
Differentially Oblivious Turing Machines
Ilan Komargodski1

The Hebrew University in Jerusalem, Israel
NTT Research, Palo Alto, CA, USA
https://www.cs.huji.ac.il/~ilank/
ilank@cs.huji.ac.il

Elaine Shi
Cornell University, Ithaca, NY, USA
Carnegie Mellon University, Pittsburgh, PA, USA
http://elaineshi.com/
runting@gmail.com

Abstract
Oblivious RAM (ORAM) is a machinery that protects any RAM from leaking information about
its secret input by observing only the access pattern. It is known that every ORAM must incur a
logarithmic overhead compared to the non-oblivious RAM. In fact, even the seemingly weaker notion
of differential obliviousness, which intuitively “protects” a single access by guaranteeing that the
observed access pattern for every two “neighboring” logical access sequences satisfy (ε, δ)-differential
privacy, is subject to a logarithmic lower bound.

In this work, we show that any Turing machine computation can be generically compiled into a
differentially oblivious one with only doubly logarithmic overhead. More precisely, given a Turing
machine that makes N transitions, the compiled Turing machine makes O(N · log logN) transitions
in total and the physical head movements sequence satisfies (ε, δ)-differential privacy (for a constant
ε and a negligible δ). We additionally show that Ω(log logN) overhead is necessary in a natural
range of parameters (and in the balls and bins model).

As a corollary, we show that there exist natural data structures such as stack and queues (sup-
porting online operations) on N elements for which there is a differentially oblivious implementation
on a Turing machine incurring amortized O(log logN) overhead per operation, while it is known
that any oblivious implementation must consume Ω(logN) operations unconditionally even on a
RAM. Therefore, we obtain the first unconditional separation between obliviousness and differential
obliviousness in the most natural setting of parameters where ε is a constant and δ is negligible.
Before this work, such a separation was only known in the balls and bins model. Note that the lower
bound applies in the RAM model while our upper bound is in the Turing machine model, making
our separation stronger.

2012 ACM Subject Classification Theory of computation → Turing machines

Keywords and phrases Differential privacy, Turing machines, obliviousness

Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.68

Funding Ilan Komargodski: Supported by an Alon Young Faculty Fellowship and by an ISF grant
(No. 1774/20).
Elaine Shi: Supported by an NSF grant (award number CNS-1601879), an Office of Naval Research
Young Investigator Program Award, and a Packard Fellowship.

Acknowledgements We thank the reviewers of ITCS 2021 for their feedback. We thank Hubert
Chan and Kai-Min Chung for useful discussions.

1 Corresponding author.

© Ilan Komargodski and Elaine Shi;
licensed under Creative Commons License CC-BY

12th Innovations in Theoretical Computer Science Conference (ITCS 2021).
Editor: James R. Lee; Article No. 68; pp. 68:1–68:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1647-2112
https://www.cs.huji.ac.il/~ilank/
mailto:ilank@cs.huji.ac.il
http://elaineshi.com/
mailto:runting@gmail.com
https://doi.org/10.4230/LIPIcs.ITCS.2021.68
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

68:2 Differentially Oblivious Turing Machines

1 Introduction

An oblivious RAM (ORAM), introduced in the seminal work of Goldreich and Ostrovsky [17,
30, 18], is a tool for “encrypting” the access pattern of any RAM so that it looks “unrelated”
to the underlying data. It is known that any ORAM scheme must incur at least Ω(logN)
overhead, where N is the size of the memory. This was first shown by Goldreich and
Ostrovsky [18] in the balls and bins model2 and assuming that no cryptographic assumptions
are used. More recently, Larsen and Nielsen [25] proved the same lower bound without the
two aforementioned restrictions but requiring the ORAM to support operations arriving
in an online manner. In fact, a follow-up work by Jacob et al. [23] showed that Ω(logN)
overhead is necessary even for obliviously implementing very specific data structures (as
defined in [43]) such as stacks, queues, and more.

Apparently, logarithmic overhead is necessary even for implementing a RAM with a
(seemingly) much weaker security guarantee than full obliviousness. Persiano and Yeo [34]
considered the notion of differentially oblivious RAM,3 a relaxation of ORAM that only
protects individual operations by guaranteeing (ε, δ)-differential privacy for the observed
access pattern of the RAM (see Section 2.3 for a formal definition).4 Differential obliviousness
was also studied in the context of specific functionalities by Chan et al. [7] and Beimel et
al. [4]. It is shown that there are tasks for which obtaining differential obliviousness might be
easier than full obliviousness. For instance, Chan et al. [7] show that there is a differentially
oblivious algorithm for sorting N records according to a 1-bit key while maintaining the
relative ordering of records with identical keys in time O(N · log logN),5 while [26] showed
a conditional Ω(N · logN) lower bound for full fledged obliviousness in the balls and bins
model. This leaves the following natural question open.

Is there an unconditional separation between obliviousness and differential obliviousness?

Let us remark that in the above question we are interested in the most standard models
and range of parameters. For RAMs, we consider the standard word-RAM where each
memory word is large enough to store its own logical address, where word-level addition and
Boolean operations can be done in unit cost, and where the CPU has constant number of
private registers. For (ε, δ)-differential obliviousness, we want schemes that are secure for ε
being a fixed constant and δ being a negligible function. For Turing machines, we allow an
arbitrary number (which is fixed as part of the machine’s description) of one-dimensional
bi-directional infinite work tapes, where in every step the head can moved left, right, or stay
in place.

2 This model assumes that each memory word as “indivisible” and restricts the ORAM to only move
blocks around and not apply any non-trivial encoding of the underlying secret data; see Boyle and
Naor [6].

3 Persiano and Yeo [34] called this notion differentially private RAM, but we prefer to use differentially
oblivious RAM to (1) relate to the notion of oblivious RAM and stress that the goal is to preserve the
physical access pattern’s privacy and (2) be aligned with previous work on the topic (Chan et al. [7]).

4 Usually, differential privacy concerns the observed output of some algorithm. In our context, the output
of an algorithm consists of the transcript of the computation: the physical memory accesses performed
during the computation.

5 Maintaining the relative ordering of records is called stability. Without stability, sorting records according
to 1-bit keys is known to be doable (deterministically and obliviously) in linear time [2, 3].

I. Komargodski and E. Shi 68:3

1.1 Our Results
We present a large class of functionalities that can be made differentially oblivious with
only O(log logN) overhead. The class includes many natural and useful algorithms and
data structures such as stacks and queues and therefore implies an unconditional separation
between obliviousness and differential obliviousness.

I Theorem 1 (A separation; informal). There exists a data structure (e.g., a stack or a queue)
supporting N operations for which:
1. Any oblivious implementation (even on a RAM) requires Ω(N · logN) operations;
2. There is an (ε, δ)-differentially oblivious two-tape Turing machine (defined below) that

requires

O (N · (log(1/ε) + log logN + log log(1/δ)))

operations.
In particular, letting ε > 0 be a constant and δ = 2− log2 N (which is negligible), the
number of operations incurred by the differentially oblivious machine is O(N · log logN).

The above theorem follows from a much more general result about differentially oblivious
Turing machines. Oblivious Turing machines were first introduced in 1979 by Pippenger
and Fischer [35]. In this model, “memory accesses” correspond to the head’s movements
throughout the execution of the algorithm (i.e., Left, Right, or Stay). Pippenger and Fischer
showed how any multi-tape Turing machine can be obliviously simulated by a two-tape
Turing machine with a logarithmic slowdown in running time. More precisely, any Turing
machine that makes N steps can be simulated obliviously while consuming O(N · logN)
steps. The simulation is deterministic and perfectly oblivious: the same sequence of head
movements is observed for any two inputs.

Adapting the notion of differential obliviousness to the Turing machine model, we show
that any Turing machine that makes N steps can be simulated by a differentially oblivious
machine while making only O(N · log logN) steps. Here, neighboring sequences of head
movements are ones where only one transition is different. For instance, the logical sequences
of transitions {Left, Right, Left, Right} and {Left, Right, Right, Right} are neighboring.

I Theorem 2 (A differentially oblivious Turing machine; see Theorem 11). For any ε, δ > 0, any
k-tape Turing machine that makes at most N steps can be simulated by an (ε, δ)-differentially
oblivious machine with max{2, k} tapes making O(N · (log(1/ε) + log logN + log log(1/δ)))
steps.

As above, letting ε > 0 be a constant and δ = δ(N) be a particular negligible function, the
number of steps incurred by the differentially oblivious machine is O(N · log logN). We
note that the constant hidden in the O notation depends only on the description size of the
given Turing machine (i.e., its alphabet size, number of tapes, etc). Let us remark that the
number of tapes we use is essentially optimal since even without any security requirements
simulating a k-tape Turing machine for k ≥ 3 on a (k − 1)-tape one is not known to be
possible with better than logarithmic overhead in steps (Hennie and Stearns [22]). Also,
simulating a 2-tape machine on a single tape machine has polynomial overhead (Hartmanis
and Stearns [20] for the upper bound and Hennie [21] for a lower bound).

Theorem 1 follows from Theorem 2 as follows. Consider (for instance) the stack data
structure on N elements, supporting (“online”) Push and Pop operations. By Theorem 2
and using the fact that a stack can be implemented in linear time on a Turing machine,

ITCS 2021

68:4 Differentially Oblivious Turing Machines

there is an (ε, δ)-differentially oblivious Turing machine implementing it whose overhead is
O(log logN) for a constant ε and negligible δ, as above. As mentioned, the logarithmic lower
bound follows from Jacob et al. [23].

Lastly, we observe that a lower bound of Chan et al. [7] can be tweaked to show that our
construction is essentially optimal by showing that Ω(log logN) overhead is necessary for
differential obliviousness in a natural range of parameters and in the balls and bins model.

I Theorem 3 (A lower bound; see Theorem 13). There exists an algorithmic task for which
there is a Turing machine that on input of size N completes it in O(N) steps. On the
other hand, for any 0 < s ≤

√
N , ε > 0, 0 < β < 1, and 0 ≤ δ ≤ β · (ε/s) · e−2ε·s, any

(ε, δ)-differentially oblivious implementation in the balls and bins model (even on a RAM)
for this task must consume Ω(N · log s) steps with probability 1− β.

In particular, for a constant ε > 0 and s ≥ log2N , we can set δ = 2−Ω(log2 N) (which is
negligible) and get that Ω(log s) = Ω(log logN) overhead is necessary. Note that if we want
δ = 2−N0.1 , then the lower bound above says that the best we can hope for is Ω(logN)
overhead. As mentioned, with logarithmic overhead we can actually get perfect obliviousness
for any Turing machine [35].

1.2 Related Work

Goldreich and Ostrovsky [17, 18] showed that any RAM that uses a memory of size N
and makes T accesses, can be made oblivious using only O(T · poly logN) accesses. The
resulting RAM is probabilistic and obliviousness holds against polynomial-time distinguishers
assuming the existence of one-way functions. The concept of oblivious RAM has inspired an
immense amount of research. One line of work, focuses on applications of such compilers
to cryptography and security, including applications in cloud computing, secure processor
design, multi-party computation, and more (for example, [31, 38, 39, 5, 14, 36, 29, 15,
42, 16, 27, 45, 28, 44]). Another line of work, focuses on improving the overhead of the
compiler [37, 24, 19, 8, 40, 41]. Only recently, a couple of works [32, 2] have resolved the
problem by presenting a compiler whose overhead is O(logN) (while still relying on one-way
functions).

Patel et al. [33] considered the natural question of what kind of security can one hope for
while limiting the overhead of a RAM simulation to constant. They show a construction
of an (ε, 0)-differentially oblivious RAM with O(1) overhead for ε = O(logN) and also
assuming that the client can store ω(logN) records. They also proved a lower bound which
quantitatively improves upon the one of [34] in the dependence on ε but is qualitatively
worse since it is in the balls and bins model. Throughout this work, we focus on the setting
where ε is a fixed constant and also that the client’s storage is a constant number of blocks.

The work of Pippenger and Fischer [35] came in a long line of works trying to pin down
the exact relation between various different computational models. One notable work is that
of Hennie and Stearns [22] who showed that any multi-tape Turing machine can be simulated
by a two-tape machine with logarithmic overhead. Pippenger and Fischer’s result can be
viewed as a similar compiler except that their resulting machine is also oblivious. Note that
the result of [22] is the reason why one should not hope to improve the number of tapes in
the resulting machine in Theorem 2 to two (as this task, even without privacy, is not known
to be possible with less than logarithmic overhead). Simulating a 2-tape Turing machine on
a single tape machine requires polynomial overhead due to Hartmanis and Stearns [20] and
Hennie [21].

I. Komargodski and E. Shi 68:5

Some of our ideas in the differentially oblivious Turing machine construction are reminis-
cent of the aforementioned differentially oblivious algorithm (in the RAM model) for stable
tight compaction due to Chan et al. [7]. Technically, their algorithm uses similar tools from
the differential privacy literature (namely, differentially private prefix sums due to Chan et
al. and Dwork et al. [9, 10, 12]) but the way they use it differ in nature from our approach.
Partly, this is because our target machine is a Turing machine rather than a RAM, and
therefore, standard building blocks such as oblivious sorting (which they use) are inapplicable.
Second, even if we allow compiling a Turing machine to a differentially oblivious RAM (rather
than insisting on Turing machine as the target machine), we still cannot directly use their
techniques for constructing stable tight compaction because their techniques which rely on
oblivious sorting are offline in nature; and thus not compatible with the online nature of our
differentially oblivious simulation.

1.3 Technical Roadmap
In this overview we will focus on simulating a Turing machine with a single tape for N steps.
There are many complications and technical difficulties that arise in the multi-tape case, but
we refer to the technical sections for details.

Given a Turing machine our goal is to hide the location of the head during the execution
of the machine, in a differentially private manner. To this end, we first develop an efficiently
differentially private algorithm for estimating the location of the head at pre-defined points
in time. Naively, we could add a fresh Laplacian noise every time we need an estimate, but
this will incur at least

√
N loss in the privacy budget (by standard composition theorems).

To get around this, inspired by the work of Chan et al. [7], we use a differentially private
prefix sum algorithm [9, 10, 12] to account for the location of the head. Recall that in the
prefix sum algorithm, a stream of number arrives in an online manner and the algorithm
outputs the sum of all number seen so far, after seeing every number. We set up the numbers
to correspond to head movements (“Left” for -1 and “Right” for 1) and show that this
approach incurs only poly logN loss in privacy budget, which is good enough in terms of
privacy. One challenge that we run into is that we need to implement the differentially private
prefix sum algorithm on a Turing machine. It turns out that every time we need to get an
estimate of the head’s location (i.e., get a prefix sum), we need to pay some non-trivial factor
in running time and so we need to minimize the number of such estimations. Therefore, we
design our algorithm to work with only one estimate of the head’s location every poly logN
steps and amortize the cost of this estimation while processing the next poly logN steps of
the Turing machine.

Once we have a good-enough estimate of the head’s location every poly logN steps, all
that is left is to copy the nearby positions to a smaller oblivious Turing machine which we
use to simulate the next poly logN steps. We set up the parameters in such a way that
we copy enough positions around the estimated head’s location to actually include the real
head position along with the relevant tape around it to perform the next poly logN steps
so the above is well defined. The oblivious Turing machine that we need must provide an
“initialization” procedure that allow us to start an oblivious Turing machine from an existing
memory, and a “destruction” procedure which allows us to extract the memory to its original
structure in the end of the execution. Pippenger and Fischer’s [35] construction does not
provide such procedures so we describe a variant that does. As an independent contribution,
our new oblivious Turing Machine is described in a language that more closely resembles the
hierarchical oblivious RAM construction of Goldreich and Ostrovsky [17, 18] so it might be
easier to understand for those who are familiar with the latter.

ITCS 2021

68:6 Differentially Oblivious Turing Machines

Lastly, let us remark that the above description was very high level and glossed over
many technical details. For example, one technicality arises because we have to use the
tapes sparingly in the compiled Turing machine to get a theorem that is tight in the number
of tapes. To achieve this, we delevop algorithmic tricks that allow us to reuse the same
tape for multiple purposes without without incurring any overhead in asymptotic running
time. Another technical challenge arises because unlike earlier explorations on differentially
obliviousness [7, 4], our target machine is a Turing machine rather than a RAM. This imposes
additional constraints for our algorithm design, since we cannot use common building blocks
such as oblivious sorting. Moreover, the online nature of our differentially oblivious simulation
also renders some previous building blocks inadequent (which we discuss more in the Related
Work section). We refer to the technical sections for details.

2 Preliminaries

For an integer n ∈ N we denote by [n] the set {1, . . . , n}. A function negl : N → R+ is
negligible if for every constant c > 0 there exists an integer Nc such that negl(λ) < λ−c for
all λ > Nc.

2.1 Turing Machines

We follow the presentation of Arora and Barak [1] for the definition of a k-tape Turing
machine. A tape is an infinite bi-directional line of cells, each of which can hold a symbol from
a finite set called the alphabet. Each tape is associated to a tape head that can potentially
read or write symbols to the tape one cell at a time. The machine’s computation is divided
into discrete time steps, and the head can either stay in place or move left or right one cell
in each step. More formally, a Turing machine M is described by a tuple (Γ, Q, δ), where
Γ is a set of symbols that M ’s tapes can contain, Q is the set of M ’s possible states, and
δ : Q× Γk → Q× Γk × {L, S,R}k is M ’s transition function.

If the machine is in state q ∈ Q and (σ1, σ2, . . . , σk) are the symbols currently being read
in the k tapes, and δ(q, (σ1, . . . , σk)) = (q′, (σ′1, . . . , σ′k), z), where z ∈ {L, S,R}k, then at the
next step the σ symbols in the k tapes will be replaced by the σ′ symbols, the machine will
be in state q′, and the k heads will move Left, Right, Stay in place, as given by z. There are
additionally a read-only tape for the input and a write-only tape for the output, and perhaps
a randomness tape if needed, but we ignore those when counting the number of tapes and
only account for the work tapes.

The definition above is quite robust to the choices one makes regarding the alphabet size,
the number of tapes, etc, since they are all equivalent in terms of complexity up to small
factors. We recall the known facts which can be found, for example, in Arora and Barak [1].

I Fact 4. It holds that:
1. Every function f that is computable in time T using alphabet Γ, can be computed in time

O(log |Γ| · T) using an alphabet of size O(1).
2. Every function f that is computable in time T using k tapes, can be computed in time

O(k · T 2) on a single tape machine and in time O(k · T · log T) on a two-tape machine.
3. Every function f that is computable in time T using k bi-directional tapes, can be computed

in time O(T) using k standard (uni-directional) tapes.
4. Every function f that is computable in time T using k tapes, can be computed in time

k · T using k tapes such that in each step only one of the tapes moves.

I. Komargodski and E. Shi 68:7

We mention the dependence on k in the above terms for explicitness even though it is a
constant.

In this work, we care about logarithmic factors so, by default, our Turing machine model
is that of a two-tape machine. By the above, it does not matter if we consider uni-directional
or bi-directional tapes. Constant factors in the alphabet size do not matter as well. All of
the above only affect the constants which are hidden inside the O notation.

2.2 Differential Privacy
Differential privacy, introduced by Dwork et al. [11], is a property of algorithms that, very
roughly, guarantees “security” for a single record in the input. Namely, if the algorithm
acts on the information of a set of individuals, from the output it is hard to decide whether
a particular individual’s information was used in the computation. This is formalized as
follows. Let A be a probabilistic algorithm that takes as input a dataset. Let Im(A) be the
set of all possible outputs of A. The algorithm A is said to be (ε, δ)-differentially private if
for all datasets D0 and D1, that differ only on one entry, and all possible subsets S ⊆ Im(A),
it holds that

Pr[A(D0) ∈ S] ≤ eε · Pr[A(D1) ∈ S] + δ,

where e is the base of the natural logarithm.
We refer to Dwork and Roth [13] for more information on differential privacy.

2.3 (Differentially) Oblivious Turing Machines
Obliviousness. Obliviousness is nowadays usually defined for RAMs and it guarantees
that the access pattern of the RAM is “independent” of the underlying input. More
specifically, given a RAM M and an input I, we consider a random variable Accesses(M, I)
that corresponds to the ordered sequence of memory locationsM accesses during an execution
on input I. We then require that the distribution of Accesses(M, I1) is indistinguishable from
Accesses(M, I2) for any I1 and I2 of the same length. The precise notion of indistinguishability
can be either computational, statistical, or perfect, depending on the context.

A Turing machine can be thought of as a restricted version of RAM where random accesses
are not allowed but any two consecutive accessed addresses must be to adjacent locations
(i.e., the head can move at most one cell at a time). Adapting the notion of obliviousness to
the Turing machine model requires that the tape’s head movements during the execution of
the algorithm to not leak information about the inputs. Again one can define various notions
of obliviousness, including computation, statistical, or perfect. We consider the strong notion
of deterministic perfect obliviousness.

I Definition 5 (Oblivious Turing machine). A Turing machine M is said to be oblivious if
for every input x ∈ {0, 1}∗ and i ∈ [N], the location of each of M ’s heads at the ith step of
execution on input x is only a function of |x| and i.

Differential obliviousness. Differential obliviousness was introduced by Chan et al. [7] as
a relaxation of obliviousness for RAMs. At a high level, this security notion only protects
individual operations, rather than the whole sequence of operations. This is formalized by
requiring (ε, δ)-differential privacy for the observed access pattern of the RAM. In this case,
two sequences of accesses I0 and I1 are neighboring if they are of the same length and differ
in exactly one location accessed.

ITCS 2021

68:8 Differentially Oblivious Turing Machines

When we adapt the notion to the Turing machine model, one needs to distinguish between
the input of the computation and the induced sequence of head movements that this input
causes. While in some cases the two are analogous (which is the case in some of our results),
in other cases there might be a gap. Namely, there are cases where the inputs are very close
(in say, Hamming distance) and yet the resulting head movements are far from each other.
Nevertheless, defining neighboring inputs w.r.t the observed sequence of head movements,
as we do next, still implies a privacy guarantee for the inputs using standard group privacy
theorems [11].

I Definition 6 (Neighboring inputs). Let M be a k-tape Turing machine. For J ∈ {0, 1}∗, let
Movements(M,J) ∈ ({L,R, S}k)∗ be the sequence of head movements that M does on input
J. Two inputs J0,J1 ∈ {0, 1}∗ are called neighboring if
1. |Movements(M,J0)| = |Movements(M,J1)| and
2. Movements(M,J0) and Movements(M,J1) differ in exactly one location.
That is, letting (`b,11 , . . . , `b,1k), . . . , (`b,N1 , . . . , `b,Nk) = Movements(M,Jb) for b ∈ {0, 1}, there
is exactly one pair (i∗, j∗) ∈ [N] × [k] such that `0,i

∗

j∗ 6= `1,i
∗

j∗ while for all other (i, j) ∈
[N]× [k] \ {(i∗, j∗)}, it holds that `0,ij = `1,ij .

Given this notion of neighboring inputs, we give the definition of differential obliviousness.

I Definition 7 ((ε, δ)-differentially oblivious Turing machine). A Turing machine M satis-
fies (ε, δ)-differential privacy iff for any neighboring inputs J0 and J1 and any set S ∈
({L,R, S}k)∗ of possible sequence of head movements, it holds that

Pr [Movements(M,J0) ∈ S] ≤ eε · Pr [Movements(M,J1)) ∈ S] + δ.

3 Estimating Heads’ Locations

In this section, we present an algorithm running on a Turing machine that outputs estimates
to the location of the heads in a Turing machine computation. More precisely, the input to
the algorithm is a sequence of movements of the heads of the machine (i.e., Left, Right or
Stay for each tape), and it outputs an estimate to the location of the head in a-priori fixed
intervals of time in an online fashion. The algorithm (1) outputs an estimate which is not
too far from the true position of the head, (2) the estimates is differentially private, (3) the
algorithm’s head movements themselves are oblivious (i.e., data-independent), and (4) the
algorithm is very efficient. The intervals at which we output an estimate on the location of
the heads are denoted p.

I Theorem 8. There exists an algorithm EstimateHeadε,δ such that for any ε, δ > 0, the
following holds. Fix any stream a = a1, a2, . . . , aN ∈ {L, S,R}k that corresponds to the
movements of the heads of a k-tape Turing machine. Let σi =

∑i·p
j=1 ai for i ∈ [N/p] (i.e.,

the true position of the heads every p steps). Let {σ̃i}i∈[N/p] denote a possible output of the
algorithm EstimateHeadε,δ when fed a as an input in an online fashion. It holds that:
1. Utility: With probability 1 over the randomness of EstimateHeadε,δ, it holds that

max
i∈[N/p]

|σ̃i − σi| ∈ O
(
(1/ε) · log1.5N · log(1/δ)

)
.

2. Differential privacy: EstimateHeadε,δ is (ε, δ)-differentially private. Here, neighboring
sequences are defined in the natural way by allowing only one of the k indices in one of
the N ai’s to differ between the two sequences.

3. Obliviousness: The algorithm itself is perfectly oblivious.
4. Efficiency: The algorithm runs in time O (k ·N + k · (N/p) · (logN)).

I. Komargodski and E. Shi 68:9

Proof. The algorithm builds on the differentially private prefix-sum algorithm of Chan et
al. [9, 10] and Dwork et al. [12]. Their algorithms address the problem of continuously
estimating the prefix sums of elements in a given stream of numbers while maintaining
differential privacy. We follow the presentation of these algorithm from Dwork and Roth [13,
§12.3]. The algorithm is given a stream of numbers b = b1, b2, . . . , bN ∈ {−1, 0, 1} that
the algorithm sees in an online fashion. The algorithm outputs, after seeing b1, . . . , bj an
approximation of

∑j
i=1 bi. This task is almost what we need to prove our theorem for k = 1

(i.e., the machine has one tape). Indeed, a movement left (resp. right) can be interpreted as
-1 (resp. 1) and staying in place corresponds to seeing 0. The location of the head is exactly
the sum of those numbers. Additionally, it is not hard to observe that their algorithm is in
fact oblivious (see below). Nevertheless, the running time of their algorithm on a Turing
machine is O(N · logN) (see below). So, we need to (1) extend the algorithm to handle any
k ≥ 1 tapes and (2) show how to implement it in the specified running time on a Turing
machine. Since both goals are somewhat non-trivial to achieve, let us first briefly recall their
algorithm and state its guarantees, and then describe our modifications.

Assume that N is a power of 2 (for simplicity and without loss of generality). We associate
the N numbers to leaves of a full binary tree and then label each node in the tree with an
“interval”. The ith leaf (for i ∈ [N]) is labeled with [i, i]. An internal node is labeled with the
interval that is the union of the intervals associated with its children. Now, with each node,
labeled [s, t] in this tree, we associate a noisy count that approximates the sum of the values
seen in positions s, s+1, . . . , t by adding noise from the appropriate distribution. In [9, 10, 12]
the added noise was sampled from Lap((1+log2N)/ε), where Lap(s) denotes the (continuous)
Laplace distribution with mean 0 and variance 2s2. To output σ̃i (i.e., the approximation
of
∑i
j=1 aj), we write i in binary to find at most log2N intervals whose union is [1, t], and

compute the sum of the corresponding noisy counts. These intervals are associated to the
nodes which are called the frontier. This algorithm satisfies (ε, 0)-differential privacy and
satisfies the following utility property: With probability 1− δ over the randomness of the
algorithm,

max
i∈[N/p]

|σ̃i − σi| ≤ O
(
(1/ε) · log1.5N · log(1/δ)

)
.

It is easy to turn the utility property to be satisfied with probability 1 by outputting the
exact prefix sum in the clear whenever the error in the output is too large. This causes the
algorithm to be (ε, δ/2)-differentially private, as needed.

Handling multiple tapes. We extend the algorithm to handle k tapes by maintaining k
prefix sums computed in parallel. This clearly does not hurt utility or obliviousness and only
incurs a k factor in running time. However, naively, it incurs a k factor in differential privacy.
Nevertheless, we observe that considering any two neighboring sequences of inputs, k − 1 of
the tapes will have the exact same access pattern while only one will differ in one position,
and so this extension, in fact, does not incur a k factor in differential privacy.

Running time. The main challenge is to maintain an updated version of the noisy counts
associated to the nodes in the frontier. Recall that the frontier is of size log2N + 1. Naively,
with the above algorithm, computing the frontier at time i+ 1 from the frontier at time i
may cost up to O(logN) work which is too expensive for us. However, recall that we do not
need a prefix sum after every ai, but rather we want to output one after every p inputs. So,
instead of having a full binary tree where the leaves correspond to each input, we consider a
full binary tree where each leaf corresponds to a sequence of p inputs and it is labeled by

ITCS 2021

68:10 Differentially Oblivious Turing Machines

their sum. The depth of this tree is log2(N/p) and the point is that we need to compute the
“next” frontier (which costs about log2N) only once every p operations, so the total cost is
O(k · (N/p) · logN) plus the time it takes to aggregate the sum itself which is O(k ·N), as
needed. J

I Remark 9 (Sampling from Lap). We emphasize that the above algorithm assumes that
a Turing machine is capable of sampling from Lap(·) in O(1) time. This is assumed for
simplicity of presentation. However, it is possible to efficiently compute an estimate of this
distribution on a standard Turing machine. The cost of this approximation is small good
enough to obtain (asymptotically) the same final result in Theorem 11. Therefore, the
assumption being made in this section is without loss of generality in the context of our main
result. See details in Appendix A.

4 Oblivious Turing Machines

A classical result by Pippenger and Fischer [35] shows that any Turing machine computation
can be made perfectly oblivious (i.e., Definition 5) on a two-tape machine with amortized
logarithmic overhead. More precisely, any Turing machine that makes at most N steps can
be made perfectly oblivious while making O(N · logN) steps.

In our application we need an oblivious Turing machine which support two additional
properties. The first, called “initialization”, is that one can initialize an oblivious Turing
machine with a given memory (as opposed to starting off with an empty memory). The
second, called “destruction”, returns the state of the memory in a linear fashion.

Our construction is similar in spirit to the one of Pippenger and Fischer [35]. However,
we present it in a language that more closely resembles the hierarchical oblivious RAM
construction of Goldreich and Ostrovsky [17, 18] so it might be easier to understand for
those who are familiar with the latter.

I Theorem 10 (Oblivious Turing machine, revisited). Any k-tape Turing machine that makes at
most N steps can be executed obliviously on a two-tape Turing machine with O(N) space and
with O(k ·N · logN) steps. Additionally, the machine supports initialization and destruction.

Proof. We will present the main idea in the special case where the given Turing machine
has only a single tape and the resulting machine will have ` = dlogNe tapes. Later, we will
explain how to handle multiple tape machines in the input and simulate them obliviously
with just two tapes (at the same cost).

We have ` tapes and sometimes we will refer to these tapes as “levels” (analogously to
levels in [18]’s hierarchical ORAM construction). For each i ≥ 1, level Ti is a tape that
contains at most `i , 2i − 1 elements and it is thought of as a cyclic buffer. That is, the
element on the right of the (2i − 1)th element in level Ti is the 1st one. Our construction
will maintain the following invariant. Let p be the pointer to the current head location of
the original Turing machine. At the end of every 2i steps, Ti stores the content of the tape
at positions [p− 2i−1 : p+ 2i−1].

According to this, level T1 will always store the content of the cell pointed to by the head,
level T2 stores the content of cells p− 1, p, p+ 1, and so on. Notice that the same cell may
be part of several levels and not all of the values will be consistent with each other. The
freshest copy of a cell is always in the Ti with the smallest i that contains the cell. Reading
the value of the cell pointed to by the head or writing to that cell is done by reading or
writing (respectively) directly to T1.

I. Komargodski and E. Shi 68:11

For every i ≥ 0, at the end of every 2i steps, the following reorganization steps are
performed:
1. Ti+1 writes its updated contents to Ti+2. This is done by making a pass over Ti+2 and

scanning over Ti+1 as a cycle buffer, making a real write whenever needed and making a
dummy write otherwise.

2. Ti+1 copies the corresponding segment it ought to store from Ti+2. This is done, as above,
by making a pass over Ti+2 and scanning over Ti+1 as a cycle buffer, making a real write
whenever needed and making a dummy write otherwise.

Correctness follows immediately by description. Perfect obliviousness follows from the
fact that the head’s movements are deterministic and a-priori fixed. For efficiency, consider
any sequence of N steps. A read or a write are done at a single operations cost by just
accessing T1. It remains to account for the cost of the reorganization steps. Note that the
N operations are confined to levels Ti for i ≤ logN + 2. By description and recalling that
the size of level Ti is 2i − 1, the total amount of steps performed by the oblivious Turing
machine is bounded by

logN+2∑
i=1

⌈
N

2i−1

⌉
·O(|Ti+2|) ∈ O(N · logN).

We now explain how to remove the simplifying assumptions we had, the first being that
the input machine has only one tape and the second being that the resulting oblivious
machine uses logN many tapes. Let us first handle the former, letting k be the number of
tapes used by the input machine. We use an encoding trick. We encode the k tapes into a
single tape by first placing all the first cells from each tape, then the second cell, and so on.
Each “track” will have its own head marker. By the construction of the oblivious Turing
machine, all the tracks can be processed simultaneously (recall that our head movement
sequence is deterministic), incurring a k multiplicative factor.

Now, we explain how to modify our Turing machine to use only two tapes. As a first step,
let us place the different levels one after the other on the single tape. Naively, this incurs a
blowup in running time due to the reorganization steps. Indeed, in the reorganization steps,
we need to scan two levels “in parallel” as cyclic buffers. The only way to do this with a
single tape is by moving back and forth in the tape which is too expensive. This is where
we will use the second tape. When such a “parallel” scan is needed, we will copy one of the
levels to the second tape, do the “parallel” scan by scanning both tapes in parallel, and then
copy it back. This only incurs a constant overhead.

Initialization and destruction. In our application, we will need to an oblivious Turing
machine with two additional features so we explain how to implement them next. The first
is that we need to support initialization with a given memory which might not necessarily
be empty. We implement this by starting with an empty memory, as described above, and
modifying the memory one element at a time. If the number of steps that we eventually
perform on the Turing machine is about the size of the initial memory, the cost of this step
will be amortized away.

The second feature is a destruction procedure which outputs the memory at the end of
the computation in a linear fashion. This is not so immediate since our construction does
not store the memory in a linear fashion. Recall that our construction satisfies that at the
end of every 2i steps, the cells corresponding to the level Ti store the content of the tape at
positions [p− 2i−1 : p+ 2i−1]. This means that if “destruct” is invoked after a power-of-2

ITCS 2021

68:12 Differentially Oblivious Turing Machines

many steps, the memory is stored exactly in the cells corresponding to some level and one
can make one linear scan to extract those elements and put them one next to the other.
If destruct is invoked after some other number of steps, we need to modify this procedure
slightly by collecting the most updated memory values of each cell from the appropriate level
(now, the most updated values are spread amongst different cells). This again can be done
by a single scan. J

5 A Differentially Oblivious Turing Machine

In this section, we describe our transformation from any Turing machine into a differentially
oblivious one.

I Theorem 11. For any ε, δ > 0, any k-tape Turing machine that makes at most N steps
and consumes S space can be transformed into an (ε, δ)-differentially oblivious max{2, k}-tape
Turing machine that makes O(N · (log(1/ε) + log logN + log log(1/δ))) steps and consumes
O(S + (1/ε) · log2N · log(1/δ)) space.

The construction of the differentially oblivious Turing machine uses the oblivious Turing
machine construction from Section 4 and the head’s location estimation algorithm from
Theorem 3. We will present the construction in steps. We first assume that the input
machine uses only one tape and the resulting machine will use many tapes. Then, we will
explain how to get rid of both simplifying assumptions and therefore obtain Theorem 11.

5.1 From One Tape to Four Tapes

Assume first that the given machine, M , uses only a single tape. We first present a
construction that compiles M into a differentially oblivious Turing machine dpM with 4
tapes. Fix ε, δ > 0 for the rest of this section.

Tape allocation. The resulting Turing machine, dpM , will consist of four tapes, numbered
1, 2, 3, and 4, in the following order:
1. One tape to simulate the input Turing machine computation (recall that we assumed

that the input machine has only one tape).
2. Two tapes for running an oblivious Turing machine (according to Section 4).
3. One tape to compute differentially private head’s location estimation algorithm (according

to Section 3).

The algorithm. As mentioned, we use the oblivious Turing machine implementation from
Section 4 but since its overhead is logarithmic (in the running time of the non-oblivious
machine), we do not want to apply it directly on our machine. Instead, we are going to break
down the computation of the original machine into epochs and invoke the oblivious machine
only within epochs. Concretely, we split the computation of M into epochs of size

p , (1/ε) · log2N · log(1/δ).

Each such epoch will be executed in its own “fresh” oblivious Turing machine and so the
overhead will only be a doubly logarithmic factor in N . Next, we explain how dpM works.

I. Komargodski and E. Shi 68:13

Algorithm dpMε,δ.

1. Set h0
≈ = 0 be the initial approximate position of the head (it is equal to the real

position).
2. Break the T -step computation into epochs of p steps of computation. For epoch

i = 1, . . . , N/p, do:
a. Copy an area of size 4p + 1 around hi−1

≈ , namely [hi−1
≈ − 2p, hi−1

≈ + 2p] to the
oblivious Turing machine (Theorem 10). Perform the next p steps of computation
there. At the end of the epoch, copy the state of these 4p + 1 cells back to the
main tape.

b. In parallel, keep track of the movements of the head and count the offset of the
head compared to the previous location, hi−1

≈ . At the end of the epoch, invoke
the differentially private head’s location estimation algorithm (Theorem 8) with
privacy parameters ε and δ to update the location of the head hi≈.

I Theorem 12. For any ε, δ > 0 and given any single-tape Turing machine M that makes
at most N steps and consumes S space, the 4-tape machine dpMε,δ is (ε, δ)-differentially
oblivious, makes at most O(N · (log(1/ε) + log logN + log log(1/δ))) steps and consumes
O(S + (1/ε) · log2N · log(1/δ)) space.

Proof. We first prove correctness, ignoring obliviousness. Consider any sequence of operations.
At any point in time, the oblivious Turing machine contains 2p+1 memory cells and performs
all necessary operations within. For correctness, by description, it is enough to show that
the p operations are indeed contained within those 2p+ 1 cells. Indeed, for this to hold it is
enough to argue that hi≈ is close enough to the real location of the head: hi≈ − 2p ≤ hi − p
and hi≈ + 2p ≥ hi + p, where hi is the true location of the head. In other words, we need to
show that

|hi≈ − hi| ≤ p.

By the utility property of the head’s location estimation algorithm (Theorem 8), we know
that |hi≈ − hi| ≤ (1/ε) · log1.5N · log(1/δ) (this is the upper bound on the additive error
of each each head’s location estimation for every i). Now, the above inequality follows by
recalling that p = (1/ε) · log2N · log(1/δ).

To prove (ε, δ)-differential obliviousness, consider any two sequences of operations I0
and I1 that differ at one operation. Consider the random variable Ĩb corresponding to the
physical tape heads locations on input Ib for b ∈ {0, 1}. Say the two sequences I0 and I1 differ
in the ith operation and are otherwise identical. Then, the first i− 1 operations result with
identical distributions of head locations in both executions (as all the underlying building
blocks are perfectly oblivious). The only difference is in the ith operation. There, the
head’s locations might differ due to a different distribution of the head’s location estimation
algorithm (Theorem 8). However, we are guaranteed that this algorithm is (ε, δ)-differentially
private. The rest of the heads’ movements are perfectly oblivious: the oblivious Turing
machine is perfectly oblivious, the head’s location estimation algorithm itself is perfectly
oblivious, and the other operations that we do in the implementation of dpM are trivially
oblivious.

Lastly, we analyze efficiency by counting the total amount of work and space required to
handle any sequence N operations that consume S space. Step 2a costs O(p · log p) operations
and space due to Theorem 10 (the rest of the operations can be implemented in O(p) time
and space). Computing the differentially private head’s location estimation in Step 2b takes
overall O(N + (N/p) · (logN + log(1/δ)) < O(N) time due to Theorem 8 (i.e., constant

ITCS 2021

68:14 Differentially Oblivious Turing Machines

amortized work per access). Otherwise, simulating the original computation and accounting
for the location of the head, requires O(N) work and space. Overall, over N operations,
the total space is O(N + p · log p) and the work is bounded by O(N · log p). Plugging in
p = (1/ε) · log2N · log(1/δ) completes the proof. J

5.2 From One Tape to Two Tapes
In this section we show how to obtain the same result as in the previous section (i.e.,
Theorem 12), except that our resulting Turing machine will only use two tapes (instead of
four). One tape will be used for the simulation of the original Turing machine plus one of
the tapes of the oblivious Turing machine and the other tape will be used to perform the
head’s location estimation algorithm and the other tape of the oblivious Turing machine.

Recall that the tapes used for the oblivious Turing machine, both consume about p space,
but one interacts with the main tape (call it tape oTM1) and the other acts as a scratch
pad and the values that are written there are never accessed outside of the oblivious Turing
machine implementation (call it tape oTM2). We will merge tape oTM2 into the tape that
simulates the original computation, and tape oTM1 to the tape that computes the prefix
sums.

Tape 1 (Main Tape). This tape will consist of the main computation tape as well as a
blank area which is used for tape oTM2 of the oblivious Turing machine. We use the fact
that the required space for the oblivious Turing machine is O(p) cells and so we will maintain
such a “space of blanks” which will not be too far from the real position of the head and
will be used whenever a new oblivious Turing machine is instantiated. Let us denote by
SoTM = O(p) the space consumption of the oblivious Turing machine. Our first tape, the one
that simulates the computation of the original Turing machine, will maintain the invariant
that in distance SoTM from the location of the approximate head h≈ to the right, there are
SoTM blank cells (the last blank cell has distance 2SoTM from h≈). If this invariant holds,
then whenever an epoch begins, we can move to the blank area and use it as the oblivious
Turing machine tape. At the end of the epoch, we can go back to where we were. Since we
perform p operations inside the oblivious Turing machine, the amortized cost of moving back
and forth is O(1) per operation which is what we need.

We thus need to explain how to maintain the above invariant. The idea is to move the
blank area together with the location of the head once every epoch. Namely, once we update
the approximate position of the head h≈, we will also move the blank area appropriately so
that its distance from the new h≈ is as we require. Moving the blank area, as above, can
be done simply in time O(p) using a designated size O(p) space in the other tape (tape 2) –
this is done by moving the area that needs to go to the blank area to tape 2 (and replacing
it with blanks), and then copying by moving both heads “in parallel”.

Tape 2 (Secondary Tape). This tape will consist of three areas, each of size O(p). One of
these areas will be used for moving the blank area in tape 1, as we explained above. Another
area is for the computation of the head’s location estimation – this algorithm has state of
size O(logN) < O(p) (which contains a frontier of a tree of noisy sums per interval). The
third part is for tape oTM1 of the oblivious Turing machine (which also uses O(p) space).

The first and second parts in this tape are accessed at the end of every epoch and some
computation of length O(p) is performed on each of them (either updating the prefix sum or
moving data around). Since each epoch handles O(p) operations, the amortized cost of this
part is O(1) per operation of the original machine. The third part, in contrast, is accessed
throughout the epoch, and there we get O(log p) overhead per operation.

I. Komargodski and E. Shi 68:15

5.3 From k Tapes to k Tapes (for k ≥ 2)
This extension is done by making two changes. First we use k tapes to simulate the
computation of the original k-tape machine (instead of just a single tape). Second, we use the
algorithm for estimating the head’s position which works for k tape machines (Theorem 8) –
this incurs an overhead of k operations per step. Recall that this algorithm just runs the
algorithm for estimating the head’s position of a single tape k times (independently). It
remains to explain where we execute this algorithm and also where we execute the oblivious
Turing machine since now we do not have an extra work tape.

The idea is to first modify each tape to have two “blank areas”, each as above. Say that
one blank area will be on the left of the head’s position and the other one on the right. The
one on the left will act as the “Main Tape” in the above construction and the one on the
right as the “Secondary Tape” for another tape. Concretely, tape (i+ 1) mod k acts as the
“Secondary Tape” of tape i (for all i ∈ [k]).

That is, the blank area on the left of the head of tape i, is used to simulate the computation
of tape i in the original machine and also to execute tape oTM2 of the oblivious Turing
machine when simulating tape i (this is exactly the same usage of the blank area as above).
The blank area on the right of the head of tape i consists of three areas: (1) an area used to
maintain the blank areas in tape (i+ 1) mod k, (2) an area used for the computation of the
head’s location estimation of tape (i+ 1) mod k, and (3) tape oTM1 of the oblivious Turing
machine when simulating tape (i + 1) mod k. Overall, these changes incur an extra O(k)
factor in the overhead of the simulation.

6 Lower Bound

In this section we prove that our differentially oblivious Turing machine is optimal in terms
of overhead in a natural range of parameters. Specifically, we prove the following theorem.

I Theorem 13. There exists an algorithmic task for which there is a Turing machine that on
input of size N completes it in O(N) steps. On the other hand, for any 0 < s ≤

√
N , ε > 0,

0 < β < 1, and 0 ≤ δ ≤ β · (ε/s) · e−2ε·s, any (ε, δ)-differentially oblivious implementation
(even on a RAM and in the balls and bins model) for this task must consume Ω(N · log s)
steps with probability 1− β.

Proof. In the work of Chan et al. [7] the following theorem concerning the required overhead
to stably sort a set of balls according to associated 1-bit keys while maintaining differential
obliviousness. Here, we assume that the balls are opaque and so no non-trivial encoding on
them can be done [6].

I Theorem 14 (Theorem 4.7 in [7]). Let 0 < s ≤
√
N . Suppose ε > 0, 0 < β < 1, and

0 ≤ δ ≤ β · (ε/s) · e−2ε·s. Then, any (even randomized) stable sorting algorithm for balls
according to associated 1-bit keys in the RAM model that is (ε, δ)-differentially oblivious must
have some input, on which it incurs at least Ω(N · log s) memory accesses with probability at
least 1− β.

The task of stably sorting N balls according to associated 1-bit keys can be implemented
using a Turing machine in O(N) steps. Consider an input of the form (k1, v1), . . . , (kN , vN),
where ki ∈ {0, 1} is a 1-bit key and vi is the ith ball. The idea is to scan the input from
the beginning and whenever we see an element (ki, vi) we do one of the following. If ki = 0,
we write (ki, vi) to the next position in the output tape. If ki = 1, we write it to the next
position in the work tape. After we finish scanning the input, we scan the output again and
write all elements from first to last into the output tape. It is immediate that this algorithm
is correct and has O(N) running time. J

ITCS 2021

68:16 Differentially Oblivious Turing Machines

References
1 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge

University Press, 2009.
2 Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and Elaine

Shi. OptORAMa: Optimal oblivious RAM. In Advances in Cryptology - EUROCRYPT, pages
403–432, 2020.

3 Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Enoch Peserico, and Elaine Shi. Oblivious
parallel tight compaction. In 1st Conference on Information-Theoretic Cryptography, ITC,
pages 11:1–11:23, 2020.

4 Amos Beimel, Kobbi Nissim, and Mohammad Zaheri. Exploring differential obliviousness. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM, pages 65:1–65:20, 2019.

5 Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and Yan Huang.
Practicing oblivious access on cloud storage: the gap, the fallacy, and the new way forward.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 837–849. ACM, 2015.

6 Elette Boyle and Moni Naor. Is there an oblivious RAM lower bound? In Proceedings of the
2016 ACM Conference on Innovations in Theoretical Computer Science, ITCS, pages 357–368,
2016.

7 T.-H. Hubert Chan, Kai-Min Chung, Bruce M. Maggs, and Elaine Shi. Foundations of differ-
entially oblivious algorithms. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, pages 2448–2467. SIAM, 2019.

8 T.-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. Oblivious hashing revisited, and
applications to asymptotically efficient ORAM and OPRAM. In Advances in Cryptology -
ASIACRYPT, pages 660–690, 2017.

9 T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics.
In Automata, Languages and Programming, 37th International Colloquium, ICALP, pages
405–417, 2010.

10 T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics.
ACM Trans. Inf. Syst. Secur., 14(3):26:1–26:24, 2011.

11 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography, Third Theory of Cryptography
Conference, TCC, pages 265–284, 2006.

12 Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy under
continual observation. In Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC, pages 715–724. ACM, 2010.

13 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Founda-
tions and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

14 Christopher W Fletcher, Marten van Dijk, and Srinivas Devadas. A secure processor architec-
ture for encrypted computation on untrusted programs. In Proceedings of the seventh ACM
workshop on Scalable trusted computing, pages 3–8. ACM, 2012.

15 Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srinivas Devadas.
Freecursive ORAM: [nearly] free recursion and integrity verification for position-based oblivious
RAM. In Proceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS, pages 103–116. ACM, 2015.

16 Craig Gentry, Shai Halevi, Charanjit Jutla, and Mariana Raykova. Private database access
with he-over-oram architecture. In International Conference on Applied Cryptography and
Network Security, pages 172–191. Springer, 2015.

17 Oded Goldreich. Towards a theory of software protection and simulation by oblivious rams.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, STOC, pages
182–194, 1987.

I. Komargodski and E. Shi 68:17

18 Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs.
J. ACM, 1996.

19 Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access of outsourced data
via oblivious RAM simulation. In Automata, Languages and Programming - 38th International
Colloquium, ICALP, pages 576–587, 2011.

20 Juris Hartmanis and Richard E Stearns. On the computational complexity of algorithms.
Transactions of the American Mathematical Society, 117:285–306, 1965.

21 F. C. Hennie. One-tape, off-line turing machine computations. Inf. Control., 8(6):553–578,
1965.

22 F. C. Hennie and Richard Edwin Stearns. Two-tape simulation of multitape turing machines.
J. ACM, 13(4):533–546, 1966.

23 Riko Jacob, Kasper Green Larsen, and Jesper Buus Nielsen. Lower bounds for oblivious
data structures. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 2439–2447. SIAM, 2019.

24 Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 143–156, 2012.

25 Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivious RAM lower bound!
In Advances in Cryptology - CRYPTO, pages 523–542, 2018.

26 Wei-Kai Lin, Elaine Shi, and Tiancheng Xie. Can we overcome the n log n barrier for
oblivious sorting? In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 2419–2438, 2019.

27 Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. ObliVM: A
programming framework for secure computation. In IEEE Symposium on Security and Privacy,
2015.

28 Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for secure two-party computation.
In Theory of Cryptography, pages 377–396. Springer, 2013.

29 Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic, John
Kubiatowicz, and Dawn Song. PHANTOM: practical oblivious computation in a secure
processor. In 2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS, pages 311–324, 2013.

30 Rafail Ostrovsky. Efficient computation on oblivious rams. In Proceedings of the 22nd Annual
ACM Symposium on Theory of Computing, pages 514–523, 1990.

31 Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract). In
Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, STOC,
pages 294–303, 1997.

32 Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. Panorama: Oblivious
RAM with logarithmic overhead. In FOCS, 2018.

33 Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. What storage access privacy is achievable
with small overhead? In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS, pages 182–199, 2019.

34 Giuseppe Persiano and Kevin Yeo. Lower bounds for differentially private rams. In Advances
in Cryptology - EUROCRYPT 2019, pages 404–434, 2019.

35 Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J. ACM,
26(2):361–381, 1979.

36 Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas.
Design space exploration and optimization of path oblivious RAM in secure processors. In
The 40th Annual International Symposium on Computer Architecture, ISCA, pages 571–582.
ACM, 2013.

37 Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
O((logN)3) worst-case cost. In Advances in Cryptology - ASIACRYPT, pages 197–214,
2011.

ITCS 2021

68:18 Differentially Oblivious Turing Machines

38 Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivious cloud storage. In 2013
IEEE Symposium on Security and Privacy, pages 253–267. IEEE, 2013.

39 Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song. Towards practical oblivious RAM. In
19th Annual Network and Distributed System Security Symposium, NDSS, 2012.

40 Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao Yu,
and Srinivas Devadas. Path ORAM: an extremely simple oblivious RAM protocol. In ACM
SIGSAC Conference on Computer and Communications Security, CCS, pages 299–310, 2013.

41 Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. Circuit ORAM: on tightness of the goldreich-
ostrovsky lower bound. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, CCS, pages 850–861, 2015.

42 Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and Elaine Shi. SCORAM:
oblivious RAM for secure computation. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 191–202, 2014.

43 Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hubert Chan, Elaine Shi, Emil Stefanov,
and Yan Huang. Oblivious data structures. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS, pages 215–226, 2014.

44 Peter Williams, Radu Sion, and Alin Tomescu. Privatefs: A parallel oblivious file system. In
ACM Conference on Computer and Communications Security (CCS), 2012.

45 Samee Zahur, Xiao Shaun Wang, Mariana Raykova, Adria Gascón, Jack Doerner, David Evans,
and Jonathan Katz. Revisiting square-root ORAM: efficient random access in multi-party
computation. In IEEE Symposium on Security and Privacy, S& P, pages 218–234, 2016.

A Sampling Noise on a Turing machine

One of the operations our differentially oblivious Turing machine needs to do is to sample from
the (continuous) Laplacian distribution Lap(x); this is used in the algorithm for estimating the
head’s location; see Section 3. There, we need to generate a sample from Lap((1 + log2N)/ε)
and we need to do this about N times. Recall that a Laplacian distribution is unbounded and
samples need infinite precision. We show that with small tolerable loss in precision (which
does not affect our final result), one can sample an approximation from this distribution on
a standard Turing machine.

We assume that ln(1/ε) is an integer so that we do not have rounding issues. Also, recall
that δ is a negligible function of the form exp(− log2N)). First, we switch to a bounded
version of the distribution, chopping off the tail which contains elements that occur with
negligible probability. We can assume the we sample from the range±(log(N)/ε)·poly log(1/δ).
Let us call δ0 the probability mass that we chopped off. Sampling from the bounded version
turns our (ε, δ′)-differentially private prefix sum algorithm into an (ε, δ)-differentially private
one, where δ = δ′+N · (eε · δ0 + δ0). To see this, observe that we have essentially N instances
of the Lap noise and so by a simple union bound, the statistical distance between each event
w.r.t the bounded distribution happens with probability at most N · δ0 larger than in the
unbounded version. Namely, for any set S, Pr[Xbounded ∈ S] ≤ Pr[X ∈ S] + N · δ0, where
Xbounded is the output of the mechanism when using bounded noise and X is the original
mechanism. Then, by differential privacy, Pr[X ∈ S] + N · δ0 ≤ eε Pr[Y ∈ S] + δ′ + Nδ0,
where Y is another arbitrary event sampled from the unbounded noise version. Then again
by bounding the noise used in Y , we get

Pr[Xbounded ∈ S] ≤ eε(Pr[Ybounded ∈ S] +Nδ0) + δ′ +Nδ0.

Since we think of δ0 as being negligible in N and ε being a constant, δ is also negligible.6

6 The above analysis was very loose. In particular, one can do a tighter analysis and not lose the
linear-in-N factor in δ but for our purposes it does not matter since δ is negligible in N anyway.

I. Komargodski and E. Shi 68:19

The next step is to represent each element in the bounded range with finite precision.
We want to lose at most δ factor in precision (which will add another additive δ factor to
our additive error), and so if we use ` bits of precision, we have the inequality:

2−` · ((logN)/ε) · poly log(1/δ) ≤ δ.

This means that it is enough to use ` ∈ O(log((logN · log log(1/δ))/(εδ)) bits of precision
which can be bounded by O(log2(1/δ)) bits since δ is negligible in N and ε is a constant.
Therefore, all operations can be executed efficiently enough (in time O(poly logN)), which
by slightly changing parameters (e.g., the value of p), does not affect our asymptotic upper
bound on the running time of our differentially private Turing machine.

ITCS 2021

	Introduction
	Our Results
	Related Work
	Technical Roadmap

	Preliminaries
	Turing Machines
	Differential Privacy
	(Differentially) Oblivious Turing Machines

	Estimating Heads' Locations
	Oblivious Turing Machines
	A Differentially Oblivious Turing Machine
	From One Tape to Four Tapes
	From One Tape to Two Tapes
	From k Tapes to k Tapes (for k > = 2)

	Lower Bound
	Sampling Noise on a Turing machine

