of the
root, see the left code in Figure 1. The type Tree, together with the destructor subtreesL,
is a coalgebra of the List functor. Elements of coinductive types are characterized by the
result of the application of destructors, which means that an element of type Tree is specified
by the list of its subtrees. This is dual to the construction of elements of inductive types
in terms of constructors. For example, the infinite binary tree is corecursively defined as:
subtreesL binTree =df binTree :: binTree :: [ ].

An important advantage of working in Cubical Agda is the possibility to prove the
coinduction principle [30]. For the type of trees, this states that tree bisimilarity is equivalent
to path equality. Bisimilarity can be defined as a coinductive relation on trees, and as such it
can be encoded in Agda as a coinductive record, see the right code in Figure 1. In the codomain
of the destructor subtreesBL we employ the lifting of a type family R : A → B → Type to
lists, inductively generated by two constructors:

[ ] : List R [ ] [ ]
p : R a b r : List R l m

p :: r : List R (a :: l) (b :: m) (1)

The proof of the coinduction principle bisimL fundamentally employs copatterns [1] and
lambda abstraction of interval variables, i.e. the introduction rule of path types. The
coinduction principle bisimL is simultaneously constructed with an auxiliary proof bisim′

L,
stating that (List TreeB)-related lists of trees are path equal.

bisimL : {t u : Tree} → TreeB t u → t = u

subtreesL (bisimL b i) =df bisim′
L (subtreesBL b) i

bisim′
L : {l m : List Tree} → List TreeB l m → l = m

bisim′
L [ ] i =df [ ]

bisim′
L (b :: r) i =df bisimL b i :: bisim′

L r i

The productivity, i.e. well-definiteness, of the function bisimL is guaranteed by the
presence of list constructors [ ] and :: at top level in the definition of bisim′

L. More generally,
corecursively defined terms are accepted as valid by Agda’s productivity checker only
when recursive calls appear directly under the application of a constructor. This syntactic
restriction, while indeed sufficient for ensuring the productivity of corecursive definitions,
makes programming and reasoning with coinductive types in Agda quite cumbersome. For
example, the following construction of the unique coalgebra morphism from the carrier of a
coalgebra c : X → List X to Tree is not accepted in Agda (mapList is the action on functions
of the List functor):

anaTree : (c : X → List X) → X → Tree
subtreesL (anaTree c x) =df mapList (anaTree c) (c x) (2)

For this reason, in our code we parameterize our coinductive types with sizes, to ease the
productivity checking of corecursive definitions [18, 14]. For example, the function anaTree
is accepted by Agda if the type of trees is decorated with size information. Notice that we
use sized types for mere practical convenience: we believe possible, with some extra work, to
massage the corecursive definitions in our Agda code and obtain equivalent characterizations

FSCD 2021



22:6 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

able to overtake Agda’s syntactic productivity checker. In the paper, all mentions to sizes
have been removed.

Since HITs are implemented in Agda as a particular kind of inductive types, Cubical
Agda also allows the construction of coinductive types specified by functors defined as HITs.
This is a somehow experimental feature: the existence of such objects would need to be
verified in the cubical set model, which we leave to future work. We will show an example of
such a coinductive type in Section 4.2.

3 The Finite Powerset and Its Final Coalgebra as a Setoid

Here we introduce the finite powerset construction as a setoid and study its final coalgebra.

A setoid [7], or Bishop set, is a pair (A,R) consisting of a type A and a proof-irrelevant
(i.e. valued in propositions) equivalence relation R on A. We write Setoid for the type of
setoids and, given S : Setoid, we write carr S and eqr S for the carrier and the equivalence
relation of S, respectively. A setoid morphism between setoids (A,R) and (B,S) is a function
f : A → B which is compatible with the equivalence relations: for all x, y : A, if R x y

then S (f x) (f y). We write SetoidMor S T for the type of setoid morphisms between
setoids S and T , and, given h : SetoidMor S T , we write fun h : carr S → carr T for its
underlying function. Setoids and their morphisms form a category Setoid, but this is not the
framework typically employed as a foundational setting for constructive mathematics, since
in this category equality of morphisms is given by path equality, not equivalence relation.
Bishop-style constructive mathematics is instead developed in SetoidRel, which is the
category Setoid enriched in the category of sets and equivalence relations [19]. In this
setting, two setoid morphisms f and g between setoids (A,R) and (B,S) are considered
equal whenever, for all x : A, S (f x) (g x).

In SetoidRel, given an endofunctor F with action on setoid morphisms mapF (satisfying
the functor laws up to the appropriate equivalence relation), the types of F -coalgebras and
F -coalgebra morphisms between two F -coalgebras (S, s) and (T, t) are defined as follows:

Coalgs F =df
∑

S : Setoid. SetoidMor S (F S)
CoalgMors F (S, s) (T, t)=df∑

h : SetoidMor S T. (x : carr S) → eqr T (fun t (fun h x)) (fun (mapF h) (fun s x))
(3)

A coalgebra in SetoidRel is final if there exists a unique coalgebra morphism from any
other coalgebra, up to equivalence relation:

Finals F =df
∑

C : Coalgs F. (D : Coalgs F ) → isContrs (CoalgMors F C D) (4)

where elements of isContrs (CoalgMors F C D) are pairs consisting of a coalgebra morphism
h and, for any other coalgebra morphism h′, a proof that h and h′ are equivalent as setoid
morphisms.



N. Veltri 22:7

record TreeR (t u : Tree) : Type where
coinductive
field

subtreesR : L̂ist TreeR (subtreesL t) (subtreesL u)

Figure 2 Agda definition of the coinductive closure of the relator L̂ist.

3.1 The Setoid of Finite Subsets
Given a setoid (A,R), its setoid of finite subsets is defined as Pfins (A,R) =df (List A, L̂ist R),
where L̂ist is a lifting of List to relations, alternative to the lifting given in (1). L̂ist is
sometimes called a relator and plays an important role in the study of applicative bisimilarity
for functional programming languages with nondeterministic choice [21]. Given a type family
R : A→ B → Type, the type family L̂ist R : List A→ List B → Type is defined as

L̂ist R l m=df ((x : A) → x ∈L l → ∃y : B. y ∈L m×R x y)
×
((y : B) → y ∈L m → ∃x : A. x ∈L l ×R y x)

(5)

So two lists are related by L̂ist R when each element of a list is R-related to an element of the
other list. The type family ∈L is the inductive (proof-relevant) membership relation on lists,
the subscript L distinguishes this to the membership relation on the type Pfin introduced
in Section 4.1. Pfins is an endofunctor on SetoidRel. Its action on setoid morphisms
mapPfins : SetoidMor S T → SetoidMor (Pfins S) (Pfins T ) has underlying function mapList.

Notice the presence of existential quantifications ∃ in the definition of L̂ist. If we were to
replace them with

∑
, we would obtain a setoid of finite multisubsets instead, as the one

considered by Danielsson [13].

3.2 The Final Coalgebra
The final coalgebra of the final powerset functor in SetoidRel can be constructed using
coinductive types. Consider the coinductive relation of Figure 2 obtained by replacing the
lifting List with the lifting L̂ist in the destructor of the tree bisimilarity relation TreeB in
Figure 1. Two trees are related by TreeR if, for each subtree of one tree, there merely
exists a TreeR-related subtree of the other tree. The setoid νPfins =df (Tree,TreeR) is a
Pfins-coalgebra:

coalgs : SetoidMor νPfins (Pfins νPfins)
coalgs = (subtreesL, subtreesR)

▶ Theorem 1. The Pfins-coalgebra (νPfins, coalgs) is final in SetoidRel.

Proof. We only show the existence of a coalgebra morphism into (νPfins, coalgs). Given
another Pfins-coalgebra (S, s), there is a setoid morphism h from S to (Tree,TreeR) with
underlying function anaTree (fun s).

This function is compatible with equivalence relations. Assume given x, y : carr S such
that eqr S x y. We prove TreeR (anaTree (fun s) x) (anaTree (fun s) y). This is a coinductive
type, so we proceed by applying the destructor of TreeR and we are left to show that
subtreesL (anaTree (fun s) x) is (L̂ist TreeR)-related to subtreesL (anaTree (fun s) y). The
definition of the lifting L̂ist in (5) is symmetric, so it is sufficient to prove the following lemma
(in which we unfold the definition of anaTree as in (2)):

FSCD 2021



22:8 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

(x′ : Tree) → x′ ∈L mapList (anaTree (fun s)) (fun s x)
→ ∃y′ : Tree. y′ ∈L mapList (anaTree (fun s)) (fun s y) × TreeR x′ y′ (6)

Given a tree x′ as in the hypotheses of (6), it is possible to construct another tree x′′ such
that x′′ ∈L fun s x and anaTree (fun s) x′′ = x′. Remember that s is a setoid morphism and
eqr S x y holds by assumption. This implies that, for each element in the list fun s x, there
exists a (eqr S)-related element in the list fun s y. Since x′′ ∈L fun s x, we obtain a tree y′′

such that y′′ ∈ fun s y and eqr S x′′ y′′. The required tree y′ in the goal of (6) is defined
as anaTree (fun s) y′′. The proof of y′ being TreeR-related to x′ is given by the corecursive
hypothesis applied to arguments x′′,y′′ and the proof of eqr S x′′ y′′. ◀

Differently from the case of polynomial functors, the final Pfins-coalgebra cannot be
constructed as an ω-limit in SetoidRel. In fact, the ω-limit of the sequence obtained by
iterated application of Pfins on the unit setoid is not a fixpoint of Pfins. This is in analogy
with the situation in classical set theory described by Adámek and Koubek [2], for which we
give a constructive account in Section 5.

It is possible to prove a version of Theorem 1 for Setoid instead of SetoidRel:
(νPfins, coalgs) is also the final Pfins-coalgebra in Setoid, where one first needs to ap-
propriately adapt the definitions of coalgebra morphism and final coalgebra in (3) and (4) to
Setoid.

4 The Finite Powerset and Its Final Coalgebra as a Type

We now abandon the setoid setting and work with types as primary object instead of setoids,
as typically done in HoTT. Given an endofunctor F : Type→ Type with action on functions
mapF, the types of F -coalgebras and F -coalgebra morphisms between two F -coalgebras (A, a)
and (B, b) are defined as follows:

Coalg F =df
∑

A : Type. A → F A

CoalgMor F (A, a) (B, b) =df
∑

f : A → B. (x : A) → b (f x) = mapF f (a x) (7)

In this setting, a coalgebra is final if there exists a unique (up to path equality) coalgebra
morphism to any other coalgebra.

Final F =df
∑

C : Coalg F. (D : Coalg F ) → isContr (CoalgMor F C D) (8)

The definitions in (7) and (8) are the same of Ahrens et al. [5], which they only consider in
the case of F being a polynomial functor specified by a signature. The coinductive type Tree
of Section 2.2 is the final List-coalgebra, with the function anaTree of (2) as unique mediating
coalgebra morphism.

4.1 The Type of Finite Subsets
The action of the finite powerset functor on a type A returns the set of all finite subsets of A.
Following Frumin et al. [17], the finite powerset functor can be encoded as a higher inductive
type in two equivalent ways: as a set quotient of lists or as the term algebra of the theory of
join semilattices.

As a Set Quotient. The set of finite subsets can be defined as a set quotient of the type of
lists: Pfinq A=df List A/SameEls. The subscript q indicates that this type is a set quotient.
The relation SameEls, as the name suggests, relates lists containing the same elements, and
it is given by the relator L̂ist applied to path equality on A, i.e. SameEls =df L̂ist (=).



N. Veltri 22:9

As the Free Join Semilattice. The set of finite subsets can also be defined as the free
join semilattice on a given type A. A join semilattice is a partially ordered set (X,≤)
with a bottom element and a binary join operation. Join semilattices admit an equational
presentation as algebraic theories, from which the following higher inductive type can be
extrapolated:

∅ : Pfin A
a : A

η a : Pfin A
x, y : Pfin A
x ∪ y : Pfin A

x : Pfin A
nr x : x ∪ ∅ = x

x, y, z : Pfin A
assoc x y z : (x ∪ y) ∪ z = x ∪ (y ∪ z)

x, y : Pfin A
comm x y : x ∪ y = y ∪ x

x : Pfin A
idem x : x ∪ x = x

x, y : Pfin A p, q : x = y

squashPfin p q : p = q

The type Pfin A is a join semilattice, with empty subset ∅ as bottom element and binary union
∪ as join operation. The partial order can be recovered in the usual way: x ≤ y=df (x∪y) = y.
The 1-path constructors mimic the equational theory of join semilattices, while the 2-path
constructor squashPfin forces Pfin A to be a set. The constructor η embeds A into Pfin A and
represents the singleton subset operation. The elimination principle of Pfin A corresponds to
the universal property of Pfin A as the free join semilattice on A.

The membership relation ∈ is defined by induction on the finite subset in input.

∈ : A → Pfin A → hProp
a ∈ ∅ =df ⊥
a ∈ η b =df ∥a = b∥
a ∈ x ∪ y =df ∥a ∈ x+ a ∈ y∥

The omitted cases for the higher constructors are dealt with using univalence. Moreover the
right-hand-sides only contain the types underlying the propositions, the proof terms showing
that these satisfy the predicate isProp have been omitted. The subset relation is given by
x ⊆ y=df (a : A)→ a ∈ x→ a ∈ y, which is equivalent to the order relation ≤ defined above.

Given a type family R : A → B → Type, its lifting to Pfin is the type family Pfin R :
Pfin A→ Pfin B → Type defined as

Pfin R s t =df ((x : A) → x ∈ s → ∃y : B. y ∈ t×R x y)
×
((y : B) → y ∈ t → ∃x : A. x ∈ s×R y x)

For all relations R, it is possible to show that Pfin R is a congruence, which means that we
are able to construct elements of the following types:

Pfin R ∅ ∅ Pfin R s1 t1 → Pfin R s2 t2 → Pfin R (s1 ∪ s2) (t1 ∪ t2) (9)

When R is path equality, Pfin (=) corresponds to extensional equality of finite subsets,
i.e. Pfin (=) s t ≃ (s ⊆ t× t ⊆ s). Since the subset relation is antisymmetric, we have that
Pfin (=) s t ≃ (s = t). We call toPfinEq : Pfin (=) s t → (s = t) the left-to-right function
underlying this equivalence.

The two types Pfin A and Pfinq A are provably equivalent [17].

FSCD 2021



22:10 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

record νPfin : Type where
coinductive
field

subtreesP : Pfin νPfin

record νPfinB (t u : νPfin) : Type where
coinductive
field

subtreesBP : Pfin νPfinB (subtreesP t) (subtreesP u)

Figure 3 Agda definitions of coinductive final coalgebra of Pfin and its bisimilarity relation.

4.2 The Final Coalgebra
As a Coinductive Type. As mentioned in the last paragraph of Section 2.2, Cubical Agda
allows the construction of coinductive types specified by functors using HITs in their definition.
When such functor is the finite powerset functor Pfin, this construction is given by the record
type on the left in Figure 3. Notice that νPfin is a set: Pfin A is a set for all types A, so in
particular Pfin νPfin is a set, and the latter is isomorphic to νPfin.

In Figure 3, the coinductive relation on the right is the notion of bisimilarity associated
to the infinite trees in νPfin. The coinduction principle for νPfin is derivable by copattern
matching and path introduction as follows:

bisimP : {t u : νPfin} → νPfinB t u → t = u

subtreesP (bisimP b i) =df

toPfinEq (λxm. map∥(λ(x′,m′, b′). (x′,m′, bisimP b
′)) (fst (subtreesBP b) x m),

λxm. map∥(λ(x′,m′, b′). (x′,m′, bisimP b
′)) (snd (subtreesBP b) x m))

i

▶ Theorem 2. νPfin is the final coalgebra of Pfin in the sense of (8).

Proof. The construction of the mediating coalgebra morphism between a Pfin-coalgebra
(A, a) and νPfin, whose coalgebra is the destructor subtreesP, is analogous to the one in (2):

anaPfin : (c : X → Pfin X) → X → νPfin
subtreesP (anaPfin c x) =df mapPfin (anaPfin c) (c x) (10)

Now assume given another coalgebra morphism f : X → νPfin. We prove simultaneously
the two following lemmata, and conclude uniqueness using the coinduction principle of νPfin.

anaPfinUniq : (x : X) → νPfinB (f x) (anaPfin c x)
anaPfinUniqR : (s : Pfin X) → Pfin νPfinB (mapPfin f s) (mapPfin (anaPfin c) s)

The first lemma is proved by corecursion, so after an application of the destructor of
νPfinB (and after unfolding the definition of anaPfin in (10)), we are left to construct an
element of type Pfin νPfinB (subtreesP (f x)) (mapPfin (anaPfin c) (c x)). Since f is a
coalgebra morphism, we can substitute subtreesP (f x) for mapPfin f (c x) in the latter, and
we return anaPfinUniqR (c x) as the inhabitant of the type resulting from the substitution.

The second lemma is proved by induction on s. Since the return type is a proposition,
we only need to deal with the three cases of the point constructors.

Case s ≡ ∅. We are done by the left result in (9).
Case s ≡ η z. Our goal reduces to Pfin νPfinB (η (f z)) (η (anaPfin c z)). We construct
the first argument of this product type, the second argument is defined analogously.
Assume given x : νPfin and p : x ∈ η (f z), i.e. a truncated equality proof p : ∥x = f z∥.
We need to show that there merely exists y : νPfin such that y ∈ η (anaPfin c z), i.e.
∥y = anaPfin c z∥, and νPfinB x y holds. Take y =df anaPfin c z, and derive νPfinB x y

by first rewriting x to f z using p (we can remove the propositional truncation in p since
the return type is a proposition as well) and subsequently applying anaPfinUniq to z.



N. Veltri 22:11

Case s ≡ s1 ∪ s2. We apply the right result in (9) and we conclude by invoking inductive
hypotheses anaPfinUniqR s1 and anaPfinUniqR s2. ◀

As a Set Quotient. Alternatively, we could quotient the type Tree of finitely ordered
branching trees by the equivalence relation TreeR introduced in Figure 2. The resulting type
is a fixpoint of Pfinq.

▶ Theorem 3. The type Tree/TreeR is equivalent to Pfinq (Tree/TreeR)

Proof. We only discuss the construction of the functions underlying the equivalence. A
function f : Tree/TreeR→ Pfinq (Tree/TreeR) is defined by pattern matching (we only show
the case of the point constructor): f [t] =df [mapList (λx. [x]) (subtreesL t)].

A function g : Pfinq (Tree/TreeR) → Tree/TreeR is also defined by pattern matching.
Notice that this is equivalent to construct a function g′ : List (Tree/TreeR) → Tree/TreeR
which is compatible with the relation SameEls. Since the type List (Tree/TreeR) is equivalent
to List Tree/List TreeR, it is sufficient to define a function g′′ : List Tree/List TreeR →
Tree/TreeR satisfying an adjusted compatibility condition. This is given by pattern matching
(again, we omit the cases of the path constructors): g′′ [l] =df [subtrees−1

L l], where subtrees−1
L

is the inverse of the destructor subtreesL. ◀

Proving finality of the coalgebra underlying the equivalence of Theorem 3 seems to require
the assumption of the full axiom of choice. This is constructively problematic, since in
HoTT the axiom of choice implies the law of excluded middle [27]. We employ an alternative
formulation of the axiom of choice, provably equivalent to the usual one. First, consider two
types A,B and a type family R : B → B → Type. Let Fun R be the lifting of the type family
R to the function space A → B, i.e. given f, g : A → B, define Fun R f g =df (x : A) →
R (f x) (g x). It is possible to define a function θR : (A → B)/Fun R → A → B/R by
pattern matching on the first argument. The existence of a section for θR, for all type
families R, is an equivalent phrasing of the axiom of choice (see e.g. [28] for a proof of this
equivalence):

AC =df {A,B : Type} (R : B → B → Type)
→ ∃ψR : (A → B/R) → (A → B)/Fun R. (x : (A → B)/Fun R) → θR (ψR x) = x

(11)

▶ Theorem 4. Assuming axiom of choice, the type Tree/TreeR is the final coalgebra of Pfinq.

Proof. We only discuss the construction of the mediating coalgebra morphism. We are
asked to construct a function anaPfinq : (c : X → Pfinq X) → X → Tree/TreeR. This
can be obtained from the function anaPfin′

q : (c : X → Pfinq X) → Pfinq X → Tree/TreeR
by precomposition with the coalgebra c. In turn, this can be obtained from the function
anaPfin′′

q : (X → List X)/Fun SameEls → List X/SameEls → Tree/TreeR by precomposition
with the section ψSameEls. The latter is definable by pattern matching on both arguments:
anaPfin′′

q [c] [l] =df [anaTree c l]. The missing cases in the definition have been omitted. ◀

Without the assumption of the axiom of choice, one gets stuck in the construction of anaPfinq.
In fact, the mediating coalgebra morphism may call the coalgebra c : X → Pfinq X an
arbitrarily large number of times, and, since we are given no information on the cardinality of
X, each application of c may happen on a different input x : X. This implies that generally
the recursion principle of set quotients would need to be invoked the same large number of
times, and this could only be achieved by assuming the full axiom of choice.

FSCD 2021



22:12 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

5 Analysis of Worrell’s Classical Set-Theoretic Construction

In classical set theory there are many constructions of the final coalgebra of the finite powerset
functor. See Adámek et al.’s collection and comparison of all these characterizations [4].
In this section we scrutinize a construction due to James Worrell as an (ω + ω)-limit [33].
Worrell’s general construction of final coalgebras of finitary functors as (ω + ω)-limits can
be seen as a generalization of the traditional construction of final coalgebras of polynomial
functors as ω-limits. In the same spirit, one can consider our attempt at internalizing
Worrell’s construction in type theory, here in the special case of the final powerset functor, as
a generalization of Ahrens et al.’s internalization of the construction of M-types in homotopy
type theory [5]. We will see that a sprinkle of classical logic is needed for Worrell’s construction
to work in our constructive setting.

Worrell’s construction starts by considering the ω-limit of the sequence

1 Pfin 1!oo Pfin2 1
mapPfin !oo . . .

map2
Pfin !oo (12)

which in type theory can be encoded as the following dependent sum:

Vω =df
∑

x : (n : N) → Pfinn 1. (n : N) → mapn
Pfin ! (x (suc n)) = x n

Here Pfinn A is the n-iterated application of Pfin to type A, i.e. Pfinzero A =df A and
Pfinsuc n =df Pfin (Pfinn A). Similarly, mapn

Pfin is the n-iterated application of mapPfin. Let
ℓn be the function mapping an element of Vω to its nth approximation in Pfinn 1, i.e.
ℓn x=df fst x n. A function algVω

from Pfin Vω to Vω can be constructed as follows, basically
using the universal property of the ω-limit (we use copatterns and we only show the definition
of the first projection): fst (algVω

s) n =df mapn
Pfin ! (mapPfin ℓn s). As noticed by Adámek

and Koubek [2], Vω is not the final coalgebra of Pfin. This is because Vω is not a fixpoint of
Pfin, as the canonical algebra function algVω

is not an isomorphism.

▶ Proposition 5. The function algVω
: Pfin Vω → Vω is not surjective.

Proof. Consider the sequence

growing : (n : N) → Pfinn1
growing zero =df tt
growing (suc zero) =df η tt
growing (suc (suc n)) =df η ∅ ∪ mapPfin η (growing (suc n))

corresponding pictorially to the following element of Vω:

tt
!←− [

•

tt

mapPfin !←− [
•

∅ •

tt

map2
Pfin !
←− [

•

∅ • •

∅ •

tt

map3
Pfin !
←− [ . . .

The top-level branching of the sequence growing is, as the name suggests, growing. It is
possible to show that it is absurd to assume that growing is in the image of algVω

. ◀

Elements of type Vω represent non-wellfounded trees with unordered branching (as
opposed to elements of type Tree, in which branching is ordered). The element growing
introduced in the proof of Proposition 5 shows that these trees generally do not have finite



N. Veltri 22:13

branching, even if all their finite approximations do. So Vω cannot possibly be a fixpoint of
Pfin, and, in particular, it cannot be its final coalgebra.

While the sequence in (12) does not stabilize in ω steps, Worrell shows that, in classical
set theory, it stabilized after ω + ω steps. To this end, he considers the ω-limit Vω+ω of the
sequence

Vω Pfin Vω

algVωoo Pfin2 Vω

mapPfin algVωoo . . .
map2

Pfin algVωoo (13)

which in type theory corresponds to the dependent sum

Vω+ω =df
∑

x : (n : N) → Pfinn Vω. (n : N) → mapn
Pfin algVω

(x (suc n)) = x n

and proves that Vω+ω is the final coalgebra of Pfin. A fundamental ingredient in his proof is
the fact that the function algVω

is injective (even more, classically it is a split monomorphism),
so that Pfin Vω can be characterized as the subset of Vω consisting of all the trees in which
the top-level branching is finite. Consequently, Pfin2 Vω consists of all trees in which the first
two levels of branching are finite. The limit Vω+ω can then be characterized as the subset of
Vω consisting of trees with finite branching at all levels.

In our constructive setting, the injectivity of algVω
is not provable. In fact, under the

assumption of the axiom of countable choice, injectivity of algVω
is equivalent to the lesser

limited principle of omniscience (LLPO):

LLPO =df (a : N → Bool) → isProp (
∑

n : N. a n = true)
→ ∥((n : N) → isEven n → a n = false) + ((n : N) → isOdd n → a n = false)∥

LLPO states that, if a Boolean stream a contains at most one occurrence of value true, then
either all its even positions contain false or all its odd positions contain false. The axiom
of countable choice is just AC in (11) with type A fixed to be N, but we prefer to have a
different (and more standard) equivalent formulation of countable choice that is directly
applicable in the forthcoming constructions:

ACN : (P : N → Type) → ((n : N) → ∥P n∥) → ∥(n : N) → P n∥

Proving that the injectvity of algVω
implies LLPO does not require countable choice.

The proof is obtained as an adaptation of the proof of equivalence between LLPO and the
completeness of finite sets of real numbers in Bishop-style constructive mathematics [22].

▶ Theorem 6. From the injectivity of algVω
we can construct the following term:

complete : {x y1 y2 : Vω} (z : N → Vω)
→ (p : (n : N) → z n = y1 + z n = y2) (q : (n : N) → ℓn x = ℓn (z n))
→ x ∈ η y1 ∪ η y2

(14)

Proof. Assume given a sequence z : N→ Vω with proof terms p and q as in the type above.
Define two elements of Pfin Vω as follows: t =df η y1 ∪ η y2 and s =df η x ∪ t. In order to
prove complete z p q, it is enough to show that algVω

maps s and t to path equal elements,
since then the injectivity of algVω

would imply s = t and therefore also x ∈ t. Proving
algVω

s = algVω
t is equivalent to show ℓn (algVω

s) = ℓn (algVω
t) for all n : N, which,

unfolding the definition of algVω
, is also equivalent to show mapPfin ℓn s = mapPfin ℓn t for all

n : N. Assuming n : N, we invoke the antisymmetry of the subset relation and we are left to
show mapPfin ℓn s ⊆ mapPfin ℓn t (the other direction is trivial since t ⊆ s). Unfolding the
definition of s, the only interesting case to prove is ℓn x ∈ mapPfin ℓn t. The proof proceeds
by case analysis on p n. If z n = y1, then ℓn x = ℓn (z n) = ℓn y1, where the first path
equality is given by q n, so ℓn x ∈ mapPfin ℓn t. The case of z n = y2 is analogous. ◀

FSCD 2021



22:14 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

Intuitively, complete corresponds to the completeness of two-element subsets of Vω wrt. the
pseudometric d(x, y) =df inf{2−n | n : N, ℓn x = ℓn y} [4].

The proof of the next theorem requires the introduction of some auxiliary definitions.
First, long : Vω corresponds to the infinite tree in which each node has exactly one subtree.
We only show the construction of the first projection (the definition uses copatterns).

fst long zero =df tt
fst long (suc n) =df η (fst long n)

Given a sequence a : N → Bool, one can also define a variant long? a of long, which is the
same as long if a contains only value false, but its height stop growing if there is n : N such
that a n is the first true in a. In the latter case, long? a is a finite tree with height n, so that
fst long (suc n) is not equal to fst (long? a) (suc n).

fst (long? a) zero =df tt
fst (long? a) (suc n) =df if a zero then ∅ else η (fst (long? (a ◦ suc)) n)

Lastly, given a sequence a : N→ Bool, a type A with two elements x, y : A and a Boolean b,
we can define a sequence seq a x y b : N→ A as follows:

seq a x y b zero =df if a zero and b then y else x
seq a x y b (suc n) =df if a zero and b then y else seq (a ◦ suc) x y (not b) n

The rationale behind the construction of the latter sequence, in the case when b is true, goes
as follows: seq a x y true n returns y if there exists an even number k : N with k ≤ n such
that a k = true and a j = false for all j < k; in all other cases seq a x y true n returns x.

▶ Theorem 7. The existence of a term complete as in (14) implies LLPO.

Proof. Let a : N → Bool be a sequence with at most one occurrence of value true. Define
y1 =df long, y2 =df long? a and z =df seq a y1 y2 true. Take x to be the diagonal of z, i.e.
fst x n=df ℓn z n, which can in fact be proved to be an element of Vω. Clearly each entry in
z is either y1 or y2, therefore all the hypotheses in the type in (14) are satisfied. Applying
complete to these hypotheses gives x ∈ η y1 ∪ η y2. Invoking the recursion principle of
propositional truncation on the resulting proof term, which we are allowed to use since the
return type of LLPO is a proposition, gives us either x = y1 or x = y2. Assume x = y1,
we show a n = false for all even numbers n : N. Suppose a n = true for a certain even
number n. Since a n = true, and this is the only true in a, we know that z (suc n) ≡
seq a y1 y2 true (suc n) = y2 which in turn implies ℓsuc n x = ℓsuc n (z (suc n)) = ℓsuc n y2.
By assumption ℓsuc n x = ℓsuc n y1, therefore by path composition and path inversion we get
ℓsuc n y1 = ℓsuc n y2, i.e. fst long (suc n) = fst (long? a) (suc n), which is impossible since a n
is true. So a n must be false for all even n. Analogously one can prove that x = y2 implies
a n = false for all odd numbers n : N, therefore concluding the derivation of LLPO. ◀

Patching together Theorems 6 and 7 shows that the injectivity of algVω
implies LLPO.

▶ Corollary 8. The injectivity of algVω
implies LLPO.

This displays the non-constructive nature of the injectivity of algVω
. The reverse implication

also holds, which we have proved assuming the axiom of countable choice. We refrain from
proving this in the paper, but the interested reader can find all the details in the Agda code.

▶ Theorem 9. Assuming countable choice, LLPO implies the injectivity of algVω
.



N. Veltri 22:15

One can also modify the proofs of Corollary 8 and Theorem 9 to show that LLPO is also
equivalent to the injectivity of the function ℓω : Vω+ω → Vω given by ℓω x =df fst x zero.
This demonstrates that Worrell’s construction of the final coalgebra of Pfin as a subset of
the limit Vω is not achievable without the assumption of a certain amount of classical logic
in the metatheory.

▶ Theorem 10.
1. The injectivity of ℓω implies LLPO.
2. Assuming countable choice, LLPO implies the injectivity of ℓω.

Having the injectivity of algVω
at hand, the construction of a coalgebra structure on Vω+ω

and the proof of its finality morally follow Worrell’s description [33].

▶ Theorem 11. Assuming the axiom of countable choice and the injectvity of algVω
, Vω+ω

is a Pfin-coalgebra which is final.

Proof. The meat of the proof lays in the construction of a function of type Vω+ω → Pfin Vω+ω.
We show that the latter comes from an equivalence Vω+ω ≃ Pfin Vω+ω which is constructed
in several steps. First define a family of functions u : (n : N)→ Pfinn Vω → Vω by recursion:
u zero x=df x and u (suc n) x=df u n (mapn

Pfin algVω
x). It is possible to prove that Vω+ω is

equivalent to the wide pullback
⋂
u of the family of functions u. In general, given a family

of functions f : (n : N)→ A n→ C, its wide pullback is defined in type theory as⋂
f =df

∑
x : (n : N) → A n. (n : N) → f (suc n) (x (suc n)) = f zero (x zero)

We use the intersection symbol, and we refer to this pullback as intersection, since all the
families of functions f that we consider have f n injective, for all n : N. In particular, each
function u n is injective, which can be proved by induction on n using the assumption that
algVω

is injective. This implies the existence of an equivalence eqv1 : Pfin Vω+ω ≃ Pfin (
⋂
u).

In an analogous manner, one can prove that the intersection of the family mapPfin ◦ u :
(n : N)→ Pfinsuc n Vω → Pfin Vω is equivalent to the ω-limit of the shifted sequence

Pfin Vω Pfin2 Vω

mapPfin algVωoo Pfin3 Vω

map2
Pfin algVωoo . . .

map3
Pfin algVωoo

It is well-known that the ω-limit of the shifted sequence is equivalent to the ω-limit of the
original sequence in (13), i.e. Vω+ω. We obtain an equivalence eqv3 :

⋂
(mapPfin ◦ u) ≃ Vω+ω.

It is also possible to show, using the axiom of countable choice, that Pfin preserves
intersections: given a generic family of injective functions f : (n : N) → A n → C, the
following equivalence exists: eqv2 : Pfin (

⋂
f) ≃

⋂
(mapPfin ◦ f).

By composing equivalences eqv1, eqv2 and eqv3, we obtain the desired equivalence showing
that Vω+ω is a fixpoint of Pfin. A Pfin-coalgebra for Vω+ω is extracted as the function of
type Vω+ω → Pfin Vω+ω underlying this equivalence. It is possible to continue following
Worrell’s proof and show that this coalgebra is indeed final. ◀

6 Conclusions and Future Work

In this paper we discussed various presentations of the final coalgebra of the finite powerset
functor in Cubical Agda: (i) as a setoid, (ii) as a coinductive type, (iii) as a set quotient and
(iv) as a subset of an ω-limit. Construction (iii) requires the presence of the axiom of choice
in the proof of finality, while construction (iv) corresponds to the classical construction of
the final coalgebra as a (ω+ω)-limit by Worrell, which can be performed in our setting prior

FSCD 2021



22:16 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

the assumption of countable choice and LLPO. For these reasons, we believe the best choice
to be number (ii), i.e. the coinductive type νPfin of Section 4.2, since it does not require the
assumption of classical principles such as choice or LLPO, and it does not force the user to
employ setoids instead of types.

The work presented in this paper is motivated by our will to certify programming
language semantics in proof assistants. We are specifically thinking about languages with
nondeterministic or concurrent behavior. In previous work [29], we presented a fully abstract
denotational model of the early π-calculus, mechanized in Guarded Cubical Agda. We
believe possible to port these result to Cubical Agda using the presentations of the final
Pfin-coalgebra of Section 4.2. Such an attempt would employ Cubical Agda’s coinductive
types instead of the guarded recursive types of Guarded Cubical Agda.

We wish to study the more general construction of final coalgebras of finitary functors in
type theory. Frumin et al.’s functor Pfin captures a particular notion of finite type, known
as Kuratowski finiteness: a type A is finite iff there exists a pair consisting of x : Pfin A
and a proof that (a : A)→ a ∈ x. But in type theory, and more generally in constructive
mathematics, there exist many more inequivalent formulations of finiteness [12, 25, 15, 16, 17].
We plan to investigate final coalgebras of finitary functors using these various formulations.
In particular, we wonder if an alternative notion of finiteness in the specification of the
finite powerset functor would make Worrell’s proof go through without the assumption of
additional classical principles. A large class of finitary functors should be definable via the
syntax for set truncated HITs developed by Basold, Geuvers and van der Weide [8, 31].

The construction of the final coalgebra given in Section 4.2 used a higher inductive type
in the domain of a coinductive type destructor. This definition is allowed in Cubical Agda,
and it is intuitively justified by the treatment of HITs in cubical type theory as inductive
types with constructors possibly depending on extra interval variables [11, 9]. We leave to
future work a formal construction of the final coalgebra of the finite powerset and other
finitary functors in the cubical set model [10]. Inspiration could be drawn from the recent
model of clocked cubical type theory of Kristensen et al. [20], where HITs are shown to
commute on the nose with limits modelling the notion of clock quantification.

References
1 Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copatterns: program-

ming infinite structures by observations. In Roberto Giacobazzi and Radhia Cousot, editors,
Proc. of 40th Ann. ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages,
POPL’13, pages 27–38. ACM, 2013. doi:10.1145/2429069.2429075.

2 Jirí Adámek and Václav Koubek. On the greatest fixed point of a set functor. Theoretical
Computer Science, 150(1):57–75, 1995. doi:10.1016/0304-3975(95)00011-K.

3 Jirí Adámek, Paul Blain Levy, Stefan Milius, Lawrence S. Moss, and Lurdes Sousa. On
final coalgebras of power-set functors and saturated trees. Applied Categorical Structures,
23(4):609–641, 2015. doi:10.1007/s10485-014-9372-9.

4 Jiří Adámek, Stefan Milius, and Lawrence S. Moss. Initial algebras, terminal coalgebras, and the
theory of fixed points of functors. Draft book, available from http://www.stefan-milius.eu,
2021.

5 Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti. Non-wellfounded trees in homotopy
type theory. In Thorsten Altenkirch, editor, Proc. of 13th Int. Conf. on Typed Lambda Calculi
and Applications, TLCA’15, volume 38 of Leibniz International Proceedings in Informatics,
pages 17–30. Schloss Dagstuhl, 2015. doi:10.4230/LIPIcs.TLCA.2015.17.

6 Michael Barr. Terminal coalgebras in well-founded set theory. Theoretical Computer Science,
114(2):299–315, 1993. doi:10.1016/0304-3975(93)90076-6.

https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1016/0304-3975(95)00011-K
https://doi.org/10.1007/s10485-014-9372-9
http://www.stefan-milius.eu
https://doi.org/10.4230/LIPIcs.TLCA.2015.17
https://doi.org/10.1016/0304-3975(93)90076-6


N. Veltri 22:17

7 Gilles Barthe, Venanzio Capretta, and Olivier Pons. Setoids in type theory. Journal of
Functional Programming, 13(2):261–293, 2003. doi:10.1017/S0956796802004501.

8 Henning Basold, Herman Geuvers, and Niels van der Weide. Higher inductive types in
programming. Journal of Universal Computer Science, 23(1):63–88, 2017. doi:10.3217/
jucs-023-01-0063.

9 Evan Cavallo and Robert Harper. Higher inductive types in cubical computational type theory.
PACMPL, 3(POPL):1:1–1:27, 2019. doi:10.1145/3290314.

10 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory: A
constructive interpretation of the univalence axiom. In Tarmo Uustalu, editor, Proc. of 21st
Int. Conf. on Types for Proofs and Programs, TYPES’15, volume 69 of Leibniz International
Proceedings in Informatics, pages 5:1–5:34. Schloss Dagstuhl, 2015. doi:10.4230/LIPIcs.
TYPES.2015.5.

11 Thierry Coquand, Simon Huber, and Anders Mörtberg. On higher inductive types in cubical
type theory. In Anuj Dawar and Erich Grädel, editors, Proc. of the 33rd Ann. ACM/IEEE
Symp. on Logic in Computer Science, LICS’18, pages 255–264. ACM, 2018. doi:10.1145/
3209108.3209197.

12 Thierry Coquand and Arnaud Spiwack. Constructively finite? In Laureano Lambàn, Ana
Romero, and Julio Rubio, editors, Scientific Contributions in Honor of Mirian Andrés Gómez,
pages 217–230. Universidad de La Rioja, 2010.

13 Nils Anders Danielsson. Bag equivalence via a proof-relevant membership relation. In Lennart
Beringer and Amy P. Felty, editors, Proc. of 3rd Int. Conf. on Interactive Theorem Proving,
ITP’12, volume 7406 of Lecture Notes in Computer Science, pages 149–165. Springer, 2012.
doi:10.1007/978-3-642-32347-8_11.

14 Nils Anders Danielsson. Up-to techniques using sized types. PACMPL, 2(POPL):43:1–43:28,
2018. doi:10.1145/3158131.

15 Denis Firsov and Tarmo Uustalu. Dependently typed programming with finite sets. In Patrick
Bahr and Sebastian Erdweg, editors, Proc. of 11th ACM SIGPLAN Workshop on Generic
Programming, WGP’15, pages 33–44. ACM, 2015. doi:10.1145/2808098.2808102.

16 Denis Firsov, Tarmo Uustalu, and Niccolò Veltri. Variations on Noetherianness. In Robert
Atkey and Neelakantan R. Krishnaswami, editors, Proc. of 6th Wksh. on Mathematically
Structured Functional Programming, MSFP’16, volume 207 of Electronic Proceedings in
Theoretical Computer Science, pages 76–88, 2016. doi:10.4204/EPTCS.207.4.

17 Dan Frumin, Herman Geuvers, Léon Gondelman, and Niels van der Weide. Finite sets in
homotopy type theory. In Proc. of 7th ACM SIGPLAN Int. Conf. on Certified Programs and
Proofs, CPP’18, pages 201–214. ACM, 2018. doi:10.1145/3167085.

18 John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems using
sized types. In Proc. of 23rd ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, POPL’96, pages 410–423, 1996. doi:10.1145/237721.240882.

19 Yoshiki Kinoshita and John Power. Category theoretic structure of setoids. Theoretical
Computer Science, 546:145–163, 2014. doi:10.1016/j.tcs.2014.03.006.

20 Magnus Baunsgaard Kristensen, Rasmus Ejlers Møgelberg, and Andrea Vezzosi. A model of
clocked cubical type theory, 2021. arXiv:2102.01969.

21 Paul Blain Levy. Similarity quotients as final coalgebras. In Martin Hofmann, editor,
Proc. of 14th Int. Conf on Foundations of Software Science and Computational Structures,
FoSSaCS’11, volume 6604 of Lecture Notes in Computer Science, pages 27–41. Springer, 2011.
doi:10.1007/978-3-642-19805-2_3.

22 Mark Mandelkern. Constructively complete finite sets. Mathematical Logic Quarterly, 34(2):97–
103, 1988. doi:10.1002/malq.19880340202.

23 Robin Milner. A calculus of communicating systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980. doi:10.1007/3-540-10235-3.

24 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Informa-
tion and Computation, 100(1):1–40, 1992. doi:10.1016/0890-5401(92)90008-4.

FSCD 2021

https://doi.org/10.1017/S0956796802004501
https://doi.org/10.3217/jucs-023-01-0063
https://doi.org/10.3217/jucs-023-01-0063
https://doi.org/10.1145/3290314
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.1007/978-3-642-32347-8_11
https://doi.org/10.1145/3158131
https://doi.org/10.1145/2808098.2808102
https://doi.org/10.4204/EPTCS.207.4
https://doi.org/10.1145/3167085
https://doi.org/10.1145/237721.240882
https://doi.org/10.1016/j.tcs.2014.03.006
http://arxiv.org/abs/2102.01969
https://doi.org/10.1007/978-3-642-19805-2_3
https://doi.org/10.1002/malq.19880340202
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0890-5401(92)90008-4


22:18 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

25 Erik Parmann. Investigating streamless sets. In Hugo Herbelin, Pierre Letouzey, and Matthieu
Sozeau, editors, Proc. of 20th Int. Conf. on Types for Proofs and Programs, TYPES’14,
volume 39 of Leibniz International Proceedings in Informatics, pages 187–201. Schloss Dagstuhl,
2014. doi:10.4230/LIPIcs.TYPES.2014.187.

26 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

27 The Univalent Foundations Program. Homotopy type theory: Univalent foundations of
mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

28 Niccolò Veltri. A type-theoretical study of nontermination. PhD thesis, Tallinn University of
Technology, 2017. URL: https://digi.lib.ttu.ee/i/?7631.

29 Niccolò Veltri and Andrea Vezzosi. Formalizing π-calculus in Guarded Cubical Agda. In Jasmin
Blanchette and Catalin Hritcu, editors, Proc. of 9th ACM SIGPLAN Int. Conf. on Certified
Programs and Proofs, CPP’20, pages 270–283. ACM, 2020. doi:10.1145/3372885.3373814.

30 Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical Agda: A dependently typed
programming language with univalence and higher inductive types. PACMPL, 3(ICFP):87:1–
87:29, 2019. doi:10.1145/3341691.

31 Niels van der Weide and Herman Geuvers. The construction of set-truncated higher inductive
types. In Barbara König, editor, Proc. of 35th Int. Conf. on Mathematical Foundations of
Programming Semantics, MFPS’19, volume 347 of Electronic Notes in Theoretical Computer
Science, pages 261–280. Elsevier, 2019. doi:10.1016/j.entcs.2019.09.014.

32 James Worrell. Terminal sequences for accessible endofunctors. In Bart Jacobs and Jan
J. M. M. Rutten, editors, Proc. of 2nd Int. Wksh. on Coalgebraic Methods in Computer
Science, CMCS’99, volume 19 of Electronic Notes in Theoretical Computer Science, pages
24–38. Elsevier, 1999. doi:10.1016/S1571-0661(05)80267-1.

33 James Worrell. On the final sequence of a finitary set functor. Theoretical Computer Science,
338(1-3):184–199, 2005. doi:10.1016/j.tcs.2004.12.009.

https://doi.org/10.4230/LIPIcs.TYPES.2014.187
https://doi.org/10.1016/S0304-3975(00)00056-6
https://homotopytypetheory.org/book
https://digi.lib.ttu.ee/i/?7631
https://doi.org/10.1145/3372885.3373814
https://doi.org/10.1145/3341691
https://doi.org/10.1016/j.entcs.2019.09.014
https://doi.org/10.1016/S1571-0661(05)80267-1
https://doi.org/10.1016/j.tcs.2004.12.009

	1 Introduction
	2 Type Theory and Cubical Agda
	2.1 Univalence, Path Types, Higher Inductive Types
	2.2 Coinductive Types

	3 The Finite Powerset and Its Final Coalgebra as a Setoid
	3.1 The Setoid of Finite Subsets
	3.2 The Final Coalgebra

	4 The Finite Powerset and Its Final Coalgebra as a Type
	4.1 The Type of Finite Subsets
	4.2 The Final Coalgebra

	5 Analysis of Worrell's Classical Set-Theoretic Construction
	6 Conclusions and Future Work

