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Abstract
The emerging theory of graph limits exhibits an analytic perspective on graphs, showing that many
important concepts and tools in graph theory and its applications can be described more naturally
(and sometimes proved more easily) in analytic language. We extend the theory of graph limits
to the ordered setting, presenting a limit object for dense vertex-ordered graphs, which we call an
orderon. As a special case, this yields limit objects for matrices whose rows and columns are ordered,
and for dynamic graphs that expand (via vertex insertions) over time. Along the way, we devise an
ordered locality-preserving variant of the cut distance between ordered graphs, showing that two
graphs are close with respect to this distance if and only if they are similar in terms of their ordered
subgraph frequencies. We show that the space of orderons is compact with respect to this distance
notion, which is key to a successful analysis of combinatorial objects through their limits. For the
proof we combine techniques used in the unordered setting with several new techniques specifically
designed to overcome the challenges arising in the ordered setting.

We derive several applications of the ordered limit theory in extremal combinatorics, sampling,
and property testing in ordered graphs. In particular, we prove a new ordered analogue of the
well-known result by Alon and Stav [RS&A’08] on the furthest graph from a hereditary property; this
is the first known result of this type in the ordered setting. Unlike the unordered regime, here the
Erdős–Rényi random graph G(n, p) with an ordering over the vertices is not always asymptotically
the furthest from the property for some p. However, using our ordered limit theory, we show that
random graphs generated by a stochastic block model, where the blocks are consecutive in the vertex
ordering, are (approximately) the furthest. Additionally, we describe an alternative analytic proof of
the ordered graph removal lemma [Alon et al., FOCS’17].
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42:2 Ordered Graph Limits and Their Applications

1 Introduction

Large graphs appear in many applications across all scientific areas. Naturally, it is interesting
to try to understand their structure and behavior: When can we say that two graphs are
similar (even if they do not have the same size)? How can the convergence of graph sequences
be defined? What properties of a large graph can we capture by taking a small sample
from it?

The theory of graph limits addresses such questions from an analytic point of view. The
investigation of convergent sequences of dense graphs was started to address three seemingly
unrelated questions asked in different fields: statistical physics, theory of networks and the
Internet, and quasi-randomness. A comprehensive series of papers [12, 13, 28, 21, 29, 14,
11, 30, 15] laid the infrastructure for a rigorous study of the theory of dense graph limits,
demonstrating various applications in many areas of mathematics and computer science. The
book of Lovász on graph limits [27] presents these results in a unified form.

A sequence {Gn}∞n=1 of finite graphs, whose number of vertices tends to infinity as
n→∞, is considered convergent1 if the frequency2 of any fixed graph F as a subgraph in Gn
converges as n→∞. The limit object of a convergent sequence of (unordered) graphs in the
dense setting, called a graphon, is a measurable symmetric function W : [0, 1]2 → [0, 1], and
it was proved in [28] that, indeed, for any convergent sequence {Gn} of graphs there exists a
graphon serving as the limit of Gn in terms of subgraph frequencies. Apart from their role
in the theory of graph limits, graphons are useful in probability theory, as they give rise to
exchangeable random graph models; see e.g. [17, 33]. An analytic theory of convergence has
been established for many other types of discrete structures. These include sparse graphs, for
which many different (and sometimes incomparable) notions of limits exist – see e.g. [16, 10]
for two recent papers citing and discussing many of the works in this field; permutations,
first developed in [25] and further investigated in several other works; partial orders [26]; and
high dimensional functions over finite fields [35]. The limit theory of dense graphs has also
been extended to hypergraphs, see [36, 18] and the references within.

In this work we extend the theory of dense graph limits to the ordered setting, establishing a
limit theory for vertex-ordered graphs in the dense setting, and presenting several applications
of this theory. An ordered graph is a symmetric function G : [n]2 → {0, 1}. G is simple if
G(x, x) = 0 for any x. A weighted ordered graph is a symmetric function F : [n]2 → [0, 1].
Unlike the unordered setting, where G,G′ : [n]2 → Σ are considered isomorphic if there is a
permutation π over [n] so that G(x, y) = G′(π(x), π(y)) for any x 6= y ∈ [n], in the ordered
setting, the automorphism group of a graph G is trivial: G is only isomorphic to itself
through the identity function.

For simplicity, we consider in the following only graphs (without edge colors). All results
here can be generalized in a relatively straightforward manner to edge-colored graph-like
ordered structures, where pairs of vertices may have one of r ≥ 2 colors (the definition
above corresponds to the case r = 2). This is done by replacing the range [0, 1] with the
(r − 1)-dimensional simplex (corresponding to the set of all possible distributions over [r]).

Two interesting special cases of two-dimensional ordered structures for which our results
naturally yield a limit object are images, i.e., ordered matrices, and dynamic graphs with
vertex insertions. Specifically, (binary) m × n images can be viewed as ordered bipartite

1 In unordered graphs, this is also called convergence from the left; see the discussion on [14].
2 The frequency of F in G is roughly defined as the ratio of induced subgraphs of G isomorphic to F

among all induced subgraphs of G on |F | vertices.
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graphs I : [m]× [n]→ {0, 1}, and our results can be adapted to get a bipartite ordered limit
object for them as long as m = Θ(n). Meanwhile, a dynamic graph with vertex insertions
can be viewed as a sequence {Gi}∞i=1 of ordered graphs, where Gi+1 is the result of adding a
vertex to Gi and connecting it to the previous vertices according to some prescribed rule. It
is natural to view such dynamic graphs that evolve with time as ordered ones, as the time
parameter induces a natural ordering. Thus, our work gives, for example, a limit object for
time-series where there are pairwise relations between events occurring at different times.

As we shall see in Subsection 1.2, the main results proved in this paper are, in a sense,
natural extensions of results in the unordered setting. However, proving them requires
machinery that is heavier than that used in the unordered setting: the tools used in the
unordered setting are not rich enough to overcome the subtleties materializing in the ordered
setting. In particular, the limit object we use in the ordered setting – which we call an orderon
– has a 4-dimensional structure that is more complicated than the analogous 2-dimensional
structure of the graphon, the limit object for the unordered setting. The tools required to
establish the ordered theory are described next.

1.1 Main ingredients
Let us start by considering a simple yet elusive sequence of ordered graphs, which has the
makings of convergence. The odd-clique ordered graph Hn on 2n vertices is defined by setting
Hn(i, j) = 1, i.e., having an edge between vertices i and j, if and only if i 6= j and i, j are
both odd, and otherwise setting Hn(i, j) = 0. In this subsection we closely inspect this
sequence to demonstrate the challenges arising while trying to establish a theory for ordered
graphs, and the solutions we propose for them. First, let us define the notions of subgraph
frequency and convergence.

The (induced) frequency t(F,G) of a simple ordered graph F on k vertices in an ordered
graph G with n vertices is the probability that, if one picks k vertices of G uniformly and
independently (repetitions are allowed) and reorders them as x1 ≤ · · · ≤ xk, F is isomorphic
to the induced ordered subgraph of G over x1, . . . , xk. (The latter is defined as the ordered
graph H on k vertices satisfying H(i, j) = G(xi, xj) for any i, j ∈ [k].) A sequence {Gn}∞n=1
of ordered graphs is convergent if |V (Gn)| → ∞ as n→∞, and the frequency t(F,Gn) of any
simple ordered graph F converges as n→∞. Observe that the odd-clique sequence {Hn} is
indeed convergent: The frequency of the empty k-vertex graph in Hn tends to (k + 1)2−k as
n → ∞, the frequency of any non-empty k-vertex ordered graph containing only a clique
and a (possibly empty) set of isolated vertices tends to 2−k, and the frequency of any other
graph in Hn is 0.3

In light of previous works on the unordered theory of convergence, we look for a limit
object for ordered graphs that has the following features.
Representation of finite ordered graphs. The limit object should have a natural and con-

sistent representation for finite ordered graphs. As in graphons, we allow graphs G and
H to have the same representation when one is a blowup4 of the other.

Usable distance notion. Working directly with the definition of convergence in terms of
subgraph frequencies is difficult. The limit object we seek should be endowed with a
metric, like the cut distance for unordered graphs (see discussion below), that should be
easier to work with and must have the following property: A sequence of ordered graph
is convergent (in terms of frequencies) if and only if it is Cauchy in the metric.

3 To see why the sum of frequencies is 1, note that for k ≥ ` ≥ 2, the number of k-vertex ordered graphs
consisting of an `-vertex clique and k − ` isolated vertices is

(
k
`

)
.

4 A graph G on nt vertices is an ordered t-blowup of H on n vertices if G(x, y) = H(dx/te, dy/te) for any
x and y.
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Completeness and compactness. The space of limit objects must be complete with respect
to the metric: Cauchy sequences should converge in this metric space. Combined with the
previous requirements, this will ensure that any convergent sequence of ordered graphs
has a limit (in terms of ordered frequencies), as desired. It is even better if the space
is compact, as compactness is essentially an “ultimately strong” version of Szemerédi’s
regularity lemma [34], and will help to develop applications of the theory in other areas.

Additionally, we would like the limit object to be as simple as possible, without unnecessary
over-representation. In the unordered setting, the metric used is the cut distance, introduced
by Frieze and Kannan [22, 23] and defined as follows. First, we define the cut norm ‖W‖� of a
function W : [0, 1]2 → R as the supremum of |

∫
S×T W (x, y)dxdy| over all measurable subsets

S, T ⊆ [0, 1]. The cut distance between graphons W and W ′ is the infimum of ‖Wφ −W ′‖�
over all measure-preserving bijections φ : [0, 1]→ [0, 1], where Wφ(x, y) def= W (φ(x), φ(y)).

For the ordered setting, we look for a similar metric; the cut distance itself does not
suit us, as measure-preserving bijections do not preserve ordered subgraph frequencies in
general. A first intuition is then to try graphons as the limit object, endowed with the metric
d�(W,W ′) def= ‖W −W ′‖�. However, this metric does not satisfy the second requirement:
the odd-clique sequence is convergent, yet it is not Cauchy in d�, since d�(Hn, H2n) = 1/2
for any n. Seeing that d� seems “too strict” as a metric and does not capture the similarities
between large odd-clique graphs well, it might make sense to use a slightly more “flexible”
metric, which allows for measure-preserving bijections, as long as they do not move any of
the points too far from its original location. In view of this, we define the cut-shift distance
between two graphons W,W ′ as

d4(W,W ′) def= inf
f

(
Shift(f) + ‖W f −W ′‖�

)
, (1)

where f : [0, 1] → [0, 1] is a measure-preserving bijection, Shift(f) = supx∈[0,1] |f(x) − x|,
and W f (x, y) = W (f(x), f(y)) for any x, y ∈ [0, 1]. As we show in this paper (Theorem 2
below), the cut-shift distance settles the second requirement: a sequence of ordered graphs is
convergent if and only if it is Cauchy in the cut-shift distance.

Consider now graphons as a limit object, coupled with the cut-shift distance as a metric.
Do graphons satisfy the third requirement? In particular, does there exist a graphon whose
ordered subgraph frequencies are equal to the limit frequencies for the odd-clique sequence?
The answers to both of these questions are negative: it can be shown that such a graphon
cannot exist in view of Lebesgue’s density theorem, which states that there is no measurable
subset of [0, 1] whose density in every interval (a, b) is (b−a)/2 (see e.g. Theorem 2.5.1 in the
book of Franks on Lebesgue measure [20]). Thus, we need a somewhat richer ordered limit
object that will allow us to “bypass” the consequences of Lebesgue’s density theorem. Consider
for a moment the graphon representations of the odd clique graphs. In these graphons, the
domain [0, 1] can be partitioned into increasingly narrow intervals that alternately represent
odd and even vertices. Intuitively, it seems that our limit object needs to be able to contain
infinitesimal odd and even intervals at any given location, leading us to the following limit
object candidate, which we call an orderon.

An orderon is a symmetric measurable function W : ([0, 1]2)2 → [0, 1] viewed, intuitively
and loosely speaking, as follows. In each point (x, a) ∈ [0, 1]2, corresponding to an infinitesimal
“vertex” of the orderon, the first coordinate, x, represents a location in the linear order of
[0, 1]. Each set {x}× [0, 1] can thus be viewed as an infinitesimal probability space of vertices
that have the same location in the linear order. The role of the second coordinate is to allow
“variability” (in terms of probability) of the infinitesimal “vertex” occupying this point in
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the order. The definition of the frequency t(F,W ) of a simple ordered graph F = ([k], E)
in an orderon W is a natural extension of frequency in graphons. First, define the random
variable G(k,W ) as follows: Pick k points in [0, 1]2 uniformly and independently, order
them according to the first coordinate as (x1, a1), . . . , (xk, ak) with x1 ≤ · · · ≤ xk, and then
return a k-vertex graph G, in which the edge between each pair of vertices i and j exists
with probability W ((xi, ai), (xj , aj)), independently of other edges. The frequency t(F,W ) is
defined as the probability that the graph generated according to G(k,W ) is isomorphic to F .

Consider the orderon W satisfying W ((x, a), (y, b)) = 1 if and only if a, b ≤ 1/2, and
otherwise W ((x, a), (y, b)) = 0. W now emerges as a natural limit object for the odd-clique
sequence: one can verify that the subgraph frequencies in it are as desired.

The cut-shift distance for orderons is defined similarly to (1), except that f is now a
measure-preserving bijection from [0, 1]2 to [0, 1]2 and Shift(f) = sup(x,a)∈[0,1]2 |π1(f(x, a))−
x|, where π1(y, b) def= y is the projection to the first coordinate.

1.2 Main results
LetW denote the space of orderons endowed with the cut-shift distance. In view of Lemma 19
below, d4 is a pseudo-metric for W. By identifying W,U ∈ W whenever d4(W,U) = 0, we
get a metric space W̃. The following result is the main component for the viability of our
limit object, settling the third requirement above.

I Theorem 1. The space W̃ is compact with respect to d4.

The proof of Theorem 1 is significantly more involved than the proof of its unordered analogue.
While at a very high level, the roadmap of the proof is similar to that of the unordered
one, our setting induces several new challenges, and to handle them we develop new shape
approximation techniques. These are presented along the proof of the theorem in Section 4.

The next result shows that convergence in terms of frequencies is equivalent to being
Cauchy in d4. This settles the second requirement.

I Theorem 2. Let {Wn}∞n=1 be a sequence of orderons. Then {Wn} is Cauchy in d4 if and
only if t(F,Wn) converges for any fixed simple ordered graph F .

As a corollary of the last two results, we get the following.

I Corollary 3. For every convergent sequence of ordered graphs {Gn}n∈N, there exists an
orderon W ∈ W such that t(F,Gn)→ t(F,W ) for every ordered graph F .

The next main result is a sampling theorem, stating that a large enough sample from an
orderon is almost always close to it in cut-shift distance. For this, we define the orderon repres-
entation WG of an n-vertex ordered graph G by setting WG((x, a), (y, b)) = G(Qn(x), Qn(y))
for any x, a, y, b, where we define Qn(x) = dnxe for x > 0 and Qn(0) = 1. This addresses the
first requirement.

I Theorem 4. Let k be a positive integer and let W ∈ W be an orderon. Let G ∼ G(k,W ).
Then,

d4(W,WG) ≤ C
(

log log k
log k

)1/3

holds with probability at least 1− C exp(−
√
k/C) for some constant C > 0.

Theorem 4 implies, in particular, that ordered graphs are a dense subset in W.

ITCS 2021



42:6 Ordered Graph Limits and Their Applications

I Corollary 5. For every orderon W and every ε > 0, there exists a simple ordered graph G
on at most 2ε−3+o(1) vertices such that d4(W,WG) ≤ ε.

Our next result asserts that any orderon W ∈ W can be approximated in L1-distance by
an orderon U with a finite block structure, with the added property that any ordered finite
structure that appears with positive density in U also has positive density in W .5 The
orderon U is described as follows. the point set [0, 1]2 is divided into b “blocks”, which are
subsets of the form [(i− 1)/b, i/b]× [0, 1] for some i ∈ [b]. Each block is decomposed into l
“layers”, of the form [(i−1)/b, i/b]× [(j−1)/l, j/l] where j ∈ [l]. The value of U((x, a), (y, b))
is now only dependent on which blocks x, y belong to, which layers a, b belong to, and
possibly whether x < y. For example, the orderon U representing the limit of the odd-clique
sequence (defined by U((x, a), (y, b)) = 1 if a, b ≤ 1/2, and U((x, a), (y, b)) = 0 elsewhere)
has one block and two layers in it. Roughly speaking, one can think of such U as the orderon
representation of a “pixelized” ordered graph, where each vertex (block) consists of multiple
“pixels” (here a pixel corresponds to a block-layer pair), and there is a weighted edge6 between
each pair of pixels. Therefore we call an orderon U with such structure a pixelized orderon
and term our result the pixelization lemma.

I Theorem 6 (Pixelization lemma; informal). For any orderon W and ε > 0, there exists a
pixelized orderon U so that d1(U,W ) ≤ ε, satisfying the following: for all ordered graphs F
with t(F,U) > 0, we have t(F,W ) > 0.

We note that the pixelized structure of U is necessary for this statement to be correct; it
is no longer correct in general if we insist that U must be the orderon representation of a
standard edge-weighted ordered graph.

The pixelization lemma is especially useful for applications where the L1-distance comes
into play. Two such applications, reproving the ordered graph removal lemma [2] and proving
a new result in extremal combinatorics, are described next.

1.3 The furthest ordered graph from a hereditary property
Here and in the next subsection we describe three applications of our ordered limit theory.
We start with an extensive discussion on the first application: A new result on the maximum
edit7 distance d1(G,H) of an ordered graph G from a hereditary8 property H.

For a hereditary property H of simple ordered graphs, define dH = supG d1(G,H) where
G ranges over all simple graphs (of any size). The parameter dH has been widely investigated
for unordered graphs. A well-known surprising result of Alon and Stav [6] states, roughly
speaking, that dH is always “achieved” by the Erdős–Rényi random graph G(n, p) for an
appropriate choice of p and large enough n.

5 A weaker result, in which the L1-distance is replaced by the cut-shift distance, is not hard to prove
using our previous main results; we note that it is indeed strictly weaker since the L1-distance between
any two orderons U and W is always at least as large as (and sometimes much larger than) d4(U, W ).

6 In fact, a weighted bi-directed edge, with possibly different weights in the the different directions.
7 For our purposes, define the edit (or Hamming) distance between two ordered graphs G and G′ on

n vertices as the smallest number of entries that one needs to change in the adjacency matrix AG of
G to make it equal to AG′ , divided by n2. For this matter, the adjacency matrix AG of a graph G
over vertices v1 < . . . < vn is a binary n× n matrix where AG(i, j) = 1 if and only if there is an edge
between vi and vj in G. The distance between G and a property P of ordered graphs is minG′ d1(G, G′)
where G′ ranges over all graphs G′ of the same size as G. The definition for unordered graphs is similar;
the only difference is in the notion of isomorphism.

8 A property of (ordered or unordered) graphs is hereditary if it is closed under taking induced subgraphs.
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I Theorem 7 ([6]). For any hereditary property H of unordered graphs there exists pH ∈ [0, 1]
satisfying the following. A graph G ∼ G(n, pH) satisfies d1(G,H) ≥ dH − o(1) with high
probability.

In other words, a random graph G(n, pH) is with high probability asymptotically (that is,
up to relative edit distance of o(1)) the furthest from the property H. From the analytic
perspective, Lovász and Szegedy [30] were able to reprove (and extend) this result using
graph limits.

The surprising result of Alon and Stav has led naturally to a very interesting and highly
non-trivial question, now known as the (extremal) graph edit distance problem [31], which
asks the following: Given a hereditary property of interest H, what is the value (or values)
pH that maximizes the distance of G(n, p) from H? The general question of determining pH
given any H is currently wide open, although there have been many interesting developments
for various classes of hereditary properties; see [31] for an extensive survey of previous works
and useful techniques.

While the situation in unordered graphs, and even in (unordered) directed graphs [7] and
matrices [32] has been thoroughly investigated, for ordered graphs no result in the spirit
of Theorem 7 is known. The first question that comes to mind is whether the behavior
in the ordered setting is similar to that in the unordered case: Is it true that for any
hereditary property H of ordered graphs there exists p = pH for which G ∼ G(n, p) satisfies
d1(G,H) ≥ dH − o(1) with high probability?

As we show, the answer is in fact negative. Consider the ordered graph property H
defined as follows: G ∈ H if and only if there do not exist vertices u1 < u2 ≤ u3 < u4 in G
where u1u2 is a non-edge and u3u4 is an edge. H is clearly a hereditary property, defined
by a finite family of forbidden ordered subgraphs. In the full version [9], we prove that
the typical distance of G ∼ G(n, p) from H is no more than 1/4 + o(1) (the maximum is
asymptotically attained for p = 1/2). In contrast, we show there exists a graph G satisfying
d1(G,H) = 1/2 − o(1), which is clearly the furthest possible up to the o(1) term (every
graph G is 1/2-close to either the complete or the empty graph, which are in H), and is
substantially further than the typical distance of G(n, p) for any choice of p. This shows
that Theorem 7 cannot be true for the ordered setting.

However, the news are not all negative: We present a positive result in the ordered
setting, which generalizes the unordered statement in some sense, and whose proof makes
use of our ordered limit theory. While it is no longer true that G(n, p) generates graphs that
are asymptotically the furthest from H, we show that a random graph generated according
to a consecutive stochastic block model is approximately the furthest. A stochastic block
model [1] with M blocks is a well-studied generalization of G(n, p), widely used in the study
of community detection, clustering, and various other problems in mathematics and computer
science. A stochastic block model is defined according to the following three parameters: n,
the total number of vertices; (q1, . . . , qM ), a vector of probabilities that sum up to one; and a
symmetric M ×M matrix of probabilities pij . A graph on n vertices is generated according
to this model as follows. First, we assign each of the vertices independently9 to one of M
parts A1, . . . , AM , where the probability of any given vertex to fall in Ai is qi. Then, for any
(i, j) ∈ [M ]2, and any pair of disjoint vertices u ∈ Ai and v ∈ Aj , we add an edge between u
and v with probability pij . By consecutive, we mean that all vertices assigned to Ai precede
(in the vertex ordering) all vertices assigned to Ai+1, for any i ∈ [M − 1]. Our main result
now is as follows.

9 In some contexts, the stochastic block model is defined by determining the exact number of vertices in
each Ai in advance, rather than assigning the vertices independently; all results here are also true for
this alternative definition.

ITCS 2021
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I Theorem 8. Let H be a hereditary property of simple ordered graphs and let ε > 0.
There exists a consecutive stochastic block model with at most M = MH(ε) blocks with equal
containment probabilities (i.e., qi = 1/M for any i ∈ [M ]), satisfying the following. A graph
G on n vertices generated by this model satisfies d1(G,H) ≥ dH − ε with probability that
tends to one as n→∞.

The proof, given in the full version of this paper [9], is a good example of the power of the
analytic perspective, combining our ordered limit theory with standard measure-theoretic
tools and a few simple lemmas proved in [30].

1.4 Sampling and property testing
We finish by showing two additional applications of the ordered limit theory. These applica-
tions are somewhat more algorithmically oriented – concerning sampling and property testing
– and illustrate the use of our theory for algorithmic purposes. The first of them is concerned
with naturally estimable ordered graph parameters, defined as follows.

I Definition 9 (naturally estimable parameter). An ordered graph parameter f is naturally
estimable if for every ε > 0 and δ > 0 there is a positive integer k = k(ε, δ) > 0 satisfying
the following. If G is an ordered graph with at least k nodes and G|k is the subgraph induced
by a uniformly random ordered set of exactly k nodes of G, then

Pr
G|k

[|f(G)− f(G|k)| > ε] < δ.

The following result provides an analytic characterization of ordered natural estimability,
providing a method to study estimation problems on ordered graphs from the analytic
perspective.

I Theorem 10. Let f be a bounded simple ordered graph parameter. Then, the following are
equivalent:
1. f is naturally estimable.
2. For every convergent sequence {Gn}n∈N of ordered simple graphs with |V (Gn)| → ∞, the

sequence of numbers {f(Gn)}n∈N is convergent.
3. There exists a functional f̂(W ) over W that satisfies the following:

a. f̂(W ) is continuous with respect to d4.
b. For every ε > 0, there is k = k(ε) such that for every ordered graph G with |V (G)| ≥ k,

it holds that
∣∣∣f̂(WG)− f(G)

∣∣∣ ≤ ε.
Our third application is a new analytic proof of the ordered graph removal lemma of [2],
implying that every hereditary property of ordered graphs (and images over a fixed alphabet)
is testable, with one-sided error, using a constant number of queries. (For the relevant
definitions, see [2] and Definition 9 here.)

I Theorem 11 ([2]). Let H be a hereditary property of simple ordered graphs, and fix ε, c > 0.
Then there exists k = k(H, ε, c) satisfying the following: For every ordered graph G on n ≥ k
vertices that is ε-far from H, the probability that G|k does not satisfy H is at least 1− c.

Our proof of Theorem 11 utilizes the analytic tools developed in this work, and bypasses
the need for many of the sophisticated combinatorial techniques from [2], resulting in an
arguably cleaner proof.
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1.5 Related work

The theory of graph limits has strong ties to the area of property testing, especially in the
dense setting. Regularity lemmas for graphs, starting with the well-known regularity lemma
of Szemerédi [34], later to be joined by the weaker (but more efficient) versions of Frieze
and Kannan [22, 23] and the stronger variants of Alon et al. [3], among others, have been
very influential in the development of property testing. For example, regularity was used to
establish the testability of all hereditary properties in graphs [5], the relationship between
the testability and estimability of graph parameters [19], and combinatorial characterizations
of testability [4].

The analytic theory of convergence, built using the cut distance and its relation to the
weak regularity lemma, has proved to be an interesting alternative perspective on these
results. Indeed, the aforementioned results have equivalent analytic formulations, in which
both the statement and the proof seem cleaner and more natural. A recent line of work has
shown that many of the classical results in property testing of dense graphs can be extended
to dense ordered graph-like structures, including vertex-ordered graphs and images. In [2], it
was shown that the testability of hereditary properties extends to the ordered setting (see
Theorem 11 above). Shortly after, in [8] it was proved that characterizations of testability in
unordered graphs can be partially extended to similar characterizations in ordered graph-like
structures, provided that the property at stake is sufficiently “well-behaved” in terms of
order.

Graphons and their sparse analogues have various applications in different areas of
mathematics, computer science, and even social sciences. The connections between graph
limits and real-world large networks have been very actively investigated; see the survey of
Borgs and Chayes [16]. Graph limits have applications in probability and data analysis [33].
Graphons were used to provide new analytic proofs of results in extremal graph theory; see
Chapter 16 in [27]. Through the notion of free energy, graphons were also shown to be closely
connected to the field of statistical physics [15]. We refer the reader to [27] for more details.

We remark that an independent work, by Frederik Garbe, Robert Hancock, Jan Hladky,
and Maryam Sharifzadeh, investigates an alternative limit object for the ordered setting
in the context of latin squares. See [24] for their findings, as well as connections between
orderons and their limit object, called a latinon.

1.6 Organization

Due to space limitations, much of the technical content is missing from this version of the
paper. Specifically, we only include here the following components. In Section 2, we present
basic definitions for our ordered limit theory. Section 3 contains the main ingredients for
the the proof that ordered graphs are dense in the space of orderons (some technical details
are relegated to the full version). Section 4 presents the proof that the space of orderons is
compact (Theorem 1). The reader is referred to [9] for a full version of this paper, including
proofs of all results stated in this manuscript.

2 Preliminaries

In this section we formally describe some of the basic ingredients of our theory, including the
limit object – the orderon, and several distance notions including the cut-norm for orderons
(both unordered and ordered variants are presented), and the cut-shift distance. We then
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42:10 Ordered Graph Limits and Their Applications

show that the latter is a pseudo-metric for the space of orderons. This will later allow us to
view the space of orderons as a metric space, by identifying orderons of cut-shift distance 0.

The measure used here is the Lebesgue measure, denoted by λ. We start with the formal
definition of an orderon.

I Definition 12 (orderon). An orderon is a measurable function W :
(
[0, 1]2

)2 → [0, 1] that
is symmetric in the sense that W ((x, a), (y, b)) = W ((y, b), (x, a)) for all (x, a), (y, b) ∈ [0, 1]2.
For the sake of brevity, we also denote W ((x, a), (y, b)) by W (v1, v2) for v1, v2 ∈ [0, 1]2.

We denote the set of all orderons by W.

I Definition 13 (measure-preserving bijection). A map g : [0, 1]2 → [0, 1]2 is measure pre-
serving if the pre-image g−1(X) is measurable for every measurable set X and λ(g−1(X)) =
λ(X). A measure preserving bijection is a measure preserving map whose inverse map exists
(and is also measure preserving).

Let F denote the collection of all measure preserving bijections from [0, 1]2 to itself. Given an
orderonW ∈ W and f ∈ F , we defineW f as the unique orderon satisfyingW f ((x, a), (y, b)) =
W (f(x, a), f(y, b)) for any x, a, y, b ∈ [0, 1]. Additionally, denote by π1 : [0, 1]2 → [0, 1] the
projection to the first coordinate, that is, π1(x, a) = x for any (x, a) ∈ [0, 1]2.

2.1 Cut-norm and ordered cut-norm
The definition of the (unordered) cut-norm for orderons is analogous to the corresponding
definition for graphons.

I Definition 14 (cut-norm). Given a symmetric measurable function W : ([0, 1]2)2 → R, we
define the cut-norm of W as

‖W‖�
def= sup

S,T⊆[0,1]2

∣∣∣∣∣
∫

(x,a)∈S (y,b)∈T
W ((x, a), (y, b))dxdadydb

∣∣∣∣∣ .
As we are working with ordered objects, the following definition of ordered cut-norm will
sometimes be of use (see the full version [9] for more details). Given v1, v2 ∈ [0, 1]2, we write
v1 ≤ v2 to denote that π1(v1) ≤ π1(v2). Let 1E be the indicator function for the event E.

I Definition 15 (ordered cut-norm). Let W : ([0, 1]2)2 → R be a symmetric measurable
function. The ordered cut norm of W is defined as

‖W‖�′ = sup
S,T⊆[0,1]2

∣∣∣∣∣
∫

(v1,v2)∈S×T
W (v1, v2)1v1≤v2dv1dv2

∣∣∣∣∣ .
We mention two important properties of the ordered-cut norm. The first is a standard
smoothing lemma, and the second is a relation between the ordered cut-norm and the
unordered cut-norm. The proof of both lemmas can be found in the full version [9].

I Lemma 16. Let W ∈ W and µ, ν : [0, 1]2 → [0, 1]. Then,∣∣∣∣∫
v1,v2

µ(v1)ν(v2)W (v1, v2)1v1≤v2dv1dv2

∣∣∣∣ ≤ ‖W‖�′ .
I Lemma 17. Let W : ([0, 1]2)2 → [−1, 1] be a symmetric measurable function. Then,

‖W‖2�′
4 ≤ ‖W‖� ≤ 2‖W‖�′ .
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2.2 The cut and shift distance
The next notion of distance is a central building block in this work. It can be viewed as a
locality preserving variant of the unordered cut distance, which accounts for order changes
resulting from applying a measure preserving function.

I Definition 18. Given two orderons W,U ∈ W we define the CS-distance (cut-norm+shift
distance) as:

d4(W,U) def= inf
f∈F

(
Shift(f) + ‖W − Uf‖�

)
,

where Shift(f) def= supx,a∈[0,1] |x− π1(f(x, a))|.

I Lemma 19. d4 is a pseudo-metric on the space of orderons.

For the proof, see the full version [9].

3 Block orderons and their density in W

Here we show that weighted ordered graphs are dense in the space of orderons coupled with
the cut-shift distance. To start, we have to define the orderon representation of a weighted
ordered graph, called a naive block orderon. A naive n-block orderon is defined as follows.

I Definition 20 (naive block orderon). Let m ∈ N. For z ∈ (0, 1], we denote Qn(z) = dnze;
we also set Qn(0) = 1. An m-block naive orderon is a function W :

(
[0, 1]2

)2 → [0, 1] that
can be written, for some weighted ordered graph G on n vertices, as

W ((x, a), (y, b)) = G(Qn(x), Qn(y)) , ∀x, a, y, b ∈ [0, 1] .

Following the above definition, we denote by WG the naive block orderon defined using G,
and view WG as the orderon “representing” G in W . Similarly to the unordered setting, this
representation is slightly ambiguous (but this will not affect us). Indeed, it is not hard to
verify that two weighted ordered graphs F and G satisfy WF = WG if and only if both F and
G are blowups of some weighted ordered graph H. Here, a weighted ordered graph G on nt
vertices is a t-blowup of a weighted ordered graph H on n vertices if G(x, y) = H(dx/te, dy/te)
for any x, y ∈ [nt].

We call an orderon U ∈ W a step function with at most k steps if there is a partition
R = {S1, . . . , Sk} of [0, 1]2 such that U is constant on every Si × Sj .
I Remark 21 (The name choices). The definition of a step function in the space of orderons
is the natural extension of a step function in graphons. Note that a naive block orderon
is a special case of a step function, where the steps Si are rectangular (this is why we call
these “block orderons”). The “naive” prefix refers to the fact that we do not make use of the
second coordinate in the partition.
For every W ∈ W and every partition P = {S1, . . . , Sk} of [0, 1]2 into measurable sets, let
WP : ([0, 1]2)2 → [0, 1] denote the step function obtained from W by replacing its value at
((x, a), (y, b)) ∈ Si × Sj by the average of W on Si × Sj . That is,

WP((x, a), (y, b)) = 1
λ(Si)λ(Sj)

∫
Si×Sj

W ((x′, a′), (y′, b′))dx′da′dy′db′ ,

Where i and j are the unique indices such that (x, a) ∈ Si and (y, b) ∈ Sj , respectively.
The next lemma is an extension of the regularity lemma to the setting of Hilbert spaces.
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I Lemma 22 ([29], Lemma 4.1). Let {Ki}i be arbitrary non-empty subsets of a Hilbert
space H. Then, for every ε > 0 and f ∈ H there is an m ≤ d1/ε2e and there are fi ∈ Ki
(1 ≤ i ≤ k) and γ1 . . . , γk ∈ R such that for every g ∈ Kk+1

|〈g, f − (γ1f1 + · · ·+ γkfk)〉| ≤ ε‖f‖‖g‖

The following is a direct consequence of Lemma 22.

I Lemma 23. For every W ∈ W and ε > 0 there is a step function U ∈ W with at most
d28/ε2e steps such that

‖W − U‖� ≤ ε .

Similarly to the graphon case, the step function U might not be a stepping of W . However,
it can be shown that these steppings are almost optimal.

B Claim 24. Let W ∈ W, let U be a step function, and let P denote the partition of [0, 1]2
into the steps of U . Then ‖W −WP‖� ≤ 2‖W − U‖�.

Using Lemma 23 and Claim 24 we can obtain the following lemma.

I Lemma 25. For every function W ∈ W and every ε > 0, there is a partition P of [0, 1]2
into at most 2d32/ε2e sets with positive measure such that ‖W −WP‖� ≤ ε.

Using the above lemma, we can impose stronger requirements on our partition. In particular,
we can show that there exists a partition of [0, 1]2 to sets of the same measure. Such a
partition is referred to as an equipartition. Also, we say that a partition P refines P ′, if P
can be obtained from P ′ by splitting each Pj ∈ P ′ into a finite number of sets (up to sets of
measure 0).

I Lemma 26. Fix some ε > 0. Let P be an equipartition of [0, 1]2 into k sets, and fix
q ≥ 2k2 · 2162/ε2 such that k divides q. Then, for any W ∈ W, there exists an equipartition
Q that refines P with q sets, such that ‖W −WQ‖� ≤ 8ε

9 + 2
k .

The next lemma is an (easier) variant of Lemma 26, in the sense that we refine two given
partitions. However, the resulting partition will not be an equipartition.

I Lemma 27. Fix some ε > 0 and d ∈ N. Let Id be an equipartition of [0, 1]2 into 2d sets,
P be a partition of [0, 1]2 into k sets, and fix q ≥ 2(k · 2d)2 · 2162/ε2 such that both k and 2d
divide q. Then, for any W ∈ W, there exists a partition Q that refines both P and Id with q
sets, such that ‖W −WQ‖� ≤ 8ε

9 + 2
k·2d .

Proof. Let P ′ = {P ′1, . . . , P ′p′} be a partition of [0, 1]2 into p′ ≤ 2162/ε2 sets such that
‖W − WP′‖� ≤ 4ε

9 , and let Q = {Q1, . . . , Qq} be a common refinement of the three
partitions P, P ′ and Id. Note that we do not repartition further to get an equipartition.
The rest of the proof is similar to the proof of Lemma 26. J

The following theorem shows that naive block orderons are a dense subset in W.

I Theorem 28. For every orderonW ∈ W and every ε > 0, there exist a naive c
ε4 2162/ε2-block

orderon W ′ (for some constant c > 0) such that

d4(W,W ′) ≤ ε .
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Proof. Fix ε > 0 and γ = γ(ε) > 0. We consider an interval equipartition J = {J1, . . . , J1/γ}
of [0, 1] (namely, for each j ∈ [ 1

γ − 1], Jj = [(j − 1) · γ, j · γ), and for j = 1/γ, Jj =
[(j − 1) · γ, j · γ]). In addition, let P = (Ji × Jj | i, j ∈ [1/γ]) be an equipartition of [0, 1]2.
By Lemma 26, there exists an equipartition Q of [0, 1]2 of size q = 2

γ4 2162/ε2 that refines P,
such that

‖W −WQ‖� ≤
8ε
9 + 2γ2 .

Next we construct a small shift measure preserving function f as follows. For every i ∈ [1/γ],
consider the collection of sets {Qik | k ∈ [γq]} in Q such that

(Ji × [0, 1]) ∩Q = {Qik | k ∈ [γq]} .

For each k ∈ [γq], the function f maps Qik to a rectangular set[
(i− 1)γ + (k − 1)

q
, (i− 1)γ + k

q

)
× [0, 1] .

Finally, for every i, j ∈ [q] and every (x, a), (y, b) ∈ Qi ×Qj , we define

W ′(f(x, a), f(y, b)) = WQ((x, a), (y, b))

Note that the resulting function W ′ obeys the definition of a naive q-block orderon and
Shift(f) ≤ γ. Therefore, setting γ = ε/100, we get that

d4(W,W ′) ≤ γ + 8ε
9 + 2γ2 ≤ ε/100 + 8ε/9 + 2ε2/1002 ≤ ε ,

as desired. J

4 Compactness of the space of orderons

In this section we prove Theorem 1. We construct a metric space W̃ from W with respect
to d4, by identifying W,U ∈ W with d4(W,U) = 0. Let W̃ be the image of W under this
identification. On W̃ the function d4 is a distance function.

We start with some definitions and notations. Let (Ω,M, λ) be some probability space,
P` =

{
P

(`)
i

}
i
a partition of Ω, and let β (P` : ·) : P` → [0, 1] be a function. For v ∈ Ω,

we slightly abuse notation and write β (P` : v) to denote β (P` : i) for v ∈ P (`)
i . With this

notation, observe that for every `∫
v∈Ω

β(P` : v)dv =
∑

i∈[|P`|]

λ
(
P

(`)
i

)
β(P` : i) . (2)

The following two results serve as useful tools to prove convergence. The first result is known
as the martingale convergence theorem, see e.g. Theorem A.12 in [27]. The second result is
an application of the martingale convergence theorem, useful for our purposes.

I Theorem 29 (see [27], Theorem A.12). Let {Xi}i∈N be a martingale satisfying
supn E[|Xn|] <∞. Then {Xi}i∈N is convergent with probability 1.

I Lemma 30. Let {P`}` be a sequence of partitions of Ω such that for every `, P`+1 refines
P`. Assume that for every ` and j ∈ [|P`|], the functions β(P` : ·) satisfy

λ
(
P

(`)
j

)
β (P` : j) =

∑
i∈[|P`+1|]

λ
(
P

(`)
j ∩ P

(`+1)
i

)
β(P`+1 : i). (3)

Then, there is a measurable function β : Ω→ [0, 1] such that β(v) = lim
`→∞

β(P` : v) for almost
all v ∈ Ω.
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Proof. Fix some ` ∈ N. Let X be a uniformly distributed random variable in Ω. Let
ψ` : Ω → [|P`|] be the function mapping each v ∈ Ω to its corresponding part in P` and
let Z` = β(P` : X). We now show that the sequence (Z1,Z2 . . .) is a martingale. That is,
EX∼Ω [Z`+1 | Z1, . . . ,Z`] = Z`, for every ` ∈ N. Note that by the fact that P`+1 refines P`,
ψ`(X) determines ψi(X) for every i < `. By definition, the value β(P` : X) is completely
determined by ψ`(X), and so it suffices to prove that Z` = EX∼Ω [Z`+1 | ψ`(X)]. By the
fact that for every j ∈ [|P`|] Equation (3) holds (and in particular holds for ψ`(X)), we can
conclude that the sequence (Z1,Z2, . . .) is a martingale.

Since Z` is bounded, we can invoke the martingale convergence theorem (Theorem 29)
and conclude that lim

`→∞
Z` exists with probability 1. That is, β(v) = lim

`→∞
β(P` : v) exists for

almost all v ∈ Ω. J

I Definition 31. Fix some d ∈ N and define Id =
{
I

(d)
1 , . . . , I

(d)
2d

}
so that for every t ∈

[
2d
]
,

I
(d)
t =

[
t−1
2d ,

t
2d

)
× [0, 1]. We refer to this partition as the strip partition of order d.

The next lemma states that for any orderon W we can get a sequence of partitions {P`}`,
with several properties that will be useful later on.

I Lemma 32. For any orderon W ∈ W and ` ∈ N, there is a sequence of partitions {P`}`
of [0, 1]2 with the following properties.
1. P` has g(`) many sets (for some monotone increasing g : N→ N).
2. For every `, Γ`

def= g(`)
g(`−1) ∈ N.

3. For every `′ ≥ `, the partition P`′ refines both P` and the strip partition I`′ . In particular,
for every j ∈ [g(`− 1)],

P
(`−1)
j =

j·Γ⋃̀
j′=(j−1)·Γ`+1

P
(`)
j′ .

4. W` = (W )P`
satisfies ‖W −W`‖� ≤ 4

g(`−1)2` .

Proof. We invoke Lemma 27 with the trivial partition {[0, 1]2} and the strip partition I1, to
get a partition Pn,1 with g(1) many sets such that Pn,1 refines I1 and ‖Wn −Wn,1‖� ≤ 1.
For ` > 1, we invoke Lemma 27 with I` and Pn,`−1 to get a partition Pn,` of size g(`) =
(g(`−1)·2`)2 ·2O(g(`−1)2) which refines both I` and Pn,`−1 such that ‖Wn−Wn,`‖� ≤ 4

g(`−1)2` .
In order to take care of divisibility, we add empty (zero measure) sets in order to satisfy
items (2) and (3). J

Consider a sequence of orderons {Wn}n∈N. For every n ∈ N, we use Lemma 32 to construct
a sequence of functions {Wn,`}` such that ‖Wn −Wn,`‖� is small. For each `, we would like
to approximate the shape of the limit partition resulting from taking n→∞. Inside each
strip I(`)

t , we consider the relative measure of the intersection of each set contained in I(`)
t ,

with a finer strip partition I`′ .

I Definition 33 (shape function). For fixed n ∈ N, let {Pn,`}` be partitions of [0, 1]2 with the
properties listed in Lemma 32. For every `′ > ` and I(`′)

t′ ∈ I`′ , we define α(n,`)
j (I`′ : t′) def=

2`′ · λ
(
P

(n,`)
j ∩ I(`′)

t′

)
to be the relative volume of the set P (n,`)

j in I(`′)
t′ .

For any `′ ≥ ` and I(`′)
t′ ∈ I`′ , by the compactness of [0, 1], we can select a subsequence

of {Wn}n∈N such that α(n,`)
j (I`′ : t′) converges for all j ∈ [g(`)] as n→∞. Let

α
(`)
j (I`′ : t′) def= lim

n→∞
α

(n,`)
j (I`′ : t′) .
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Next we define the limit density function.

I Definition 34 (density function). For fixed n ∈ N, let {Pn,`}` be partitions of [0, 1]2 with
the properties listed in Lemma 32. We let δ(n,`) (Pn,` × Pn,` : i, j) def= Wn,`((x, a), (y, b)) for
(x, a) ∈ P (n,`)

i and (y, b) ∈ P (n,`)
j .

By the compactness of [0, 1], we can select a subsequence of {Wn}n∈N such that δ(n,`)(Pn,`×
Pn,` : i, j) converge for all i, j ∈ [g(`)] as n→∞. Let

δ(`)(i, j) def= lim
n→∞

δ(n,`)(Pn,` × Pn,` : i, j) .

The following lemma states that by taking increasingly refined strip partitions I`′ , we obtain
a limit shape function for each set contained in any strip of I`.

I Lemma 35. For fixed ` and j ∈ [g(`)], there is a measurable function α(`)
j : [0, 1]→ [0, 1]

such that α(`)
j (x) = lim

`′→∞
α

(`)
j (I`′ : x) for almost all x ∈ [0, 1].

Proof. Fix n, ` and `′ > `. For every j ∈ [g(`)], by the definition of α(n,`)
j (I`′ : t′) and the

strip partition I`′

λ
(
I

(`′)
t′

)
· α(n,`)

j (I`′ : t′) = λ
(
P

(n,`)
j ∩ I(`′)

t′

)
∀t′ ∈

[
2`
]
.

On the other hand, since I`′+1 refines I`′ ,

λ
(
P

(n,`)
j ∩ I(`′)

t′

)
= λ

(
P

(n,`)
j ∩ I(`′+1)

2t′−1

)
+ λ

(
P

(n,`)
j ∩ I(`′+1)

2t′
)

= λ
(
I

(`′+1)
2t′−1

)
· α(n,`)

j (I`′+1 : 2t′ − 1) + λ
(
I

(`′+1)
2t′

)
· α(n,`)

j (I`′+1 : 2t′) .

Therefore, when n→∞ we get that,

λ
(
I

(`′)
t′

)
· α(`)

j (I`′ : t′) = λ
(
I

(`′+1)
2t′−1

)
· α(`)

j (I`′+1 : 2t′ − 1) + λ
(
I

(`′+1)
2t′

)
· α(`)

j (I`′+1 : 2t′) ,

which is exactly the condition in Equation (3). By applying Lemma 30 with the sequence of
strip partitions {I`′}`′ on α(`)

j the lemma follows. J

The next lemma asserts that the limit shape functions behave consistently.

I Lemma 36. For every ` and j ∈ [g(`− 1)],

α
(`−1)
j (x) =

j·Γ∑̀
j′=(j−1)·Γ`+1

α
(`)
j′ (x) ,

for almost all x ∈ [0, 1].

Proof. Fix some n, ` and `′ > `. By the additivity of the Lebesgue measure,

α
(n,`−1)
j (I`′ : x) =

j·Γ∑̀
j′=(j−1)·Γ`+1

α
(n,`)
j′ (I`′ : x) ∀x ∈ [0, 1] .

By the fact that for every j ∈ [g(` − 1)] and x ∈ [0, 1] the sequence
{
α

(n,`−1)
j (I`′ : x)

}
n

converges to α(`−1)
j (I`′ : x) as n→∞, we get that

α
(`−1)
j (I`′ : x) =

j·Γ∑̀
j′=(j−1)·Γ`+1

α
(`)
j′ (I`′ : x) ∀x ∈ [0, 1] .
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By applying Lemma 35 on each j′ ∈ [g(`)], where `′ →∞, we get that

α
(`−1)
j (x) =

j·Γ∑̀
j′=(j−1)·Γ`+1

α
(`)
j′ (x) ,

for almost all x ∈ [0, 1]. J

Using the sequence of
{
α

(`)
j

}
j
we define a limit partition A` =

{
A

(`)
1 , . . . , A

(`)
g(`)

}
of [0, 1]2 as

follows.

I Definition 37 (limit partition). For every ` ∈ N, let A` =
{
A

(`)
1 , . . . , A

(`)
g(`)

}
be a partition

of [0, 1]2 such that,

A
(`)
j =

(x, a) :
∑
i<j

α
(`)
i (x) ≤ a <

∑
i≤j

α
(`)
i (x)

 ∀j ∈ [g(`)] .

I Lemma 38. For any `, the partition A` has the following properties
1. A` refines the strip partition I`.
2. The partition A` refines A`−1.
3. For every j ∈ [g(`)], λ

(
A

(`)
j

)
= lim
n→∞

λ
(
P

(n,`)
j

)
.

Proof. The first item follows by the fact that each α(`)
j is non-zero inside only one strip.

By the definition of the sets A(`)
j and Lemma 36 it follows that for each j ∈ [g(`− 1)],

A
(`)
j′ ⊂ A

(`−1)
j for all (j − 1) · Γ` + 1 ≤ j′ ≤ j · Γ`,

and therefore,

A
(`−1)
j =

j·Γ⋃̀
j′=(j−1)·Γ`+1

A
(`)
j′ ,

which shows the second item. To prove the third item of the lemma, note that for every
n, ` and `′ > `,

lim
n→∞

λ
(
P

(n,`)
j

)
= lim
n→∞

∑
t′∈[2`′ ]

2−`
′
· α(n,`)

j (I`′ : t′)

=
∑

t′∈[2`′ ]
2−`

′
· α(`)

j (I`′ : t′) =
∫
x

α
(`)
j (I`′ : x)dx,

where the last equality follows from Equation (2). Finally, by taking `′ → ∞ and using
Lemma 35, we get

lim
n→∞

λ
(
P

(n,`)
j

)
=
∫
x

α
(`)
j (x)dx = λ

(
A

(`)
j

)
as desired. J

Using the definition of δ(`) and A`, we define a density function on the limit partition.
For (x, a) ∈ A(`)

i and (y, b) ∈ A(`)
j , let

δ (A` ×A` : (x, a), (y, b)) def= δ(`)(i, j) .
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I Lemma 39. For each ` ∈ N and i, j ∈ [g(`− 1)],
i·Γ∑̀

i′=(i−1)·Γ`+1

j·Γ∑̀
j′=(j−1)·Γ`+1

λ
(
A

(`)
i′

)
· λ
(
A

(`)
j′

)
δ (A` ×A` : i′, j′)

=λ
(
A

(`−1)
i

)
· λ
(
A

(`−1)
j

)
δ (A`−1 ×A`−1 : i, j) .

Proof. Fix n, ` and i, j ∈ [g(`− 1)]. By the definition of the partitions Pn,`, Pn,`−1 and the
density functions δ(n,`), δ(n,`−1)

i·Γ∑̀
i′=(i−1)·Γ`+1

j·Γ∑̀
j′=(j−1)·Γ`+1

λ
(
P

(n,`)
i′

)
· λ
(
P

(n,`)
j′

)
δ(n,`) (Pn,` × Pn,` : i′, j′)

=λ
(
P

(n,`−1)
i

)
· λ
(
P

(n,`−1)
j

)
δ (Pn,`−1 × Pn,`−1 : i, j) .

By taking the limit as n→∞ and using the third item of Lemma 38,
i·Γ∑̀

i′=(i−1)·Γ`+1

j·Γ∑̀
j′=(j−1)·Γ`+1

λ
(
A

(`)
i′

)
· λ
(
A

(`)
j′

)
δ (A` ×A` : i′, j′)

=λ
(
A

(`−1)
i

)
· λ
(
A

(`−1)
j

)
δ (A`−1 ×A`−1 : i, j) ,

which completes the proof. J

The next Lemma asserts that the natural density function of the limit partition is measurable.
It follows directly from the combination of Lemma 30 and Lemma 39.

I Lemma 40. There exists a measurable function δ : ([0, 1]2)2 → [0, 1] such that
δ((x, a), (y, a)) = lim

`→∞
δ (A` ×A` : (x, a), (y, b)) for almost all (x, a), (y, b) ∈ ([0, 1]2)2.

Finally, we are ready to prove Theorem 1.

Proof of Theorem 1. We start by giving a high-level overview of the proof. Let {Wn}n∈N
be a sequence of functions in W. We show that there exists a subsequence that has a limit
in W̃.

For every n ∈ N, we use Lemma 32 to construct a sequence of functions {Wn,`}` such
that ‖Wn−Wn,`‖� ≤ 4

g(`−1)2` . Then, for every fixed ` ∈ N, we find a subsequence of {Wn,`}
such that their corresponding α(n,`)

j and δ(n,`)(i, j) converge for all i, j ∈ [g(`)] (as n→∞).
For every `, we consider the partition A` (which by Definition 37, is determined by {α(`)

j }j)
and δ(`). Using A` and δ(`), we can the define the function U`, such that Wn,` → U` almost
everywhere as n→∞.

Given the sequence of functions {U`}`, we use Lemma 40 to show that {U`}` converges to
some U almost everywhere as `→∞ (where U is defined according the limit density function
δ). Finally we show that for any fixed ε > 0, there is n0(ε) such that for any n > n0(ε),
d4(Wn, U) ≤ ε.

Fix some ε > 0 and ξ(ε) > 0 which will be determined later. Consider the sequence
{U`}` which is defined by the partition A` and the density function δ(`). By Lemma 40, the
sequence {U`}` converges (as `→∞) almost everywhere to U , which is defined by the limit
density function δ. Therefore, we can find some ` > 1/ξ such that ‖U` − U‖1 ≤ ξ.

Fixing this `, we show that there is n0 such that d4(Wn,`, U`) ≤ 2−` + 3ξ for all n > n0.
We shall do it in two steps by defining an interim function W ′n,` and using the triangle
inequality.
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Recall that the function Wn,` is defined according to the partition Pn,` and the density
function δ(n,`). Let W ′n,` be the function defined according to the partition A` and the
density function δ(n,`). That is, for every (x, a) ∈ A(`)

i and (y, b) ∈ A(`)
j , W ′n,`((x, a), (y, b)) def=

δ(n,`) (Pn,` × Pn,` : i, j). By the third item of Lemma 38, for every j ∈ [g(`)], λ
(
A

(`)
j

)
=

lim
n→∞

λ
(
P

(n,`)
j

)
. Then, we can find n′0(`) such that for all n > n′0,

max
(
λ
(
A

(`)
j

)
, λ
(
P

(n,`)
j

))
−min

(
λ
(
A

(`)
j

)
, λ
(
P

(n,`)
j

))
≤ ξ

g(`) ∀j ∈ [g(`)] . (4)

We define a measure preserving map f from Wn,` to W ′n,` as follows. For every strip
I

(`)
t ∈ I`, we consider all the sets {P (n,`)

j1
. . . , P

(n,`)
jt
} in Pn,` such that

⋃jt

j′=j1
P

(n,`)
j′ =

I
(`)
t . Similarly, consider all the sets {A(`)

j1
. . . , A

(`)
jt
} in A` such that

⋃jt

j′=j1
A

(`)
j′ = I

(`)
t .

For every j′ ∈ {j1, . . . , jt}, we map an arbitrary subset S
(n,`)
j′ ⊆ P

(n,`)
j′ of measure

min
(
λ
(
A

(`)
j′

)
, λ
(
P

(n,`)
j′

))
to an arbitrary subset (with the same measure) of A(`)

j′ . Next,

we map I(`)
t \

⋃jt

j′=j1
S

(n,`)
j′ to I(`)

t \
⋃jt

j′=j1
f(S(n,`)

j′ ). Note that by (4) and the fact that Wn,`

and W ′n,` have the same density function δ(n,`), the functions Wn,` and W ′n,` disagree on a
set of measure at most 2ξ. Note that for every I(`)

t ∈ I`, the function f maps sets from Pn,`
that are contained in I(`)

t to sets in A` that are contained in I(`)
t , and thus, Shift(f) ≤ 2−`.

Therefore, for n > n′0, we get that d4(Wn,`,W
′
n,`) ≤ 2−` + 2ξ, and the first step is complete.

In the second step we bound d4(W ′n,`, U`). The two functions W ′n,` and U` are defined
on the same partition A`, however, their values are determined by the density functions δ(n,`)

and δ(`) respectively. By the fact that δ(n,`) converges to δ(`) (as n→∞), we can find n′′0(`)
such that for all n > n′′0 ,∣∣∣δ(n,`)(i, j)− δ(`)(i, j)

∣∣∣ ≤ ξ

g(`)2 ∀i, j ∈ [g(`)] .

Thus, for every n > n′′0 , it holds that d4(W ′n,`, U`) ≤ ‖W ′n,` − U`‖1 ≤ ξ. By choosing
n0 = max(n′0, n′′0) we get that

d4(Wn,`, U`) ≤ d4(Wn,`,W
′
n,`) + d4(W ′n,`, U`) ≤ 2−` + 3ξ .

By putting everything together we get that for every n > n0

d4(Wn, U) ≤ d4(Wn,Wn,`) + d4(Wn,`, U`) + d4(U`, U)
≤ ‖Wn −Wn,`‖� + d4(Wn,`, U`) + ‖U` − U‖1

≤ O
(

1
g(`− 1)2`

)
+ 2−` + 3ξ + ξ.

By our choice of ` > 1/ξ we get that

d4(Wn, U) ≤ 6ξ .

By choosing ξ = ε/6 the theorem follows. J
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