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Abstract
Graphs and games on graphs are fundamental models for the analysis of reactive systems, in
particular, for model-checking and the synthesis of reactive systems. The class of ω-regular languages
provides a robust specification formalism for the desired properties of reactive systems. In the
classical infinitary formulation of the liveness part of an ω-regular specification, a “good” event must
happen eventually without any bound between the good events. A stronger notion of liveness is
bounded liveness, which requires that good events happen within d transitions. Given a graph or a
game graph with n vertices, m edges, and a bounded liveness objective, the previous best-known
algorithmic bounds are as follows: (i) O(dm) for graphs, which in the worst-case is O(n3); and
(ii) O(n2d2) for games on graphs. Our main contributions improve these long-standing algorithmic
bounds. For graphs we present: (i) a randomized algorithm with one-sided error with running time
O(n2.5 log n) for the bounded liveness objectives; and (ii) a deterministic linear-time algorithm for
the complement of bounded liveness objectives. For games on graphs, we present an O(n2d) time
algorithm for the bounded liveness objectives.
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1 Introduction

Graphs and games on graphs. Graphs and two-player games played on graphs provide
a general mathematical framework for a wide range of problems in computer science: in
particular, for the analysis of reactive systems, where the vertices of the graph represent the
states of a reactive system and the edges represent the transitions between the states. The
classical synthesis problem (the problem of Church) asks for the construction of a winning
strategy in a game played on the graph [13, 21, 20] and the fundamental model-checking
problem is an algorithmic graph problem [14].
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Omega-regular specifications: strength and weakness. In the analysis of reactive systems,
the desired temporal properties that the system should satisfy constitute the specification.
The class of ω-regular languages provides a robust specification formalism [18, 20]. Every
ω-regular objective can be decomposed into a safety part and a liveness part [3]. The safety
part ensures that the system will not do anything “bad” (such as violating an invariant)
within any finite number of transitions. The liveness part ensures that the system will do
something “good” (such as proceed or respond) in the long-run. Liveness can be violated only
in the limit, by infinite sequences of transitions, as no bound is specified on when a “good”
event must happen. This infinitary formulation has several strengths, such as robustness and
simplicity [18, 23]. However, there is also a weakness of the classical definition of liveness: it
can be satisfied by systems that are unsatisfactory because no bound can be put between
the occurrence of desired events.

Stronger notion of liveness. For the weakness of the infinitary formulation of liveness,
alternative and stronger formulations of liveness have been proposed. The first formulation
is bounded liveness which ensures, given a bound d, that eventually, good events happen
within d transitions. The second formulation is finitary liveness which requires the existence
of a bound such that eventually good events happen within the bound. Finitary liveness
was proposed in [4] and has been widely studied; e.g., games on graphs with finitary ω-
regular objectives [12], and logics such as PromptLTL based on finitary liveness [17]. The
notion of bounded liveness has also been investigated in many contexts, such as MSO with
bounding quantifiers [7], bounded model-checking [6], and “bounded until” in logics such as
RTCTL [15].

Algorithmic questions for bounded liveness. In this work, we consider graphs and games
on graphs with bounded liveness objectives. Consider a graph with n vertices, m edges,
and a bounded liveness objective with bound d. A basic algorithmic approach is to reduce
the bounded liveness objective to a liveness objective on a larger graph (that we call the
auxiliary graph) that explicitly keeps track of the number of transitions since the last good
event. This basic approach yields the following bounds: (a) an O(dm)-time algorithm for
graphs (applying the linear-time algorithm for liveness objectives on graphs), and (b) an
O(n2d2)-time algorithm for games on graphs (applying the current best-known O(n2)-time
algorithm for games on graphs with liveness objectives [11]). A fundamental algorithmic
question is whether the above bounds can be improved.

Our contributions. In this work, our main contributions are improved algorithmic bounds
for bounded liveness on graphs and games on graphs.

In graphs, there are two relevant semantics: (a) an existential semantic that asks whether
there exists a path to satisfy the objective, and (b) a universal semantic that asks whether
all paths satisfy the objective. The answer to the universal semantics with bounded
liveness is “Yes” if and only if the answer is “No” for existential semantics with the
complementary bounded coliveness objective. We consider graphs with the existential
semantics and bounded liveness and bounded coliveness objectives. For bounded liveness
objectives, all previous algorithmic approaches yield an O(n3) worst-case time-bound
(where d = O(n)) and we present a randomized algorithm with one-sided error whose
worst-case time-bound is O(n2.5 log n). For bounded coliveness objectives, we present a
deterministic linear-time algorithm.
For games on graphs with bounded liveness objectives, we present an O(n2d)-time
algorithm that improves the previous O(n2d2)-time algorithm.
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Significance of the contributions. On the technical front, it is threefold.
1. To break the O(n3)-time barrier for graphs, we exploit randomization to estimate for all

pairs of good events how far they are from each other. Using this information along with
a suitably modified auxiliary graph results in the faster O(n2.5 log n)-time algorithm.

To get the improved time bound of O(n2d) for game graphs:
2. we construct an auxiliary game graph (similar to the graph case) and make a crucial

observation that this game graph after each iteration has a lot of structure, a property
we call induced symmetry;

3. we strategically introduce as many “layover” vertices as there are good events; in combin-
ation with induced symmetry, this enables us to prove that a significant chunk of the
auxiliary game graph is deleted after each iteration.

Furthermore, there are several important implications of our contributions. First, for
graphs with bounded liveness objectives, the previous worst-case time-bound is O(n3). In
recent years, many such algorithmic problems with O(n3) bound have been shown to be
conditionally optimal with a reduction from classical problems such as BMM (boolean matrix
multiplication) [1, 2, 8, 9, 10, 24]. Our new algorithm breaks the O(n3) barrier and shows
that such conditional lower bound approaches do not apply for bounded liveness in graphs.
Second, for graphs with bounded coliveness objectives our linear-time bound shows that there
is a very efficient algorithm for the complement of the bounded liveness objectives. Finally,
we show that the basic algorithmic approach for games on graphs can also be improved.
Given our results improve the bounds for graphs and games on graphs with bounded liveness
objectives, there are several interesting questions for future work. Whether the bounds can
be further improved or a deterministic sub-cubic time algorithm can be obtained for graphs
with bounded liveness objectives are the most interesting algorithmic open questions.

2 Preliminaries

Since the notation and definitions are standard, we base this section on the definitions section
by Chatterjee and Henzinger [11].

Game graphs and graphs. A game graph Γ = ((V, E), ⟨V1, V2⟩) is a directed graph, where
V is a finite set of vertices, E is a finite set of edges, and ⟨V1, V2⟩ is a partition of V into
player-1 vertices V1 and the adversarial player-2 vertices V2. Graphs are a special case of
game graphs with V2 = ∅. Define Out(v) = {u ∈ V | (v, u) ∈ E} to be the set of vertices to
which v has an outgoing edge and In(v) = {u ∈ V | (u, v) ∈ E} to be the set of vertices from
which v has an incoming edge. As is standard, we assume that there are no self-loops and
that every vertex has an outgoing edge. Let n = |V | be the number of vertices and m = |E|
be the number of edges.

Plays. A play ⟨v0, v1, v2, . . .⟩ is an infinite sequence of vertices in Γ such that each (vi−1, vi) ∈
E for all i ⩾ 1. We denote by Ω the set of all plays. A finite play V ∗ is a prefix of a play.

Strategies. A player-ρ strategy tells which edge to follow next given a finite play that ends
in a player-ρ vertex. More formally, a player-1 strategy is a function σ : V ∗ · V1 7→ V such
that for ω ∈ V ∗ · V1 and v being the last vertex, (v, σ(ω)) ∈ E. A player-2 strategy is defined
in the same way. We denote by Σ the set of all player-1 strategies and by Π the set of all
player-2 strategies.

ICALP 2021
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Outcome of strategies. Given a starting vertex v and the strategies σ ∈ Σ and π ∈ Π,
there is a unique play ω(v, σ, π) = ⟨v0, v1, v2, . . .⟩, which is defined as follows: v0 = v; for all
i > 0 if vi ∈ V1 then σ(⟨v0, . . . , vi⟩) = vi+1, and if vi ∈ V2, then π(⟨v0, . . . , vi⟩) = vi+1.

Objectives. An objective Φ ⊆ Ω is a set of “winning” plays. The main objectives of this
paper are the bounded Büchi objective for player 1 and the complementary bounded coBüchi
objective for player 2. For a play ω, we define by Inf (ω) the set of vertices that occur
infinitely often in ω. More formally, if ω = ⟨v0, v1, v2, . . .⟩ ∈ Ω, then Inf (ω) = {v ∈ V | ∀i ⩾
0∃j > i : vj = v}. We also need the reachability, safety, Büchi and the coBüchi objectives for
the analyses. In the following definitions, assume that we are given a game graph Γ.
1. Reachability and Safety objectives. For T ⊆ V , the reachability objective states that at

least one vertex in T be visited, and dually, the safety objective states that only vertices
in C be visited. Formally, Reach(T, Γ) = {⟨v0, v1, v2, . . . ⟩ ∈ Ω | ∃k ⩾ 0 : vk ∈ T} and
Safety(C, Γ) = {⟨v0, v1, v2, . . . ⟩ ∈ Ω | ∀k ⩾ 0 : vk ∈ C}. The two objectives are dual, i.e.,
Reach(T, Γ) = Ω \ Safety(V \ T, Γ).

2. Büchi and coBüchi objectives. Given a set of Büchi vertices, the Büchi objective states
that some Büchi vertex be visited infinitely often, and dually, the coBüchi objective
states that only vertices in a given set C be visited infinitely often. Formally, given
B ⊆ V , define Büchi(B, Γ) = {ω ∈ Ω | Inf (ω) ∩ B ̸= ∅} and given C ⊆ V , define
coBüchi(C, Γ) = {ω ∈ Ω | Inf (ω) ⊆ C}. The two objectives are dual, i.e., Büchi(B, Γ) =
Ω \ coBüchi(V \B, Γ).

3. Bounded Büchi and bounded coBüchi objectives. Given a set of Büchi vertices and an
integer d ⩾ 0, the bounded Büchi objective states that from some point on, the distance
between any two consecutive Büchi vertices is at most d. Dually, given C ⊆ V , the
bounded coBüchi objective requires that there are at least d consecutive vertices in C

infinitely often. Formally, the sets of winning plays are boundedBüchi(B, d, Γ) = {ω ∈
Ω | ∃i ⩾ 0∀j ⩾ i : {vj , vj+1, . . . , vj+d−1} ∩ B ̸= ∅} and boundedcoBüchi(C, d, Γ) =
{ω ∈ Ω | ∀i ⩾ 0 ∃j ⩾ i s.t. {vj , vj+1, . . . , vj+d−1} ⊆ C}. These are also dual, i.e.,
boundedBüchi(B, d, Γ) = Ω \ boundedcoBüchi(V \B, d, Γ).

When studying bounded Büchi (and bounded coBüchi) objectives, one can assume without
loss of generality that d ⩽ n, because otherwise they are equivalent to Büchi objectives.
We omit Γ from the definition of the objectives if it is obvious on which game graph the
objectives are defined.

For an objective Φ, a strategy σ ∈ Σ is a winning strategy for player 1 from vertex v if for
all player-2 strategies π ∈ Π the resulting play ω(v, σ, π) ∈ Φ, and the set of winning vertices
for player 1 is W1(Φ) = {v ∈ V | ∃σ ∈ Σ s.t. ∀π ∈ Π : ω(v, σ, π) ∈ Φ}. Player-2 winning
strategies and winning vertices are defined in the same way.

Remark about determinacy. The following theorem shows that every vertex in V either
belongs to the winning set of bounded Büchi objectives of player 1 or to the winning set of
bounded coBüchi objectives for player 2. The same holds for Büchi and coBüchi objectives.
We say that a vertex is either winning for player 1 or winning for player 2.

▶ Theorem 1 (Determinancy [19]). For all game graphs Γ, all (bounded) Büchi objectives Φ
for player 1 and the complementary (bounded) coBüchi objectives Ψ = Ω \ Φ for player 2 we
have W1(Φ) = V \W2(Ψ).

Observe that for (bounded) Büchi objectives Φ for player 1 and the (bounded) coBüchi
objectives Ψ = Ω \ Φ, by definition, we have V \ W2(Ψ) = {v ∈ V | ∀π ∈ Π ∃σ ∈
Σ s.t. ω(v, σ, π) ∈ Φ}. Theorem 1 allows to change existential and universal quantifiers, i.e.,
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V \W2(Ψ) = {v ∈ V | ∃σ ∈ Σ s.t. ∀π ∈ Π ω(v, σ, π) ∈ Φ} = W1(Φ). If for every strategy π

of player 2, there exists a strategy σ for player 1 that wins from vertex v, then there exists a
(unique) strategy σ for player 1 that wins against every strategy π of player 2.

The computational problem. Given a game graph with bounded Büchi objective Φ the
goal is to compute the set W1(Φ). The focus of this paper is on bounded Büchi and bounded
coBüchi objectives, and when we mention winning vertices or winning strategies, we mean
winning for bounded Büchi objectives, unless stated otherwise.

Closed Sets. A set U ⊆ V of vertices is a closed set for player 1 if ∀u ∈ (U∩V1) : Out(u) ⊆ U

and ∀u ∈ (U ∩ V2) : Out(u) ∩ V2 ̸= ∅. We define player-2 closed sets analogously. Observe
that every closed set U induces a subgame graph denoted G ↾ U .

A connection between closed sets, winning for safety, reachability and coBüchi objectives
in the following proposition.

▶ Proposition 2 ([11, Proposition 2.2]). Consider a game graph Γ, and a closed set U for
player 1. Then, the following assertions hold:
1. Player 2 has a winning strategy for the objective Safety(U) for all vertices in U , that is,

player 2 can ensure that if the play starts in U , then the play never leaves the set U .
2. If U ∩B = ∅ (i.e., there is no Büchi vertex in U), then every vertex in U is winning for

player 2 for the coBüchi objective.

Attractors. For a set of “target” vertices T ⊆ V , the set of vertices from which player ρ

can reach T against all strategies of the other player, is called the player-ρ attractor of T ;
formally [25, 23], attrρ(T, Γ) = Wρ(Reach(T, Γ)). An attractor A = attrρ(T, Γ) can be
computed in O(m) time [5, 16].

The following observation stipulates the connection between closed sets and attractors.

▶ Observation 3 ([11]). For all game graphs Γ, all players ρ ∈ {1, 2}, and all sets U ⊆ V

we have the following: The set V \ attrρ(U, Γ) is a closed set for player ρ, i.e., no player-ρ
vertex in V \ attrρ(U, Γ) has an edge to attrρ(U, Γ) and every vertex of the other player in
V \ attrρ(U, Γ) has an edge in V \ attrρ(U, Γ).

3 Algorithms for Graphs

Graphs are a special case of game graphs with V2 = ∅. Hereon, we will call this “the graph
case” as opposed to “the game graph case” (where V1 ≠ ∅ and V2 ≠ ∅). The objectives we
consider are prefix independent, i.e., if ω ∈ Ω, then any play obtained by adding or removing
a finite prefix to or from ω is also in Ω. Hence, with respect to computing winning vertices,
it is enough to focus on strongly connected graphs. The reasoning is as follows.

In the input graph, we call a strongly connected component (SCC) S good if the graph
restricted to S has a winning vertex. Due to prefix independence, all vertices in a good
SCC and those from which you can reach a good SCC are winning. We will prove that such
vertices are exactly the winning vertices, and that this set can be computed by the following
procedure:

Compute the SCCs of the input graph (can be done in linear time [22]).
Determine for each SCC if it is good (this step depends on the objective).
Consider the set of all vertices belonging to a good SCC. Perform reachability to this set.
(This can also be done in linear time.)

ICALP 2021
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▶ Lemma 4. A vertex v is a winning vertex if and only if it there is path from v to some
vertex in a good SCC.

Proof. As mentioned before, due to prefix independence, if v has a path to some vertex in a
good SCC, then it is winning. Next, we show the converse.

If v is winning, then there is a winning play ω starting at v. Since SCCs themselves form
a directed acyclic graph (DAG), ω must eventually enter an SCC S and stay there. Again,
due to prefix independence, the vertices visited by ω in S are also winning, i.e., S is a good
SCC. ◀

By Lemma 4 and the procedure described above it, the problem of computing the winning
vertices is reduced to determining, given a strongly-connected graph, whether there is a
winning vertex or not. More formally, we get the following lemma.

▶ Lemma 5. Let S1, S2, . . . be SCCs of the graph G = (V, E). When V2 = ∅, i.e., in the
graph case, for a prefix independent objective, the set of winning vertices can be computed in
time O(m +

∑
i t(Si)) time, where m = |E| and t(Si) is the time required to compute whether

Si is a good SCC or not.

In this paper, we consider bounded Büchi and bounded coBüchi objectives.

3.1 The Bounded Büchi Objective
We are given a graph G = (V, E), a set B of Büchi vertices, and a positive integer d. A
cyclic-walk in G is a walk (v1, v2, . . . , vℓ) such that v1 = vℓ. We say that a cyclic-walk C is
feasible if it has at least one Büchi vertex and the number of edges in C between any two
consecutive Büchi vertices is at most d. We assume that G is strongly connected, and our
goal is to determine if there is a winning vertex in G. Then, using Lemma 5, we generalize
the result to a graph that might not be strongly connected. The following lemma reduces
this problem to finding a feasible cyclic-walk in G.

▶ Lemma 6. The strongly-connected input graph G has a winning vertex with respect to the
bounded Büchi objective if and only if it has a feasible cyclic-walk.

Proof. If G has a winning vertex, say v, then there is a winning play ω that starts at
v. Let ω = ⟨v0 = v, v1, v2, . . .⟩; so by the definition of winning play, ∃i ⩾ 1 such that
∀j ⩾ i : {vj , vj+1, . . . , vj+d−1} ∩ B ̸= ∅. Consider the set Inf (ω) of vertices that appear
infinitely often in ω. Since ω is winning, Inf (ω) ∩B ̸= ∅. Thus, we can choose a j′ ⩾ i such
that vj′ ∈ Inf (ω) ∩ B. Since vj′ appears infinitely often, for some j′′ > j′, we have that
vj′′ = vj′ . Thus (vj′ , vj′+1, . . . , vj′′ = vj′) is a feasible cyclic-walk because j′ ⩾ i and, as
mentioned earlier, ∀j ⩾ i : {vj , vj+1, . . . , vj+d−1} ∩B ̸= ∅.

In the other direction, if G has a feasible cyclic-walk, then we can keep traversing it to
construct a winning play, which means G has a winning vertex. ◀

An O(dm)-time algorithm for bounded Büchi
Next, we recall the basic O(dm)-time algorithm to determine if there is a feasible cyclic-walk.
This algorithm tries to trace a feasible cycle by maintaining a counter with each possible non-
Büchi vertex denoting how far away we are from the last visit to a Büchi vertex. We construct
a (d+1)-layered auxiliary graph G∗ = (V ∗, E∗), where V ∗ = (B×{0})∪((V \B)×{1, . . . , d}).
We define a more general graph here that we also use in Section 4. We illustrate an example
in Figure 1. So, for (v, ℓ) ∈ V ∗, the integer ℓ corresponds to the aforementioned counter. We
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call the vertices in B × {0} Büchi vertices and the vertices in (V \B)× {1, . . . , d} non-Büchi
vertices. The edge set E∗ is constructed by Algorithm 1. The last layer of the auxiliary
graph is actually not needed for the graph case but is needed for the game graph case later.
Observe that the auxiliary graph is also a game graph. (The ownership of the vertices will
be defined later in a natural way.)

Algorithm 1 Construction of the auxiliary graph G∗ from G, B, and d. It is easy to see that the
running time of this algorithm is O(dm) and G∗ has at most dm edges.

procedure ConstructAuxiliaryGraph(G = (V, E), B ⊆ V , d)
V ∗ ← (B × {0}) ∪ ((V \B)× {1, . . . , d}) and E∗ ← ∅.
for (u, v) ∈ E such that v /∈ B (add counter-incrementing edges) do

if u /∈ B then
for i ∈ {1, . . . , d−1} do

Add ((u, i), (v, i+1)) to E∗.
Add ((u, d), (v, d)) to E∗ (edges in the last layer to V \B stay in the last layer).

else Add ((u, 0), (v, 1)) to E∗.
for (u, v) ∈ E such that v ∈ B (add counter-resetting edges) do

if u /∈ B then
for i ∈ {1, . . . , d} do

Add ((u, i), (v, 0)) to E∗.
else Add ((u, 0), (v, 0)) to E∗.

return G∗ = (V ∗, E∗)
procedure AuxiliaryGraph-d-Layers(G = (V, E), B ⊆ V , d)

G∗ ← ConstructAuxiliaryGraph(G = (V, E), B ⊆ V, d)
Return the graph resulted by removing layer-d from G∗, called G′ = (V ′, E′).

(b1, 0)

(b2, 0)

...

(bi, 0)

...

(bj , 0)

...

Layer 0
B-vertices

(v1, 1)

(v2, 1)

...

(vi, 1)

...

(vj , 1)

...
Layer 1
V \B vertices

· · · (vi, ℓ)

...

(vj , ℓ)

...
Layer ℓ

V \B vertices

(vj , ℓ+1)

· · ·

(v1, d)

(v2, d)

...

(vi, d)

...

(vj , d)

...
Layer d

V \B vertices

to (v
j , 2)

Figure 1 An illustration of how the auxiliary layered graph is constructed. If G contains the
edges (bj , bi), (bi, vj), (v2, bj), and (vi, vj), then the auxiliary layered graph G∗ will have shown
edges.
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▶ Lemma 7. The running time of the procedures ConstructAuxiliaryGraph and Auxi-
liaryGraph-d-Layers in Algorithm 1 is O(dm).

Proof. In ConstructAuxiliaryGraph, each of the outer for loop runs for at most m

iterations, and each of the inner for loops runs for at most d iterations. AuxiliaryGraph-
d-Layers just calls ConstructAuxiliaryGraph and removes the last layer, which takes
O(dm) time. ◀

For the graph case, we are interested in G∗ induced on layers-{0, 1, . . . , d−1}. Let G′

denote this graph.

▶ Lemma 8. The strongly-connected input graph G has a feasible cyclic-walk if and only if
G′ has a cycle.

Proof. Let C = (b1, v1,1, . . . , v1,ℓ1 , b2, v2,1, . . . , v2,ℓ2 , b3, . . . , b1), where each bi ∈ B, each
vi,j ∈ V \B, and each ℓi ⩽ d− 1, be a feasible cyclic-walk in G. There is a corresponding
cyclic-walk C ′ in G′:

for each (bi, vi,1) ∈ C, the edge ((bi, 0), (vi,1, 1)) ∈ E′,
for each (vi,j , vi,j+1) ∈ C, the edge ((vi,j , j), (vi,j+1, j+1)) ∈ E′,
for each (vi,ℓj

, bi+1) ∈ C, the edge ((vi,ℓj
, ℓj), (bi+1, 0)) ∈ E′, and

for the final edge (vi,ℓj
, b1) ∈ C, the edge ((vi,ℓj

, ℓj), (b1, 0)) ∈ E′.
If C ′ consists of union of cycles can be short-cut to get a cycle in G′.

In the other direction, consider a cycle in G′. A projection of this cycle on the first
coordinate of the vertices, by construction, gives a feasible cyclic-walk in G, because the
number of edges between consecutive Büchi vertices is at most d. ◀

Thus, by Lemmas 6 and 8, we get Algorithm 2.

Algorithm 2 This algorithm determines if the strongly-connected input graph has a winning
vertex with respect to the bounded Büchi objective.

procedure BoundedBüchi(G = (V, E), B ⊆ V , d)
G′ ← AuxiliaryGraph-d-Layers(G, B, d)
Run depth-first search on G′ to determine if it has a cycle.
if G′ has a cycle then

return “G has a winning vertex.”
else

return “G does not have a winning vertex.”

▶ Lemma 9. Algorithm 2 determines if the strongly-connected input graph G has a winning
vertex with respect to the bounded Büchi objective in O(dm) time.

Proof. By Lemmas 6 and 8, G has a winning vertex if and only if G′ has a cycle. Since a
depth-first search finds if there is a cycle in G′, the correctness of the algorithm is established.
By Lemma 7, AuxiliaryGraph-d-Layers takes O(dm) time, and a depth-first search on
G′ takes time O(dm), because the number of edges in G′ is O(dm). ◀

Thus, by Lemma 5, we get the following theorem.

▶ Theorem 10. The set of winning vertices for the bounded Büchi objective in the graph
case can be computed in time O(dm).

Proof. Let S1, S2, . . . be SCCs of the input graph G = (V, E). Let m1, m2, . . . be the number
of edges in the SCCs S1, S2, . . .. Then, by Lemma 9, for i = 1, 2, . . ., we can determine in
time O(dmi) whether Si is good. Since m ⩾

∑
i mi, the proof is complete by Lemma 5. ◀
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An O(|B|m)-time algorithm for bounded Büchi
Now, we briefly discuss an O(|B|m)-time algorithm for bounded Büchi. Given G = (V, E)
and B, consider the graph G′ = (B, E′) such that (b, b′) ∈ E′ if the distance from b to b′ in
G is at most d. We allow self loops in G′. It is easy to see that G has a feasible-cyclic walk
if and only if G′ has a cycle. To construct G′, we perform |B| breadth-first searches, one
starting from each vertex in B. This takes time O(|B|m). Then, by a similar argument as in
the proof of Theorem 10, we get the following theorem.

▶ Theorem 11. The set of winning vertices for the bounded Büchi objective in the graph
case can be computed in time O(|B|m).

▶ Remark 12. Note that both algorithms that we have seen so far can take Θ(n3) time if
m = Θ(n2) and B and d are Θ(n). The next algorithm we see is combinatorial and has
running time O(n2.5 log n) for the worst setting of the parameters and breaks the cubic
barrier. This also rules out any conditional lower bound approaches to get an Ω(n3) lower
bound for combinatorial algorithms.

An O((m + |B|2)
√

n log n)-time algorithm for bounded Büchi
In this section, we present an O((m+ |B|2)

√
n log n)-time algorithm for bounded Büchi in the

graph case. This is one of our main contributions. Here, we give a procedure that computes
distances between all pairs of Büchi vertices if the distance is at least

√
N , where N ⩾ |V | is

a parameter that we will fix later. This information can be used to reduce the number of
layers in the auxiliary graph to

√
N . By dist, we denote the distance function with respect

to G. For any u, v ∈ V , if u ̸= v, then dist(u, v) denotes the length of a shortest path from u

to v, and for any u ∈ V , dist(u, u) denotes the length of a shortest cycle through u.

Algorithm 3 This algorithm determines if the strongly-connected input graph has a winning
vertex with respect to the bounded Büchi objective.

procedure RandBoundedBüchi(G = (V, E), B ⊆ V , d, N)
if d <

√
N then

return BoundedBüchi(G = (V, E), B ⊆ V , d)
Sample 4

√
N ln N vertices uniformly at random, independently, and with replacement.

S ← the set of sampled vertices.
for s ∈ S do

Perform incoming and outgoing breadth-first search (BFS) to and from s.
Compute distances dist(b, s) and dist(s, b) for each b ∈ B during the BFSs.

G′ ← AuxiliaryGraph-d-Layers(G, B,
√

N − 1)
for b ∈ B do

for b′ ∈ B do
distS(b, b′)←∞
for s ∈ S do

distS(b, b′)← min{distS(b, b′), dist(b, s) + dist(s, b′)}
if distS(b, b′) ⩽ d then

Add ((b, 0), (b′, 0)) to E′ (this would be a self-loop if b = b′).
Run depth-first search on G′ to determine if it has a cycle.
if G′ has a cycle then

return “G has a winning vertex.”
else

return “G does not have a winning vertex.”
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▶ Lemma 13. Let N ⩾ |V |. Algorithm 3 determines with probability at least 1 − 1/N2

if the strongly-connected input graph G has a winning vertex with respect to the bounded
Büchi objective in O((m + |B|2)

√
N log N) time. It never returns a false positive, i.e., if it

outputs that G has a winning vertex, then it is correct with probability 1. Its running time is
O((m + |B|2)

√
N log N).

Proof. If d <
√

N , then we are done by Lemma 9. Thus, we assume for the rest of the proof
that d ⩾

√
N .

For any b, b′ ∈ B, by T (b, b′), we denote a fixed shortest cycle through b if b = b′ or a
fixed shortest path from b to b′ otherwise. Let the event that a vertex v(b, b′) ∈ T (b, b′) is
sampled into S be denoted by E(b, b′). Since v(b, b′) ∈ T (b, b′), we have that dist(b, b′) =
dist(b, v(b, b′)) + dist(v(b, b′), b′). This implies that if E(b, b′) occurs, then dist(b, v(b, b′)) and
dist(v(b, b′), b′) are computed by the algorithm using the incoming and outgoing BFS at
v(b, b′), and hence distS(b, b′) = dist(b, b′). Let Ec(b, b′) be the complement of E(b, b′). Now,
Pr[Ec(b, b′)] = (1− dist(b, b′)/|V |)4

√
N ln N , because 1− dist(b, b′)/|V | is the probability that

a fixed sample does not contain a vertex of T (b, b′) and we draw 4
√

N ln N independent
samples.

For any b, b′ ∈ B, where dist(b, b′) ⩾
√

N , we denote the event that distS(b, b′) = dist(b, b′)
by E ′(b, b′). As noted earlier, distS(b, b′) = dist(b, b′) if E(b, b′) occurs, hence:

Pr[E ′(b, b′)] ⩾ Pr[E(b, b′)] = 1− Pr[Ec(b, b′)] E(b, b′) is a subevent of E ′(b, b′),

= 1−
(

1− dist(b, b′)
|V |

)4
√

N ln N

by the argument earlier,

⩾ 1−
(

1− 1√
N

)4
√

N ln N

because dist(b, b′)/|V | ⩾ 1/
√

N ,

⩾ 1− 1
N4 by well-known fact (1− 1/x)x ⩽ 1/e.

Since N ⩾ |B|, by the union bound and because the E ′(b, b′) are independent, we have
Pr[∀(b, b′) ∈ B × B : E ′(b, b′)] ⩾ 1 − 1/N2. Let us condition on the event that for all
(b, b′) ∈ B ×B : E ′(b, b′), and let G′ be the auxiliary graph constructed by the algorithm.

Suppose G has a winning vertex. By Lemma 6, there is a feasible cyclic-walk C in G.
Then for any consecutive Büchi vertices b and b′ in C, either dist(b, b′) ⩾

√
N , in which

case there is an edge ((b, 0), (b′, 0)) or dist(b, b′) <
√

N , in which case there exists a cycle
((b, 0), (u1, 1), (u2, 2), . . . , (uℓ, ℓ), (b′, 0)) in G′, where ℓ <

√
N − 1. Thus, C induces a cycle

in G′.
On the other hand, if there is a cycle C ′ in G′, then a projection of C ′ on the first

coordinate of the vertices, by construction of G′, gives a feasible cyclic-walk in G after
replacing all edges in C ′ of the form ((b, 0), (b′, 0)) by corresponding paths of length at most
d that certify distS(b, b′). By Lemma 6, G has a winning vertex.

Also, if the algorithm does return that G has a winning vertex, then G′ has a cycle, and
existence of a feasible cyclic-walk in G can be shown in the same way as above. This shows
that the algorithm never returns a false positive.

Running time. Incoming and outgoing BFSs from the vertices in S take time O(m
√

N log N).
Auxiliary-Graph-d-Layers takes O(m

√
N) time. Computing distS takes time

O(|B|2
√

N log N). DFS on G′ takes time O(|B|2 + m
√

N). In total, Algorithm 3 has
running time O((m + |B|2)

√
N log N). ◀
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Finally, we use Lemma 5 to generalize the above to a graph that may not be strongly
connected. Fix N to be n in Algorithm 3 when running it for each SCC. Then, by a similar
argument as in the proof of Theorem 10, we get the following theorem.

▶ Theorem 14. The set of winning vertices for the bounded Büchi objective can be computed
with probability at least 1−1/n in time O((m+|B|2)

√
n log n) which is O(n2.5 log n). Moreover,

the algorithm never returns a false positive, i.e., each vertex in the set it outputs is a winning
vertex with probability 1.

Proof. Let S1, S2, . . . be SCCs of the input graph G = (V, E). Let m1, m2, . . . be the number
of edges and by β1, β2, . . . , be the number of Büchi vertices in the SCCs S1, S2, . . ., respectively.
Then, by Lemma 13, for i = 1, 2, . . ., the algorithm outputs in time O((mi + β2

i )
√

n log n)
whether Si is good. Since m ⩾

∑
i mi and |B|2 = (

∑
i βi)2 ⩾

∑
i β2

i , the running time bound
is proved.

The probability bound is obtained by a union bound over at most n SCCs. Moreover,
the algorithm never returns a false positive by Lemma 13. ◀

3.2 The Bounded coBüchi Objective
Given a graph G = (V, E), a set C of vertices, and a positive integer d, a walk W is called
a feasible walk if W ⊆ C and the number of vertices in W is at least d. Let G[C] be the
graph induced by C. The bounded coBüchi problem reduces to finding a feasible walk, which
further reduces to finding whether there is a cycle in G[C] (can be done in linear time), and
if not G[C] is a directed acyclic graph (DAG), so it reduces to determining whether the
length of a longest path in the DAG G[C] is at least d (also can be done in linear time).
This gives us the following theorem.

▶ Theorem 15. The set of winning vertices for the bounded coBüchi objective in the graph
case can be computed in time O(m).

4 Algorithms for Game Graphs

In this section, we present algorithms for the bounded Büchi objective in game graphs.
We first introduce the auxiliary game graph similar to the auxiliary graph defined earlier.
We then show that we can compute in O(n2d2) time the winning set of a given bounded
Büchi objective on game graphs by computing the winning set of a coBüchi objective on
the auxiliary game graph. Finally, we show how to improve the running time to O(n2d) by
using structural properties of the auxiliary game graph and adapting a known technique for
solving Büchi Games [11].

The Auxiliary Game Graph. Given a game graph Γ = (V, E, ⟨V1, V2⟩) with n vertices, m

edges and a bounded Büchi objective boundedBüchi(B, d), we first construct the auxiliary
graph by calling ConstructAuxiliaryGraph((V, E), B, d) in Algorithm 1 and additionally
partition the vertices of the auxiliary graph V ∗ into player-1 vertices V ∗

1 and player-2 vertices
V ∗

2 , i.e., for each (v, ℓ) ∈ V ∗ we get (v, ℓ) ∈ V ∗
1 if v ∈ V1 and (v, ℓ) ∈ V ∗

2 if v ∈ V2. The
auxiliary game graph has O(nd) = O(n2) vertices and O(md) = O(mn) edges. We say that
a vertex (v, ℓ) ∈ V ∗ is a layer-ℓ vertex and v is its first component.

For any play λ, we denote by λk the kth vertex of the play. If a play has a superscript,
it denotes the starting vertex of the play, e.g λv means that the play λ starts at v. By
λv

k we refer to the kth vertex of the play λv which starts at v. Given a finite feasible play
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λ(w,ℓ) in Γ∗ starting at (w, ℓ), we define Proj(λ(w,ℓ)) to be the projection of λ(w,ℓ) on the
first component of the vertices in it; by definition, this finite play starts at w and is feasible
in Γ. Analogously, given a finite feasible play λw in Γ, we define Lift(λw, ℓ) to be the unique
finite feasible play in Γ∗ starting at (w, ℓ) such that the first component of Lift(λw, ℓ)k is the
same as λw

k . For (u, v) in E such that (u, j) ∈ V ∗ define (the appropriate next layer number
if you followed the copy of (u, v) starting in layer j)

NxtLyr(u, v, j) =


j + 1 if j < d and v /∈ B

d if j = d and v /∈ B

0 if v ∈ B .

Now, define Lift(λw, ℓ)1 = (w, ℓ), and for k > 1, given Lift(λw, ℓ)k−1 = (λw
k−1, j) define

Lift(λw, ℓ)k = (λw
k , NxtLyr(λw

k−1, λw
k , j)). Similarly, given the finite feasible play λ(w,ℓ) in Γ∗,

we define Shift(λ(w,ℓ), ℓ′) to be the finite play that starts at (w, ℓ′) in Γ∗ such that, for any
k, the first components of λ

(w,ℓ)
k and Shift(λ(w,ℓ), ℓ′)k are the same. By construction of Γ∗

the finite play Shift(λ(w,ℓ), ℓ′) is well-defined because (1) edges going from layer-i vertices
to layer-(i + 1) vertices (1 ⩽ i ⩽ d − 1) exist in all layers with the same respective first
components except in layer-d where these edges go again to layer-d, (2) edges going to layer-0
vertices exist in all layers (1 ⩽ i ⩽ d) and (3) because edges originating from layer-0 vertices
implies that both plays are currently visiting the same layer-0 vertex.

In comparison, the goal of the two operations Proj(·) and Lift(·) is to map finite plays
between Γ∗ and Γ such that the finite play in Γ∗ has, for all vertices, the same first component
as the corresponding finite play in Γ and vice versa. In contrast, Shift(λ(w,ℓ), ℓ′) maps a
finite play in Γ∗ to a finite play also in Γ∗ which has the same first component but a “shifted”
starting vertex.

4.1 An O(n2d2)-time Algorithm for Bounded Büchi in Games
In this section, we show that we can compute the winning set of a given bounded Büchi
objective on game graphs by computing the winning set of a coBüchi objective on the auxiliary
game graph. Then we apply the best-known algorithm for computing the winning set of a
Büchi objective on the auxiliary game graph to get the desired result.

In the following lemma, we prove that computing W1(boundedBüchi(B, d, Γ)) is the
same as computing W1(coBüchi(C∗, Γ∗)) where C∗ are the vertices in layers-{0, 1, . . . , d−1}.
Intuitively, when a play ϕ in coBüchi(C∗, Γ∗) stays in layers-{0, 1, . . . , d−1}, it reaches a
vertex in layer 0 every at most d steps by construction of Γ∗. The layer-0 vertices correspond
to the vertices in B which means that a play ϕ′ in Γ defined as the projection on the first
component of the vertices in ϕ visits a vertex in B every at most d steps which implies that
ϕ′ ∈ boundedBüchi(B, d, Γ). On the other hand, when player 1 has a strategy in Γ to visit a
vertex in B every at most d steps, a similar strategy which visits the same vertices in the
first component in Γ∗ allows player 1 to stay in the first d layers of the auxiliary graph.

▶ Lemma 16. Let Γ = (V, E, ⟨V1, V2⟩) be a game graph with bounded Büchi objective
boundedBüchi(B, d), let Γ∗ = (V ∗, E∗, ⟨V ∗

1 , V ∗
2 ⟩) be the corresponding auxiliary game graph,

and let C∗ be the vertices in the first d layers of the auxiliary graph, i.e., C∗ = {(v, i) ∈
V ∗ | 0 ⩽ i ⩽ d − 1}. Then {w | (w, i) ∈ W1(coBüchi(C∗, Γ∗)), for some 0 ⩽ i ⩽ d} =
W1(boundedBüchi(B, d, Γ)).
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Proof. We first prove that {w | (w, i) ∈ W1(coBüchi(C∗, Γ∗)), for some 0 ⩽ i ⩽ d} ⊆
W1(boundedBüchi(B, d, Γ)). Let (w, i) ∈W1(coBüchi(C∗, Γ∗)). Then player 1 has a winning
strategy σ∗ in Γ∗ such that for all player-2 strategies π∗, we have that ω((w, i), σ∗, π∗) ∈
coBüchi(C∗, Γ∗).

Whenever player 1 makes a move in Γ∗, we define the corresponding move in Γ as follows:
For any finite play λw in Γ that ends in a player-1 vertex, define σ(λw) to be the first
component of σ∗(Lift(λw, i)). (It does not matter how we define σ for plays that do not start
at w.)

Next, we argue why σ is a winning player-1 strategy for boundedBüchi(B, d, Γ) starting
at w. Let π be an arbitrary player-2 strategy in Γ. We define a corresponding player-2
strategy π∗ in Γ∗: for λ(w,i) that ends in a player-2 vertex (u, j), let v = π(Proj(λ(w,i))) and
define π∗(λ(w,i)) = (v, NxtLyr(u, v, j)).

Now, it is straightforward to show that the first component of ω((w, i), σ∗, π∗)k is equal
to ω(w, σ, π)k by induction on k.

Since the play ω((w, i), σ∗, π∗) ∈ coBüchi(C∗, Γ∗), it stays in C∗ after a finite number of
steps. Note that to stay in C∗ means to visit a layer-0 vertex after every at most d steps
because there are only d layers in C∗ and each step that does not go to a layer-0 vertex
increases the layer counter. Since the first component of each layer-0 vertex is in B, the play
ω(w, σ, π) visits a vertex in B every at most d steps after a finite number of steps and is in
boundedBüchi(B, d, Γ).

The other direction, W1(boundedBüchi(B, d, Γ)) ⊆ {w | (w, i) ∈ W1(coBüchi(C∗, Γ∗)),
for some 0 ⩽ i ⩽ d} can be shown with a similar argument. ◀

To compute W1(coBüchi(C∗)) in Γ∗, we observe that, by Theorem 1, W1(coBüchi(C∗)) =
V ∗ \W2(Büchi(V ∗ \ C∗)) = V ∗ \W2(Büchi({(v, d) ∈ V ∗})). Since, traditionally, we always
compute the player-1 winning set of a given objective, we swap player-1 and player-2 vertices
in Γ∗. Then we compute W = W1(Büchi({(v, d) ∈ V ∗})) using the algorithm of Chatterjee
and Henzinger [11], which is the fastest algorithm for Büchi games known, and project V ∗\W

on the first coordinate. We illustrate the details in Algorithm 4.

Algorithm 4 Determine W1(boundedBüchi(B, d)), given a game graph Γ.

1: procedure BoundedBüchiGames(Γ = (V, E, ⟨V1, V2⟩), B, d)
2: (V ∗, E∗)← ConstructAuxiliaryGraph((V, E))
3: V ∗

1 ← {(v, i) ∈ V ∗ | v ∈ V1}, V ∗
2 ← {(v, i) ∈ V ∗ | v ∈ V2}

4: Γ∗ ← (V ∗, E∗, V ∗
1 , V ∗

2 ); B∗ ← {(v, d) ∈ V ∗ | v ∈ V \B}
5: W ← BüchiGamesFast(Γ∗ = (V ∗, E∗, ⟨V ∗

2 , V ∗
1 ⟩), B∗) ([11], Algorithm 5)

6: return {x | (x, i) ∈ V ∗ \W for some 0 ⩽ i ⩽ d}

The correctness of Algorithm 4 is due to the correctness of the fast Büchi games al-
gorithm [11, Theorem 2.14], the argument above, and Lemma 16. The argument for the
running time of Algorithm 4 is as follows. We first construct Γ∗ in O(md) time and then com-
pute the winning set of coBüchi(C∗) in time O(|V ∗|2) [11, Theorem 2.14]. As |V ∗| = O(nd)
and d = O(n), we get the following theorem.

▶ Theorem 17. The set of winning vertices for the bounded Büchi objectives in games can
be computed in time O(n2d2) = O(n4).
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4.2 An O(n2d)-time Algorithm for Bounded Büchi in Games
In this section, we give a refined running time analysis of Algorithm 4 giving us an O(n2d)-
time algorithm for bounded Büchi games. We first describe the fastest algorithm for Büchi
Games [11] for completeness. Then, we identify key ideas of the refined running time analysis
when the input is an auxiliary game graph and prove the improved running time formally.

4.2.1 The Büchi Games Algorithm of [11]
Given a game graph Γ = (V, E, ⟨V1, V2⟩) and a set B of Büchi vertices1, we fix an order on
the edges. In this fixed order, the edges (u, v) where u is a non-Büchi player-2 vertex, i.e.,
u ∈ (V2 \B), come before all other edges. We call them priority-1 edges. All the other edges
are priority-0 edges.

▶ Definition 18. Given a game graph Γ = (V, E, ⟨V1, V2⟩), let Γi = (V, Ei, ⟨V1, V2⟩) for
1 ⩽ i ⩽ log n be a subgraph of Γ which we define as follows: For all u ∈ V , the set Ei

contains the following edges:
1. If the outdegree of u in E is at most 2i, Ei contains all edges of the form (u, v), i.e., if
|Out(u)| ⩽ 2i then the set {(u, v) | v ∈ Out(u)} ⊆ Ei.

2. If the edge (v, u) belongs to the first 2i inedges of vertex u in E, we have (v, u) ∈ Ei

(“first” means with respect to the fixed order we specified above).
Note that Ei−1 ⊆ Ei since the order of the edges is fixed. We form a partition of V in Γi by
giving each vertex a color:

Blue: A player-1 vertex v in Γi is blue if the outdegree of v is greater than 2i.
Red: A player-2 vertex u in Γi is red if it has no outedge in Ei.2
All other vertices are white.

Thus, if a player-1 vertex is white then all its outedges are in Ei, and if a player-2 vertex is
white then it has at least one outgoing edge in Ei.

Algorithm description. The input of Algorithm 5 is a game graph Γ and a set of Büchi
vertices B. Recall that every vertex in a player-1 closed set S without Büchi vertices cannot
be in the player-1 winning set of the given Büchi objective W1(Büchi(B)) (Proposition 2 (2)).
We repeatedly find such a set S by removing from V the player-1 attractor of the set B

(Proposition 3) and forming S from all the remaining vertices. Then we remove the player-2
attractor of S. In the algorithm, we identify such a set Sj at Line 11 and remove the
attractor at Line 15. Note that a naive algorithm would take O(nm) time, as the attractor
of S could always be of size 1 and computing the attractor is in O(m) time. To obtain a
quadratic-time (in the number of vertices) algorithm, the improved algorithm of Chatterjee
and Henzinger constructs, for i = 1, . . . , log n, the graph Γi which has at most 2i edges.
Due to the properties of Γi, it can be shown that the set Sj has size of at least 2i−1. In
this way, the attractor computation take time proportional to the removed vertices. Since
player-1 vertices with missing outgoing edges or player-2 vertices with no outgoing edge in
Γi, i.e., non-white vertices might still be able to reach a vertex in B, we compute the player-1
attractor of the non-white vertices combined with the vertices in B. We illustrate the details
in Algorithm 5.

1 not to be confused with the input for the bounded Büchi problem in the previous and later sections
2 In the algorithm of Chatterjee and Henzinger [11] red vertices are player-2 vertices where an edge of

E is missing. We change this definition slightly, i.e., without changing their algorithm or correctness
argument, by saying that player-2 vertices are red if they do not have any outedges in Ei.
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Algorithm 5 Determine W1(Büchi(B)), given a game graph Γ [11].

1: procedure BüchiGamesFast(Γ = (V, E, ⟨V1, V2⟩), B)
2: Let j ← 0; U ← ∅; Y0 ← attr1(B, Γ); S0 ← V \ Y0; D0 ← attr2(S0, Γ); Γj ← Γ;
3: j ← j + 1;
4: while Dj−1 ̸= ∅ do
5: Remove the vertices in Dj−1 from Γj−1 to obtain Γj ; and U ← U ∪Dj−1;
6: i← 1;
7: repeat
8: Construct Γj

i from Γj as described in Definition 18.
9: Let Zj

i be the vertices of V j that are either red or blue;
10: Y j

i ← attr1(Bj ∪ Zj
i , Γj

i );
11: Sj ← V j \ Y j

i ;
12: i← i + 1
13: until Sj is nonempty or i ⩾ 1 + log n

14: if Sj ̸= ∅ then
15: Dj ← attr2(Sj , Γj)
16: else
17: return V \ U

18: j ← j + 1

The definition of a separating cut further refines the definition of the winning regions for
player 2 in this regard.

Separating cut. A set S of vertices induces a separating cut in a game graph Γi or Γj
i in

Algorithm 5 if
1. the only edges from S to V \ S come from player-2 vertices in S

2. every player-2 vertex in S has an edge to another vertex in S

3. every player-1 vertex in S is white and
4. B ∩ S = ∅.
Thus, a separating cut S is a player-1 closed set where (i) player-1 vertices are white and
which (ii) does not contain a vertex in B.

The following lemmas are needed to establish the improved running time guarantees in
the next section. Detailed proofs can be found in the paper by Chatterjee and Henzinger [11].

Lemma 19 below says that the set Sj is indeed a separating cut in Γj (not only in Γj
i )

and that due to the careful construction of Γj
i from the game graph Γj in iteration j, Sj does

not include a vertex of the player-1 attractor of the Büchi vertices in Γj .

▶ Lemma 19 ([11, Lemma 2.9]). Let Sj be the non-empty set computed by Algorithm 5 in
iteration j. Then, (1) Sj is a separating cut in Γj; and (2) Sj ∩ attr1(Bj , Γj) = ∅.

Lemma 20 establishes that the separating cut found in Γj
i is indeed the maximum

separating cut in Γj
i . Also, if Γj

i contains a separating cut, Algorithm 5 finds it.

▶ Lemma 20 ([11, Lemma 2.11]). Let Γj
i be the game graph in iteration j of the outer loop

and iteration i of the inner loop. If S induces a separating cut in Γj
i , then S ⊆ Sj.

Lemma 21 says that the set Sj is a separating cut in Γj
i . This does not follow from

Lemma 19(1) because Γj
i might have less edges than Γj and separating cuts are not preserved

if we only consider a subset of edges in Γj (property 2 might be violated).

▶ Lemma 21 ([11, Lemma 2.12]). Consider an iteration j of the outer loop of Algorithm 5
such that the algorithm stops the inner loop at value i and identifies a non-empty set Sj.
Then, Sj is a separating cut in Γj

i .
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4.2.2 Faster Algorithm for Bounded Büchi Games
In this section, we give the refined running time analysis of Algorithm 4. We note that Γ∗

gets redefined to be (V ∗, E∗, ⟨V ∗
2 , V ∗

1 ⟩) in Algorithm 4 on Line 4. Therefore, from hereon,
when we say player 1 (respectively player 2), we mean the player controlling the vertices in
V ∗

2 (respectively, those in V ∗
1 ).

Distinct vertices. We call a set of vertices S in Γ∗ distinct if, for each pair of vertices
(v, ℓ), (v′, ℓ′) ∈ S, we have v ̸= v′.

Copies of a vertex. Let Copies(v) denote the set of “copies” of a vertex v ∈ V ∗, i.e., for
a layer-0 vertex (v, 0) we have that Copies((v, 0)) = {(v, 0)} and for a vertex (v, ℓ), where
ℓ > 0, we have Copies((v, ℓ)) = {(v, 1), . . . , (v, d)}.

The improved running time guarantee is due to two key ideas.

Key idea 1. When there is a vertex (v, ℓ) in Dj then Copies((v, ℓ)) ⊆ Dj , i.e., all its copies
are in Dj .

On a very high level, the argument is that if there is a player-2 strategy to go from a
vertex to Sj , then there exists a player-2 strategy from all copies of that vertex to Sj . While
the idea is simple to state, a complicated machinery is needed to prove it formally. We prove
the key idea in Claim 27 building on Definition 25 and Claim 26.

Now, if we follow the original running-time argument [11], then we can only claim that
we remove 2i−1 vertices in total if the inner loop at Line 7 stops at iteration i, but the second
key idea states something stronger.

Key idea 2. If the inner loop at Line 7 stops at iteration i∗, we remove 2i∗−1 distinct
vertices.

Combining the key ideas, we remove from the game graph in iteration j all copies of
those distinct vertices. The ith iteration of the loop at Lines 7–13 takes time O(2ind) for
constructing the auxiliary version of (Γ∗)i and performing the attractor computations. The
iterations of the loop in Lines 7–13 before i′ < i amount to a total running time of O(2ind).
Thus, we charge the 2i−1 removed distinct vertices the cost of the iteration and the iterations
before, i.e., each such removed orginal vertex is charged O(nd). As we can remove only n

distinct vertices since they correspond to the vertices in the game graph Γ, we have a total
cost of O(n2d).

For the second key idea to work, we must modify the original bounded Büchi instance
(Γ, B, d) carefully. For every vertex in v ∈ B we add a player-2 vertex v′ which is not in
B and an edge (v′, v). Then we redirect all edges which go to v in the original instance
and make them go to v′ instead, i.e., for all v ∈ B we have V2 ← V2 ∪ {v′} and E ←
(E∪{(v′, v)}∪{(u, v′) | (u, v) ∈ E})\{(u, v) ∈ E}. Also, we increase d by one, as we increase
the distance to all vertices in B by one. Note that this simple modification allows us to
assume, without loss of generality, that all vertices in B have incoming edges from player-2
vertices only. Since we swap the player-1 vertices with player-2 vertices in Algorithm 4 we
can assume that all incoming edges to a layer-0 vertex are from player-1 vertices. This adds
at most n vertices and edges to Γ.

▶ Observation 22. We can assume, without loss of generality, that all layer-0 vertices v ∈ V ∗

of the auxiliary game graph Γ∗ created at Line 4 in Algorithm 4 have no incoming edges from
player-2 vertices, i.e., if (v, 0) ∈ V ∗ then In((v, 0)) ∩ V ∗

2 = ∅.
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With the above observation, we can prove the following proposition which is the crux of
this section.

▶ Proposition 23. Algorithm 4 runs in time O(n2d) = O(n3).

Proof. In this proof we denote by (Γ∗, B∗) the input of Algorithm 5 at Line 4 of Algorithm 4.
The input to Algorithm 4 is (Γ, B, d). If we can show that the running time of the call to
Algorithm 5 at Line 4 is in O(n2d) = O(n3) we are done, as the rest of the operations of
Algorithm 4 are in O(md). This entails constructing (Γ∗, B∗) and going through W . We
therefore prove the following lemma.

▶ Lemma 24. The total time Algorithm 4 spends in Algorithm 5 is O(n2d) = O(n3).

Every vertex v in Γ∗ has only O(n) out-edges by the definition of the auxiliary game graph.
Thus, when we consider the graphs (Γ∗)i of Definition 18 for 1 ⩽ i ⩽ log n, we have
(Γ∗)log n = Γ∗. The construction of (Γ∗)i (1 ⩽ i ⩽ log n) takes time O(nd · 2i).

We split the running time argument into two parts. In the first part, we bound the
running time of all except the last iteration of the while loop at Line 4. In the second part of
the analysis, we bound the running time of the last iteration of the same loop.

Running time bound for all iterations of the while loop except the last. Consider iteration
j, and assume that Algorithm 5 stops the repeat-until loop at Line 13 with value i∗ and it is
not the last iteration of the while loop at Line 4. Thus, Sj is not empty. By Lemma 21, the
set Sj is a separating cut in (Γ∗)j

i∗ . We make a detour to set up some claims.
We need the following definition because it helps us translate plays and strategies from a

vertex to its copies.

▶ Definition 25. If Γ∗
s is an induced subgraph of Γ∗ such that for all (u, ℓs) in Γ∗

s we have
that Copies((u, ℓs)) are also in Γ∗

s, then we say that Γ∗
s has the induced-symmetry property

or that it is symmetrically induced.

The following claim is about the translation of a strategy from a vertex to its copy.

▷ Claim 26. Suppose Γ∗
s is symmetrically induced. Then, in Γ∗

s, if a player has a strategy
to reach a copy of w from a copy of u, then from all copies of u, she has a strategy to reach
some copy of w. More formally, in Γ∗

s, if player ρ has a strategy π to reach (w, ℓd) from
(u, ℓs), then for all copies (u, ℓ′

s), she also has a strategy π′ to reach (w, ℓ′
d) for some ℓ′

d.

Proof. We define π′. Consider a finite feasible play λ(u,ℓ′
s) that ends in a player-ρ vertex

(v, j). Let π(Shift(λ(u,ℓ′
s), ℓs)) = (y, p). Define π′(λ(v,ℓ′

s)) = (y, NxtLyr(v, y, j)). Now, the
play Shift(λ(u,ℓ′

s), ℓs) is feasible and the strategy π′ is well defined because Γ∗
s is symmetrically

induced.
We argue why player ρ can reach a copy of w using π′. Let σ′ be an arbitrary strategy for

the other player, i.e., player (3− ρ). For any finite feasible play λ(u,ℓs) that ends in a player-
(3− ρ) vertex (v, j), let σ′(Shift(λ(u,ℓs), ℓ′

s)) = (y, p). Define σ(λ(u,ℓs)) = (y, NxtLyr(v, y, j)).
Again, Shift(λ(u,ℓs), ℓ′

s) is feasible and σ is well defined because Γ∗
s is symmetrically induced.

Now, it is straightforward to show by induction on k that the first components of
ω((u, ℓs), σ, π)k and ω((u, ℓ′

s), σ′, π′)k are the same. This means that if ω((u, ℓs), σ, π)k

reaches (w, ℓd), then ω((u, ℓ′
s), σ′, π′)k reaches (w, ℓ′

d) for some ℓ′
d. ◁

The following claim is a formal version of the first key idea.
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▷ Claim 27. If a vertex (v, ℓ) is in Dj , then Copies((v, ℓ)) ⊆ Dj ; and, (Γ∗)j has induced
symmetry.

Proof. We prove the claim by induction on j.

Base case, j = 0. If (v, ℓ) ∈ D0, then there is a player-2 strategy π1 to reach (w, p) ∈ S0.
The set S0 = V \ attr1(B∗, Γ∗) is a player-1 closed set by Observation 3: This means that
there is a player-2 strategy π2 to stay inside S0. By construction of Γ∗, any edge from a
non-layer-d vertex goes to the next layer or to layer-0. Then, since S0 ∩ B∗ = ∅, that is,
since S0 does not contain any layer-d vertices, any (infinite) play that stays inside S0 must
eventually return to layer-0. Thus, player 2 can first use π1 to reach (w, p) ∈ S0 from (v, ℓ),
then use π2 to reach (x, 0) ∈ S0 from (w, p); effectively, this gives a player-2 strategy to go
to (x, 0) ∈ S0 from (v, ℓ). Then, by Claim 26, player 2 has a strategy to reach a copy of
(x, 0) from (v, ℓ′) for any ℓ′ because Γ∗ itself has induced symmetry. Now, (x, 0) does not
have any other copy, this means player 2 has a strategy to reach (x, 0) ∈ S0 from (v, ℓ′). By
induced symmetry of Γ∗ again, we have that all copies of (v, ℓ), i.e., Copies((v, ℓ)) are in
Γ∗; moreover, by the above argument, for each of these copies, there is a player-2 strategy
to reach S0, which implies that Copies((v, ℓ)) ⊆ D0. Noting that (Γ∗)0 = Γ∗ has induced
symmetry finishes the base case.

Induction step, j ⩾ 1. By induction hypothesis, (Γ∗)j−1 has induced symmetry, and if a
vertex (v, ℓ) is in Dj−1, then Copies((v, ℓ)) ⊆ Dj−1. This implies that deleting Dj−1 from
(Γ∗)j−1 to get (Γ∗)j means deleting all copies of a vertex being deleted. Therefore, since
(Γ∗)j−1 has induced symmetry, (Γ∗)j also has induced symmetry.

Since Sj is a separating cut (by Lemma 19), it is a player-1 closed set. Thus, by the same
argument as in the base case that uses the induced symmetry of (Γ∗)j , if (v, ℓ) is in Dj , then
Copies((v, ℓ)) ⊆ Dj . This completes the induction step and the proof. ◁

The following claim is the formal proof of the second key idea.

▷ Claim 28. The set Sj contains at least 2i∗−1 distinct vertices.

Proof. The proof is similar to the proof of [11, Lemma 2.13] except that we must now argue
that all of the 2i∗−1 vertices are distinct. Consider the set Sj in the game graph of the
iteration before, i.e., we argue about Sj in (Γ∗)j

i∗−1. Note that we have the following two
cases.

In the first case, Sj contains a player-1 vertex (x, ℓ) for 1 ⩽ ℓ ⩽ d that is blue in (Γ∗)j
i∗−1.

Thus, (x, ℓ) has outdegree at least 2i∗−1 in (Γ∗)j
i∗ and none of these edges go to vertices

in V j \ Sj in (Γ∗)j
i∗ . Thus, Sj contains at least 2i∗−1 vertices. Note that vertex (x, ℓ) can

only have edges to vertices which are distinct to (x, ℓ), i.e., for all ((x, ℓ), (y, ℓ′)) ∈ E∗ we
have x ̸= y because the game graph Γ does not have self loops.
In the second case, all player-1 vertices in Sj are white in (Γ∗)j

i∗−1. Thus, their outedges
in (Γ∗)j

i∗ and (Γ∗)j
i∗−1 are identical. We now argue, why a player-2 vertex in Sj exists:

Assume for contradiction that no player-2 vertex in Sj exists. Hence, Sj is a separating
cut only consisting of player-1 vertices. As Sj is a separating cut in (Γ∗)j

i∗ we have
Sj ∩B = ∅. Thus, Sj is also a separating cut in (Γ∗)j

i∗−1. But then, by Lemma 20, the
algorithm would have terminated in iteration i∗ − 1 which is a contradiction because it
terminated in iteration i∗.
Note that repeat-until loop at Lines 7–13 would have stopped in iteration i∗ − 1 in
(Γ∗)j

i∗−1 as all player-1 vertices in Sj are white.
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Consider a player-2 vertex u in Sj . Note that u must have an edge (u, v) ∈ (E∗)j
i with

v ∈ Sj because Sj is a separating cut in (Γ∗)j
i∗ (Lemma 21). Again, there are two

possibilities:
For all player-2 vertices u ∈ Sj there exists a vertex v ∈ Sj with (u, v) ∈ (E∗)j

i∗−1.
But then Sj would be a separating cut in (Γ∗)j

i∗−1 as the outedges of player 1 are
identical in (Γ∗)j

i∗ and (Γ∗)j
i∗−1. By Lemma 20, the separating cut would have been

found in iteration i∗ − 1 of the repeat-until loop at Line 7, which is a contradiction.
Therefore, there exists a player-2 vertex u ∈ Sj that has an edge (u, v) ∈ (E∗)j

i∗ to a
vertex v ∈ Sj but this edge is not contained in (E∗)j

i∗−1. This can only happen if v has
at least 2i∗−1 other inedges in (E∗)j

i∗−1. Note that u is a player-2 vertex not in (B∗)j

(because all vertices of (B∗)j belong to Y j), and hence the edge (u, v) has priority 1
and recall that by the fixed inorder of edges priority-1 edges come before all priority-0
edges. Thus, it follows that since the edge (u, v) is not in (Γ∗)j

i∗−1, all inedges of v

that are in (Γ∗)j
i∗−1 must have priority 1 by the fixed order of inedges, that is, all the

inedges of v in (Γ∗)j
i∗−1 are from non-Büchi player-2 vertices. Note that v ∈ Sj and

since Sj is a separating cut and, thus, a closed set, all player-2 vertices which are not
in B∗ with an edge to v are also in Sj . Since v has at least 2i∗−1 inedges from player-2
vertices which are not in B∗, the set Sj must contain at least 2i∗−1 vertices.
Furthermore, all incoming edges are from distinct vertices: Note that v cannot be a
layer 0 vertex of Γ∗, because by Observation 22 all vertices in B of the given bounded
Büchi objective have no incoming edges from a player-2 vertex. Also, layer-d vertices
cannot be in Sj as they are in B∗ and would be in the player-1 attractor Y j

i∗ computed
at Line 10. All other vertices in Γ∗ have incoming edges only from distinct vertices.
Thus, all 2i∗−1 such vertices are distinct. ◁

Due to Claim 28, Sj contains at least 2i∗−1 distinct vertices, and since Sj ⊆ Dj , the set
Dj also contains all copies of all vertices in Sj due to Claim 27. All of Dj is deleted. We
resume from the detour. The time spent in all graphs (Γ∗)j

1, . . . , (Γ∗)j
i∗ , i.e., the time spent

in the repeat-until loop at Line 7 for the graph construction and the attractor computations,
sums up to O(2i∗ · nd). We charge O(nd) work to each distinct vertex. This accounts for all
the running time except for the last iteration of the outer loop. Since we always remove all
copies of a vertex v ∈ Sj , the algorithm deletes at most n distinct vertices throughout a run
of the algorithm. Thus, the total time spent over the whole algorithm other than the last
iteration is O(n2d).

The last iteration of the outer loop. In the last iteration j∗ of the outer loop, when no
vertex is deleted, the algorithm works on all log n game graphs, spending time O(n · 2i)
on game graph (Γ∗)j∗

i . Since each graph (Γ∗)j∗

i has at most nd · 2i+1 edges and there are
log n graphs, the total number of edges worked in the last iteration is

∑log n
i=1 nd · 2i+1 =

4nd
∑log n

i=1 2i−1 = 4nd(2log n − 1) = 4nd(n− 1) = O(n2d). ◀

▶ Theorem 29. The set of winning vertices for the bounded Büchi objective and bounded
coBüchi objectives in game graphs can be computed in time O(n2d) = O(n3).
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