
FM-Index Reveals the Reverse Suffix Array
Arnab Ganguly
Department of Computer Science, University of Wisconsin - Whitewater, WI, USA
gangulya@uww.edu

Daniel Gibney
Department of Computer Science, University of Central Florida, Orlando, FL, USA
Daniel.Gibney@ucf.edu

Sahar Hooshmand
Department of Computer Science, University of Central Florida, Orlando, FL, USA
sahar@cs.ucf.edu

M. Oğuzhan Külekci
Informatics Institute, Istanbul Technical University, Turkey
kulekci@itu.edu.tr

Sharma V. Thankachan
Department of Computer Science, University of Central Florida, Orlando, FL, USA
sharma.thankachan@ucf.edu

Abstract

Given a text T [1, n] over an alphabet Σ of size σ, the suffix array of T stores the lexicographic order
of the suffixes of T . The suffix array needs Θ(n logn) bits of space compared to the n log σ bits
needed to store T itself. A major breakthrough [FM–Index, FOCS’00] in the last two decades has
been encoding the suffix array in near-optimal number of bits (≈ log σ bits per character). One can
decode a suffix array value using the FM-Index in logO(1) n time.

We study an extension of the problem in which we have to also decode the suffix array values of
the reverse text. This problem has numerous applications such as in approximate pattern matching
[Lam et al., BIBM’ 09]. Known approaches maintain the FM–Index of both the forward and the
reverse text which drives up the space occupancy to 2n log σ bits (plus lower order terms). This
brings in the natural question of whether we can decode the suffix array values of both the forward
and the reverse text, but by using n log σ bits (plus lower order terms). We answer this question
positively, and show that given the FM–Index of the forward text, we can decode the suffix array
value of the reverse text in near logarithmic average time. Additionally, our experimental results
are competitive when compared to the standard approach of maintaining the FM–Index for both
the forward and the reverse text. We believe that applications that require both the forward and
reverse text will benefit from our approach.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Data Structures, Suffix Trees, String Algorithms, Compression, Burrows–
Wheeler transform, FM-Index

Digital Object Identifier 10.4230/LIPIcs.CPM.2020.13

Supplementary Material https://github.com/oguzhankulekci/reverseSA

Funding This research is supported in part by the U.S. National Science Foundation under CCF-
1703489 and by the MGA-2019-42224 project of the Research Fund of Istanbul Technical University,
Turkey.

© Arnab Ganguly, Daniel Gibney, Sahar Hooshmand, M. Oğuzhan Külekci, and Sharma V.
Thankachan;
licensed under Creative Commons License CC-BY

31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020).
Editors: Inge Li Gørtz and Oren Weimann; Article No. 13; pp. 13:1–13:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gangulya@uww.edu
mailto:Daniel.Gibney@ucf.edu
mailto:sahar@cs.ucf.edu
mailto:kulekci@itu.edu.tr
mailto:sharma.thankachan@ucf.edu
https://doi.org/10.4230/LIPIcs.CPM.2020.13
https://github.com/oguzhankulekci/reverseSA
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 FM-Index Reveals the Reverse Suffix Array

1 Introduction

The suffix tree is arguably the central data structure in Stringology. Briefly speaking, the
suffix tree (ST) of a text T [1, n] over an alphabet

∑
= [σ] ∪ {$} is a compact trie over all

suffixes, where $ is the unique terminal symbol. Its linear time construction [10, 25, 32, 33]
and efficient tree-navigational features make it a versatile tool in the design of various string
matching algorithms. As a practical alternative, suffix arrays were introduced later. Probably
the greatest beneficiary of these data structures is bioinformatics; in fact, it is safe to say
that the field would not have been the same without them [1, 31]. We refer to Gusfield’s
book [18] for an exhaustive list of algorithms aided by suffix trees and suffix arrays.

In the era of data deluge, a negative aspect of suffix trees and suffix arrays is their
memory footprint of Θ(n) words or Θ(n logn) bits. In comparison, the text can be encoded
in just n log σ bits, or even lower space using compression techniques. To put this into
perspective, the suffix tree takes around 15 bytes per character and the suffix array takes
around 4 bytes per character for human genome, where σ is 4. Bridging the complexity gap
between data-space and index-space has been a challenging task. The advent of succinct
data structures [19] and compressed text indexing, where the goal is to have a data structure
in space close to the information theoretical minimum, presented us with new indexes like
the FM–Index by Ferragina and Manzini [12] and the Compressed Suffix Array (CSA)
by Grossi and Vitter [17]; these indexes encapsulate the functionalities of suffix array in
near-optimal number of bits (w.r.t. statistical entropy). While the CSA achieved this goal
via the structural properties of suffix trees/arrays, FM-Index relied on the Burrows-Wheeler
Transformation (BWT) of the text [7]. Moreover, the FM-index is a self-index, i.e., any
portion of the original text can be extracted from the index. These remarkable breakthroughs
saved orders of magnitude of space in practice and eventually became the foundations of
more advanced indexes [6, 11, 26, 27, 29, 30]. They are the backbone of many widely used
bioinformatics tools like the BWA [22], SOAP2 [24], Bowtie [21], etc.

Motivated by the fact that two human genomes differ in hardly 0.1% of their positions,
Belazzougui et al. [5] introduced the concept of Relative Compressed Indexes or Reusable-
Indexes, where the objective is to leverage the fact that a full text index (say an FM-index)
of a string T is already available, while indexing a “closely similar” string T ′. They showed
that the FM-index of T ′ can be encoded in O(δ) extra space (in words), assuming that the
FM-index of T is accessible. Here, δ denotes the edit distance between the ’s of T and T ′.
We study a special, but useful instance of this problem, in which T ′ is the reverse of T .

1.1 Relative Compression of the Reverse Suffix Array
Let T [1, n] = t1t2 . . . tn−1$ be a string over the alphabet Σ = [σ] ∪ {$}, where the character
$ appears exactly once. The reverse of T is the string

←−
T = tn−1tn−2 . . . t1$. We use the

following lexicographic order: $ < 1 < 2 < · · · < σ. We use T [i, j] (resp.,
←−
T [i, j]) to denote

the substring of T (resp.,
←−
T) from position i to j.

The suffix array SA[1, n] stores the starting positions of the lexicographically arranged
suffixes, i.e., SA[i] = j if the ith lexicographically smallest suffix is T [j, n]. The inverse suffix
array ISA[1, n] is defined as: ISA[j] = i if and only if SA[i] = j. Thus, the suffix array and
its inverse can be stored in Θ(n) words, i.e., Θ(n logn) bits. The BWT of T is an array
BWT[1, n] such that BWT[i] = T [SA[i]− 1], where T [0] = T [n]. An FM–Index is essentially
a combination of the BWT (with rank-select functionality support via a wavelet tree [16])
and a sampled (inverse) suffix array. Likewise, we can define the suffix array and the inverse
suffix array for the reverse text

←−
T , denoted by

←−
SA[1, n] and

←−
ISA[1, n], respectively.

A. Ganguly, D. Gibney, S. Hooshmand, M.O. Külekci, and S. V. Thankachan 13:3

I Problem 1. Can we decode
←−
SA[·] and

←−
ISA[·] values efficiently using the FM-index of T?

1.2 Motivation and Related Work
We observe that when the application mandates performing search both in forward and
reverse directions and we already have an index on the forward text, it is possible to calculate
the SA (or ISA) values of the reversed text on the fly efficiently by using the forward index,
which eliminates the overhead of reverse suffix array. Some text processing applications,
particularly in computational biology, are a good example of this case. For instance, the read
mapping problem [23] in bioinformatics aims to match a given read onto a reference genome.
Due to the DNA sequencing technology used, a read may originate from a forward strand as
well as the reverse strand of the DNA helix, and the direction is unknown at the time of
mapping. Thus, while the read can be aligned to the reference in its original form, its reverse
complement should also be considered as it could be sampled from the reverse strand. One
way to cope with this problem is to create two indexes [22], one for the forward and the other
for the reverse strand mapping, which obviously doubles the space. However, if the forward
index can be used to search in the reverse text, the space can be reduced significantly.

The practical applicability of our study addresses this case by showing that we can
compute the

←−
SA[i] and

←−
ISA[i] elements of the reverse text for any possible i, by solely using

the FM-Index constructed over the forward text. In a wider sense, any bioinformatics
application that makes use of a FM-Index while performing a pattern search on a target
sequence, can benefit from our solution to search on the reverse strand of the target without
any need of extra space. For example, Lam et al. [20] use both the forward and backward
BWT to find matches with k-mismatches allowed; our results eliminate the requirement of
the latter, thereby roughly halving the space. It is noteworthy that other relevant elements of
the reverse text, such as computing the longest common prefix of two suffixes and

←−−−
BWT-entry

can be generated from the
←−
SA[i] and

←−
ISA[i], becomes efficiently computable on the fly.

From a theoretical perspective, one can argue that pattern matching on the reverse text
is equivalent to matching the reverse of the pattern in the forward text. However, there
are applications, where one needs to find the range of suffixes in the suffix tree/array of
the reverse text that are prefixed by a pattern. A typical example is the classic solution
for approximate pattern matching with one error, which uses the suffix tree/array of the
text as well as that of the reverse of the text, along with an orthogonal range searching data
structure [2]. A similar approach is followed in most of the compressed indexes based on
LZ-compression, although the forward/reverse suffixes arrays/trees are sparse [3]. Another
use is in the (relative) compressed indexing of a collection of sequences that are highly
similar. Here, two full text indexes corresponding to the reference sequence and its reverse
are maintained. Other sequences are indexed in relative LZ compressed space w.r.t. the
reference sequence [9]. On a related note, Ohlebusch et al. [28] provided a procedure to
compute the BWT of the reverse text considering the strong correlation between T and

←−
T .

They compute the reverse BWT from the forward BWT, but in their process to compute the
kth entry of the BWT, one has to decode all entries from 1 to k − 1. Their technique can
also partially fill the reverse suffix array during this computation, where additional effort
is required to calculate the missing elements of

←−
SA. Our approach on the other hand can

directly compute any BWT entry for the reverse text. In another work, Belazzougui et al. [4]
showed how to represent the bi-directional BWT (i.e., forward and reverse BWT) so that one
can perform efficient navigation of the suffix tree in the forward and backward direction;
however, to search in the forward direction, their representation again needs space roughly
twice that of the FM–Index.

CPM 2020

13:4 FM-Index Reveals the Reverse Suffix Array

1.3 Our Results
The following is our main contribution in this paper.

I Theorem 2. Assuming the availability of the FM–Index of T [1, n] (where BWT is stored
in the form of a wavelet tree), we can compute the suffix array value r =

←−
SA[i] for any

given i (resp. inverse suffix array i =
←−
ISA[r] for any given r) of the reversed text ←−T in time

O(h · tWT + tSA). Here,
h is the length of the shortest unique substring that starts at position r in

←−
T ,

tWT is the time to support standard wavelet tree operations on the BWT, and
tSA is the time to decode a suffix array (or inverse suffix array) value using FM–Index.

In the most common implementations of the FM–Index, tWT = O(log σ) and tSA =
O(log1+ε n), where ε > 0 is arbitrarily small. On average h can be expected to be O(logσ n)
when the text is assumed to be independently and identically distributed over the alphabet
Σ [8]. Thus, we get the following corollary.

I Corollary 3. Given the FM–Index of T (where BWT is stored in the form of a wavelet
tree), we can decode a suffix array value or inverse suffix array value of the reversed text in
O(log1+ε n) expected time, where ε > 0 is arbitrarily small.

We complement the above results with experiments. Since Corollary 3 may not hold on
sequences with skewed symbol distributions such as natural language texts, we also include
such cases in the experiments to analyze the performance. The experiments show that
our results are competitive when compared to the standard approach of maintaining the
FM–Index for both the forward text and the reverse text.

2 Burrows-Wheeler Transform and FM–Index

Given an array A[1,m] over an alphabet Σ of size σ, by using the wavelet tree data structure
of size m log σ+o(m) bits, the following queries can be answered in O(log σ) time [12, 14, 16]:

A[i],
rankA(i, j, x) = the number of occurrences of x in A[i, j],
selectA(i, j, k, x) = the kth occurrence of x in A[i, j],
quantileA(i, j, k) = the kth smallest character in A[i, j],
rangeCountA(i, j, x, y) = the number of positions k ∈ [i, j] satisfying x ≤ A[k] ≤ y

Burrows and Wheeler [7] introduced a reversible transformation of the text, known as the
Burrows-Wheeler Transform (BWT). Let Tx be the circular suffix starting at position x,
i.e., T1 = T and Tx = T [x, n] ◦ T [1, x − 1], where x > 1 and ◦ denotes concatenation.
Then, the BWT of T is obtained as follows: first create a conceptual matrix M , such that
each row of M corresponds to a unique circular suffix, and then lexicographically sort all
rows. Thus the ith row in M is given by TSA[i]. The BWT is the last column L of M , i.e.,
BWT[i] = TSA[i][n] = T [SA[i] − 1], where T [0] = T [n] = $. The main component of the
FM–Index is the last-to-first column mapping (in short, LF mapping). For any i ∈ [1, n],
LF(i) is the row j in the matrix M where BWT[i] appears as the first character in TSA[j].
Specifically, LF(i) = ISA[SA[i]− 1], where SA[0] = SA[n].

To compute LF(i), we store a wavelet tree over BWT[1, n] in n log σ + o(n log σ) bits.
Let the number of occurrences of symbol i ∈ Σ \ {$} in T be fi. We store another array
C[1, σ] such that C[i] is the number of characters in T that are lexicographically smaller than
i. Specifically, C[1] = 1, and C[i] = 1 +

∑
j<i fj when i > 1. As a convention, we denote

A. Ganguly, D. Gibney, S. Hooshmand, M.O. Külekci, and S. V. Thankachan 13:5

C[$] = 0 and C[σ + 1] = n. Using these, we can compute LF(i) mapping in O(log σ) time as
LF(i) = C[BWT[i]] + rank(1, i,BWT[i]). We can decode SA[i] in O(log1+ε n) time by using
LF mapping and by maintaining a sampled-suffix array, which occupies o(n log σ) bits in
total. The idea is to explicitly store (i,SA[i]) pairs for all SA[i] ∈ {1, 1 + ∆, 1 + 2∆, . . . },
where ∆ = dlogσ n logε ne. The space needed is O(n∆ logn) = o(n log σ) bits. Then, SA[i] can
be obtained directly if the value has been explicitly stored; otherwise, it can be computed
via at most ∆ number of LF mapping operations in time O(∆ · log σ) = O(log1+ε n). We
can also decode ISA[·] using the sampled array in O(log1+ε n) time.

3 The Method

A substring T [a, b] of T is unique if a is the only occurrence of T [a, b] in T . Note that the
unique substring starting at a position a is always defined (since T ends in $). Moreover the
reverse of T [a, b] is also unique in

←−
T , and it ends at the position (n− a+ 1) in

←−
T .

3.1 Decoding
←−
SA[i] for a given i

Our algorithm hinges on the following main lemma.

I Lemma 4. Given the FM–Index of T (where the BWT is equipped with a wavelet tree),
we can compute the shortest unique substring

←−−
SUS in

←−
T starting at

←−
SA[i] in O(h · tWT) time,

where h = |
←−−
SUS|. We can then compute r =

←−
SA[i] in O(tSA) time.

Proof of Lemma 4. Our task is to compute r =
←−
SA[i] for some i, where h is the length of

the shortest unique substring
←−−
SUS =

←−
T [r] ◦

←−
T [r + 1] ◦ · · · ◦

←−
T [r + h − 1] of

←−
T starting at

position r. Let the range [αk, βk] be such that for any j ∈ [αk, βk] the suffix T [SA[j], n]
starts with the string

←−
T [r + k − 1] ◦

←−
T [r + k − 2] ◦ · · · ◦

←−
T [r]. Moreover, let qk be such that

←−
T [r + k] is the qkth smallest character in BWT[αk, βk].

Our idea is to successively compute the ranges [α1, β1], [α2, β2], . . . and q1, q2, . . . until
we get a range [αh, βh] that contains exactly one suffix, i.e., αh = βh. At each step,
we are going to decode the characters

←−
T [r],

←−
T [r + 1], . . . ,

←−
T [r + h − 1]. Clearly,

←−−
SUS =

←−
T [r]◦

←−
T [r+1]◦ · · ·◦

←−
T [r+h−1], and the starting position of SUS in T is SA[αh]. Therefore,

r = n− (SA[αh] + h− 1) = n− SA[αh]− h+ 1

We now present the details, starting with the following simple observation. The ith
lexicographic suffix of

←−
T starts with the same character as the ith lexicographic suffix of

T . Therefore,
←−
T [r] = T [SA[i]], which is essentially the ith smallest character in BWT[1, n],

and is given by quantile(1, n, i). Now, we find the range [α1, β1] in constant time using the
array C and

←−
T [r]. The next step is to decode the character

←−
T [r + 1], and compute the

range [α2, β2]. Note that
←−
T [r, n] is the (i− αr + 1)th lexicographically smallest suffix that

starts with
←−
T [r]. In other words,

←−
T [r + 1] is exactly the (i− αr + 1)th smallest character in

BWT[α1, β1]. Therefore q1 = (i− αr + 1).
The next steps are to decode the character

←−
T [r + 1] and compute [α2, β2], then decode

←−
T [r + 2] and compute [α3, β3], and so on. To do so, we rely on the following recursions.
From the definition,

←−
T [r + k] = quantile(αk, βk, qk) for any k ≥ 1. We now show how to

compute [αk+1, βk+1]. Let a be the smallest index ≥ αk and let b be the largest index ≤ βk,
such that BWT[a] = BWT[b] =

←−
T [r + k].

αk+1 = LF(a) = C[
←−
T [r + k]] + rank(1, αk − 1,

←−
T [r + k]) + 1

βk+1 = LF(b) = C[
←−
T [r + k]] + rank(1, βk,

←−
T [r + k])

CPM 2020

13:6 FM-Index Reveals the Reverse Suffix Array

10 3 6 4 7 1 9 2 5 8

G T T A A $ T C A A

!"

#$%
1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

G T A A T A A T C $

C T A A T A A T G $

1 2 3 4 5 6 7 8 9 10

%$

G T T A A $ T C A A
1 2 3 4 5 6 7 8 9 10

G T T A A $ T C A A
1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

!"

%$

2 A A T A A T G $ C T
3 A A T G $ C T A A T
4 A T A A T G $ C T A
5 A T G $ C T A A T A
6 C T A A T A A T G $
7 G $ C T A A T A A T
8 T A A T A A T G $ C

1 $ C T A A T A A T G

9 T A A T G $ C T A A
10 T G $ C T A A T A A

Σ = {$, ", +, ,, %}

0 1 5 6 7
0 1 2 3 4

$

10 3 6 4 7 9 1 2 5 8

AATAATC$
AATC$

ATAATC$ ATC$
C$

GTAATAATC$
TAATAATC$

TAATC$
TC$

C

[./, 0/] [.2, 02] [.3, 03]

Figure 1 Computing
←−
SA[5] = 7 via Lemma 4. Here

←−−
SUS = ATC, the suffix range [α1, β1] of A is

[2, 5], the suffix range [α2, β2] of TA is [8, 9], and the suffix range [α3, β3] of CTA is [6, 6].

Finally, qk+1 = (qk − d), where d is the number of characters in BWT[αk, βk] that are
lexicographically smaller than

←−
T [r + k], which can be computed via a rangeCount query.

We repeat this process until we reach [αh, βh], where αh = βh. This takes O(h · tWT) time.
Then r is decoded in additional O(tSA) time. This completes the proof of Lemma 4. J

Algorithm 1 for computing
←−
SA[i].

1: procedure Compute
←−
SA[i]

2: if (i = 1) then return n

3: α← 1, β ← n, q ← i, h← 0
4: while (α < β) do
5: c← quantile(α, β, q)
6: if (q 6= $) then q ← q − rangeCount(α, β, 1, c− 1)
7: if (α > 1) then α← C[c] + rank(α− 1, c) + 1
8: else α← C[c] + 1
9: β ← C[c] + rank(β, c)

10: h← h+ 1
11: return n− SA[α]− h+ 1

3.2 Decoding
←−
ISA[r] for a given r

To compute
←−
ISA[r] for some position r, the main intuition is as follows. Let γ1 be the number

of entries in BWT[1, n] that are lexicographically smaller than
←−
T [r]. Then,

←−
ISA[r] ≥ γ1 =

C[
←−
T [r]]. Now consider the range [α1, β1] such that for any j ∈ [α1, β1], the suffix T [SA[j], n]

starts with
←−
T [r]. Let γ2 be the number of entries in BWT[α1, β1] that are lexicographically

smaller than
←−
T [r+ 1]. Then,

←−
ISA[r] ≥ γ1 + γ2. Now, consider the range [α2, β2] such that for

A. Ganguly, D. Gibney, S. Hooshmand, M.O. Külekci, and S. V. Thankachan 13:7

any j ∈ [α2, β2], the suffix T [SA[j], n] starts with
←−
T [r + 1] ◦

←−
T [r]. Compute γ3. We repeat

the process until we reach the range [αh, βh] such that αh = βh. Clearly, the unique suffix
T [SA[αh], n] starts with SUS =

←−
T [r+h−1]◦

←−
T [r+h−2] · · · ◦

←−
T [r]. Since SUS is the smallest

unique prefix of
←−
T [r, n],

∑
s≤h γs is the number of suffixes in

←−
T that are lexicographically

smaller than
←−
T [r, n]. Thus,

←−
ISA[r] = 1 +

∑
s≤h γs. To compute the γ1, γ2, . . . , γh, we use

rangeCount operation. Computing the range [αk, βk] from [αk−1, βk−1] is achieved using the
array C and rank operation, as in proof of Lemma 4.

The algorithm has h = |SUS| rounds. Each round comprises of a constant number of
wavelet tree operations, and accesses to the C array. Additionally, in the kth round, we
have to decode the character

←−
T [r + k − 1]. To do this we use the following technique.

If r = n, then
←−
T [r] = $; so, assume otherwise. Note that

←−
T [r] = T [n − r + 1]; thus,

←−
T [r] = BWT[ISA[n− r + 2]] is found in O(tSA + tWT) time. Now,

←−
T [r + 1],

←−
T [r + 2], . . . are

given by BWT[LF(ISA[n− r+ 2])], BWT[LF(LF(ISA[n− r+ 2]))], . . . , in O(tWT) time for each
k. Hence, the time taken to compute

←−
ISA[r] is O(tSA + h · tWT). We have the following lemma.

I Lemma 5. Given the FM–Index of T (where the BWT is equipped with a wavelet tree), we
can compute i =

←−
ISA[r] in O(tSA + h · tWT) time, where h is the length of the shortest unique

substring of
←−
T that starts at r.

From Lemma 4 and Lemma 5, Theorem 2 is immediate. We outline Lemmas 4 and 5
formally in Algorithms 1 and 2 respectively. J

Algorithm 2 for computing
←−
ISA[r].

1: procedure Compute
←−
ISA[r]

2: if (r = n) then return 1
3: i← ISA[n− r + 2], c← BWT[i]
4: α← 1, β ← n, γ ← C[c]
5: while (α < β) do
6: if (α > 1) then α← C[c] + rank(α− 1, c) + 1
7: else α← C[c] + 1
8: β ← C[c] + rank(β, c)
9: i← LF(i), c← BWT[i]
10: if (c 6= $) then
11: γ ← γ + rangeCount(α, β, 1, c− 1)
12: return (1 + γ)

4 Experimental Results

The proposed algorithms eliminate the necessity to separately maintain the SA and ISA of the
reverse text

←−
T by computing

←−
SA[i] and

←−
ISA[i] directly from the FM-index of T. The natural

question is how the performance of the introduced method is compared with the regular
access via the FM-index that could be built on

←−
T . We have implemented the proposed

CPM 2020

13:8 FM-Index Reveals the Reverse Suffix Array

algorithms1 by using the sdsl-lite framework2 [15] and performed some tests on 50MB dna,
english, proteins, sources, and dblp.xml files from Pizza&Chili3 corpus to analyze the
practical performance of the introduced methods.

For each file, we have created the FM-index and measured the elapsed time of our
algorithm to retrieve

←−
SA[i] /

←−
ISA[i] for 100K randomly selected distinct i positions. We

benchmark that elapsed time against a regular SA /
←−
ISA access on the FM-index created over

←−
T , assuming that both forward and reverse FM-indices apply the same sampling strategy
with the same sampling frequency,

All operations in Algorithms 1 and 2, namely the quantile, rangeCount, rank queries,
backwards_search, and LF−mappings, are achieved in logarithmic time. The execution
times of the introduced algorithms are directly proportional to the number of times they
are repeated, which is determined by the length of the matching SUS. Hence, on positions
where the SUS is extremely long, the execution time will increase. It makes sense to define a
threshold such that the proposed methods stay compatible in practice. Therefore, for those
positions that have a SUS longer than this threshold, it may be preferred to pre–compute
and maintain their

←−
SA/
←−
ISA values offline. We suggest to set this threshold to the SA/ISA

sampling frequency used in the FM-index construction. While selecting the random positions
in the experiments, those with SUS lengths longer than the threshold are excluded. Table 1
lists the average SUS length of the 100K randomly selected positions with this restriction on
each file for each SA sampling frequency. The percentage of all positions that has a shorter
SUS than the corresponding sampling frequencies, are also presented.

Table 1 The average SUS lengths of the selected positions on each file per each sampling frequency,
and the percentage of all positions in that file, which has SUS length less than or equal to that
sampling frequency.

Average SUS Length Positions with SUS length ≤ Sampling Frequency
Sampling Frequency: 32 64 128 32 64 128

dblp.xml 19.04 29.34 41.37 58.57% 81.18% 96.81%
dna 15.22 16.46 17.11 96.91% 99.45% 99.89%

english 12.89 14.17 17.48 97.81% 99.05% 99.64%
protein 8.48 11.04 17.23 84.58% 87.80% 91.11%
sources 16.13 21.63 28.10 86.11% 93.36% 96.37%

The experiments were run on an iMac using MacOS 10.13.16 and equipped with 16GB
memory and 3.23 GHz Intel Core i5 processor. The software was compiled with the clang
LLVM compiler with full optimization (-O3). During the experiments, we considered the
sampling factors of 32, 64 and 128, along with both text-ordered and suffix-ordered
sampling strategies [13].

The shape of the wavelet tree (WT) representing the BWT may also be an important
factor in practical performance to achieve the queries we use in our algorithms. The
lex_ordered(i,j,c) function of the sdsl-lite platform, which returns the number of symbols
lexicographically smaller/greater than c in the (i,j) interval of a wavelet tree WT, is used in

1 The implementation is available online at https://github.com/oguzhankulekci/reverseSA.
2 The sdsl-lite framework is available online at https://github.com/simongog/sdsl-lite.
3 http://pizzachili.dcc.uchile.cl/index.html.

https://github.com/oguzhankulekci/reverseSA
https://github.com/simongog/sdsl-lite
http://pizzachili.dcc.uchile.cl/index.html

A. Ganguly, D. Gibney, S. Hooshmand, M.O. Külekci, and S. V. Thankachan 13:9

the implementation. This function requires the WT to support lexicographical ordering4, where
Hu-Tucker and balanced WTs are the only options, and thus, included in the experiments.
The Huffman–shaped WT is not used as it does not support the lexicographical ordering.

Figure 2 represents the comparison of the average elapsed time to retrieve the
←−
SA[i] with

Algorithm 1 versus the regular access via FM-index of
←−
T on english, dna, and protein

files5, whose alphabet sizes are respectively 239, 16, and 27. Total time to retrieve the
←−
SA[i]

via the Algorithm 1 is equal to the sum of the SUS extraction and SA access on forward
FM-index. It is observed that Hu-Tucker shaped WT provides better running time than the
balanced shaped and, text-order based sampling is superior to the suffix–order based.
The average SA access time on both forward and reverse directions are approximately equal.
Therefore, the expected latency in the proposed technique depends on the SUS-detection
phase. As shown in Table 1, due to the limitation applied in the selection process, the
average SUS length is increasing as the sampling frequency gets larger. This reflects on the
SUS extraction cost in Figure 2, where the SUS extraction time expands proportionally by
the increment of the average SUS length in each data type.

Table 2 The ratios representing the overall execution time of the Algorithms 1 and 2 divided by
the regular SA and ISA access on different sampling ratios and strategies.

←−
SA Benchmark (Algorithm 1)

←−
ISA Benchmark (Algorithm 2)

Sampling Strategy: Text-ordered Suffix-ordered Text-ordered Suffix-ordered
Sampling Frequency: 32 64 128 32 64 128 32 64 128 32 64 128

dblp.xml 7.0 5.2 3.5 5.0 3.4 2.5 9.5 6.2 3.9 9.4 6.0 3.8
dna 4.2 2.7 1.9 2.7 2.0 1.5 5.1 3.5 2.1 5.5 3.2 2.2

english 4.3 3.0 2.0 2.7 2.0 1.6 5.3 3.3 2.4 5.3 3.2 2.4
protein 2.7 2.1 1.7 1.9 1.6 1.4 3.4 2.5 2.0 3.4 2.5 2.1
sources 4.8 3.4 2.5 3.2 2.4 1.8 6.0 4.1 2.9 6.0 4.1 2.9

With the aim of having a better understanding about the running time of Algorithms 1
and 2, the elapsed time to access a random

←−
SA[i] (and

←−
ISA[i]), is divided by the time required

to achieve these queries with a regular FM-index constructed over
←−
T . Table 2 lists these ratios.

Since the proposed methods can retrieve the
←−
SA[i] and

←−
ISA[i] values without the FM-index on

←−
T , a slow-down is actually expected in the general paradigm of time-memory trade-off. On
dna sequences, Algorithm 1 is only 2.7, 2.0, and 1.5 times slower for corresponding sampling
frequencies, while using Suffix-ordered method. On protein sequences, the ratios are even
better to be 1.9, 1.6, and 1.4 respectively. We observed the worst results on dblp.xml file,
which is highly repetitive, and thus, the SUS extraction times have been observed to be
significantly longer. It’s reasonable to particularly underline the performance of our proposed
algorithm on biological sequences. Since, text operations on reverse direction are expected to
be a more common demand in terms of computational biology applications. The proposed
solution, especially the

←−
SA calculation, competes better in suffix-based SA sampling strategy.

This favours the practical applicability of our theoretical results since suffix-based approach
is the default choice in practice due to its space conservation. The

←−
ISA computations with

Algorithm 2 are generally observed to be ≈ 1.5 times worse than the
←−
SA computations, which

is due to the fact that retrieving ISA is nearly two times faster than accessing SA on an
FM-index with equal SA and ISA sampling ratios6.

4 Indicated as lex_ordered in http://simongog.github.io/assets/data/sdsl-cheatsheet.pdf
5 The sources and dblp results are not shown in Figure 2 to save space.
6 As also considered in sdsl-lite framework by setting the default ISA sampling frequency to two times
of the SA sampling frequency.

CPM 2020

http://simongog.github.io/assets/data/sdsl-cheatsheet.pdf

13:10 FM-Index Reveals the Reverse Suffix Array

Figure 2 Experimental analysis to compare the speed of the proposed method and the regular
SA access on the FM-index constructed over the reversed text. Y-axis represents the elapsed time in
microseconds and X-axis indicate the sampling frequencies. For the representation of the BWT, both
“balanced” and “Hu-Tucker” shaped wavelet trees that supports lexicographical ordering (which is
required by the methods we use in the algorithms), are considered.

The practical performance of the Algorithms 1 and 2 depends heavily on the length of
the corresponding SUS. Short SUSs are expected to be more common, where the method
will execute fast. On the other hand, even much less frequently observed longer SUS cases
degrade the overall average timings. Thus, for a deeper investigation, the diffraction in
Table 3 lists the percentages of the positions on which the elapsed time with the proposed
algorithm is ”X” times of the regular access on the FM–index constructed over

←−
T .

A. Ganguly, D. Gibney, S. Hooshmand, M.O. Külekci, and S. V. Thankachan 13:11

Table 3 Percentage of the positions on which the elapsed time with the proposed algorithms are
”X” times of the regular suffix array access on the FM–index constructed over

←−
T . For instance, on

protein sequence, Algorithm 1 answered faster than the regular FM-index over
←−
T on 21.88% of the

queries when the sampling factor is 32 with a suffix-ordered strategy. On 40.76% of the cases, the
speed is slower than the regular access, but not more than two times. Similarly, the speed is between
two and three times of the SA access with FM-index constructed over

←−
T on 21.17% of cases.

dna english protein
32 64 128 32 64 128 32 64 128

<1x 0.00 0.03 13.93 0.00 0.30 13.75 0.06 12.92 23.89
1x-2x 0.02 24.69 41.86 0.50 19.42 40.97 25.23 36.87 40.36
2x-3x 12.30 38.71 36.84 10.52 34.57 34.24 35.94 38.83 27.69
3x-4x 31.36 30.13 5.59 27.27 32.14 6.66 30.81 7.04 4.50
>4x 56.32 6.43 1.77 61.70 13.56 4.38 7.96 4.33 3.55

←−
SA results with text-ordered sampling strategy

<1x 0.03 20.03 41.50 1.37 19.28 38.31 21.88 37.95 45.77
1x-2x 36.46 42.96 34.16 35.97 41.83 33.26 40.76 34.19 31.24
2x-3x 33.49 20.70 14.27 31.76 21.04 15.83 21.17 16.29 14.00
3x-4x 16.22 9.13 5.84 16.10 9.87 7.22 9.28 6.90 5.46
>4x 13.81 7.18 4.24 14.80 7.98 5.38 6.91 4.67 3.53

←−
SA results with suffix-ordered sampling strategy

<1x 0.00 0.00 5.95 0.00 0.03 5.59 0.00 0.96 10.93
1x-2x 0.00 3.03 42.67 0.02 10.90 36.45 2.14 20.43 36.48
2x-3x 0.11 31.02 41.83 1.57 33.41 38.12 17.93 34.89 36.45
3x-4x 12.10 36.81 6.80 12.63 33.14 12.71 28.05 27.85 9.40
>4x 87.78 29.14 2.75 85.79 22.53 7.14 51.88 15.86 6.75

←−
ISA results with text-ordered sampling strategy

<1x 0.00 0.00 3.23 0.00 0.03 5.39 0.00 2.26 17.35
1x-2x 0.00 6.99 38.88 0.03 9.46 35.95 4.42 33.26 37.49
2x-3x 0.10 36.14 42.38 2.28 32.59 38.52 32.67 37.99 33.09
3x-4x 10.87 38.00 12.69 14.63 35.07 12.46 36.96 18.20 5.12
>4x 89.03 18.88 2.81 83.06 22.86 7.67 25.95 8.30 6.96

←−
ISA results with suffix-ordered sampling strategy

Actually, Algorithm 1 already includes a regular SA access in itself (line 11). So, it’s
quite surprising to observe that there are cases where Algorithm 1 executes faster than
the regular access. Such cases appear since the access time to suffix arrays on FM-indices
differs in forward and reverse directions. Figure 3, depicts this by sketching the number
of accessed symbols with Algorithm 1 and with a regular SA access on reverse FM-index.
Algorithm 1 starts with extracting the SUS which ends at k in forward direction (or starts
at k in reverse direction). Once X symbols long SUS is extracted, the algorithm calls the
regular SA access on the FM-index of T, which tells the location of this SUS on T . This
access requires backwards traversal of Y symbols on T via the FM-index, where Y is the
distance to the closest sampled point on the left of the SUS. The result of this access is then
used to compute the exact value of k on

←−
T . On the other hand, when an FM-index of

←−
T

CPM 2020

13:12 FM-Index Reveals the Reverse Suffix Array

(reverse FM-index) is available, Z symbols are subject to backwards traversal (as backwards
on
←−
T means left-to-right movement on the Figure 3). When the summation of “SA call

on forward FM-index” and the “SUS extraction cost” is smaller than the SA access on the
reverse FM-index (cost(X) + cost(Y) < cost(Z)), such interesting cases may occur.

Figure 3 Sketching the number of backwards traversal steps with Algorithm 1 (X + Y) versus
FM-index of

←−
T (Z). Dark circles represent the sampled positions in both directions.

5 Conclusion

We have presented two algorithms to compute the
←−
SA[i] and

←−
ISA[i] values by using the

FM-index of the forward text T . Experiencing slowdown in such space preserving approaches
is expected, and hence, we conducted experiments to observe this effect in practice. The
benchmark results stated in Table 2 reveals that the

←−
SA and

←−
ISA calculations are respectively 2-

3 times and 3-4 times slower on the average when compared to a regular FM-index constructed
over

←−
T with suffix-ordered sampling strategy. Particularly on biological sequences, such as

the dna and protein files, the ratios even improve better supporting their usage in practice.
Although the execution time of the introduced algorithms increase on sections of long repeats
of the input data (as the SUS extraction is the key of the proposed methods), the methods
respond quite fast in most cases as shown in Table 3 since the majority of the SUS lengths
are centric around shorter lengths. Another interesting application of the proposed methods
might be in fully-parallel constructing the BWT of the reverse text from the forward BWT,
which has been mentioned in the previous study of Ohlebusch et al. [28] with a solution
by computing

←−−−
BWT[k] under assumption that

←−−−
BWT[1],

←−−−
BWT[2], . . . ,

←−−−
BWT[k − 1] are already

available, and k iterates from 1 to n. They observed that some positions are independent
of the previous ones, which provide an opportunity in parallelizing the execution. However,
the level of parallelization here is bounded by the number of such independent start points.
Contrary to that, our solution in computing

←−
SA[i] does not introduce any prerequisites for

any i, and thus, is fully parallelizable that is scalable up to n processors.

References

1 Srinivas Aluru. Handbook of Computational Molecular Biology. Chapman & Hall/CRC, 2005.
2 Amihood Amir, Dmitry Keselman, Gad M. Landau, Moshe Lewenstein, Noa Lewenstein, and

Michael Rodeh. Text indexing and dictionary matching with one error. Journal of Algorithms,
37(2):309–325, 2000. doi:10.1006/jagm.2000.1104.

3 Diego Arroyuelo, Gonzalo Navarro, and Kunihiko Sadakane. Stronger Lempel–Ziv based com-
pressed text indexing. Algorithmica, 62(1-2):54–101, 2012. doi:10.1007/s00453-010-9443-8.

4 Djamal Belazzougui, Fabio Cunial, Juha Kärkkäinen, and Veli Mäkinen. Versatile succinct
representations of the bidirectional burrows-wheeler transform. In Algorithms - ESA 2013 - 21st
Annual European Symposium, pages 133–144, 2013. doi:10.1007/978-3-642-40450-4_12.

5 Djamal Belazzougui, Travis Gagie, Simon Gog, Giovanni Manzini, and Jouni Sirén. Relative
FM-indexes. In String Processing and Information Retrieval - 21st International Symposium,

https://doi.org/10.1006/jagm.2000.1104
https://doi.org/10.1007/s00453-010-9443-8
https://doi.org/10.1007/978-3-642-40450-4_12

A. Ganguly, D. Gibney, S. Hooshmand, M.O. Külekci, and S. V. Thankachan 13:13

SPIRE 2014, Ouro Preto, Brazil, October 20-22, 2014. Proceedings, pages 52–64, 2014.
doi:10.1007/978-3-319-11918-2_6.

6 Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de
Bruijn graphs. In Algorithms in Bioinformatics - 12th International Workshop, WABI 2012,
Ljubljana, Slovenia, September 10-12, 2012. Proceedings, pages 225–235, 2012. doi:10.1007/
978-3-642-33122-0_18.

7 M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical
report, Digital Equipment Corporation (now part of Hewlett-Packard, Palo Alto, CA), 1994.

8 Luc Devroye, Wojciech Szpankowski, and Bonita Rais. A note on the height of suffix trees.
SIAM J. Comput., 21(1):48–53, 1992. doi:10.1137/0221005.

9 Huy Hoang Do, Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. Fast relative
lempel-ziv self-index for similar sequences. Theor. Comput. Sci., 532:14–30, 2014. doi:
10.1016/j.tcs.2013.07.024.

10 Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA,
October 19-22, 1997, pages 137–143, 1997. doi:10.1109/SFCS.1997.646102.

11 Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan. Compressing and
indexing labeled trees, with applications. Journal of the ACM, 57(1), 2009. An extended abstract
appeared in FOCS 2005 under the title “Structuring labeled trees for optimal succinctness, and
beyond”. doi:10.1145/1613676.1613680.

12 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM,
52(4):552–581, 2005. An extended abstract appeared in FOCS 2000 under the title “Opportunistic
Data Structures with Applications”. doi:10.1145/1082036.1082039.

13 Paolo Ferragina, Jouni Sirén, and Rossano Venturini. Distribution-aware compressed full-text
indexes. Algorithmica, 67(4):529–546, 2013.

14 Travis Gagie, Simon J. Puglisi, and Andrew Turpin. Range quantile queries: Another virtue
of wavelet trees. In Proceedings of the 16th International Symposium on String Processing
and Information Retrieval, SPIRE ’09, pages 1–6, Berlin, Heidelberg, 2009. Springer-Verlag.
doi:10.1007/978-3-642-03784-9_1.

15 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug
and play with succinct data structures. In 13th International Symposium on Experimental
Algorithms, (SEA 2014), pages 326–337, 2014. doi:10.1007/978-3-319-07959-2_28.

16 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed
text indexes. In Proceedings of the Fourteenth Annual Symposium on Discrete Algorithms
ACM-SIAM, January 12-14, 2003, Baltimore, Maryland, USA., pages 841–850, 2003.

17 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005.
An extended abstract appeared in STOC 2000. doi:10.1137/S0097539702402354.

18 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997.

19 Guy Joseph Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, USA, 1988. AAI8918056.

20 Tak Wah Lam, Ruiqiang Li, Alan Tam, Simon C. K. Wong, Edward Wu, and Siu-Ming Yiu.
High throughput short read alignment via bi-directional BWT. In 2009 IEEE International
Conference on Bioinformatics and Biomedicine, BIBM 2009, Washington, DC, USA, November
1-4, 2009, Proceedings, pages 31–36, 2009. doi:10.1109/BIBM.2009.42.

21 Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and memory-
efficient alignment of short dna sequences to the human genome. Genome Biology, 10(3):R25,
2009.

22 Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows–Wheeler
transform. Bioinformatics, 25(14):1754–1760, 2009.

CPM 2020

https://doi.org/10.1007/978-3-319-11918-2_6
https://doi.org/10.1007/978-3-642-33122-0_18
https://doi.org/10.1007/978-3-642-33122-0_18
https://doi.org/10.1137/0221005
https://doi.org/10.1016/j.tcs.2013.07.024
https://doi.org/10.1016/j.tcs.2013.07.024
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1007/978-3-642-03784-9_1
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1109/BIBM.2009.42

13:14 FM-Index Reveals the Reverse Suffix Array

23 Heng Li and Nils Homer. A survey of sequence alignment algorithms for next-generation
sequencing. Briefings in Bioinformatics, 11(5):473–483, 2010.

24 Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu, Karsten Kristiansen, and
Jun Wang. Soap2: An improved ultrafast tool for short read alignment. Bioinformatics,
25(15):1966–1967, 2009.

25 Edward M. McCreight. A space-economical suffix tree construction algorithm. Journal of the
ACM, 23(2):262–272, 1976. doi:10.1145/321941.321946.

26 Martin D. Muggli, Alexander Bowe, Noelle R. Noyes, Paul S. Morley, Keith E. Belk, Robert
Raymond, Travis Gagie, Simon J. Puglisi, and Christina Boucher. Succinct colored de Bruijn
graphs. Bioinformatics, 33(20):3181–3187, 2017. doi:10.1093/bioinformatics/btx067.

27 Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Computing Surveys,
39(1), 2007. doi:10.1145/1216370.1216372.

28 Enno Ohlebusch, Timo Beller, and Mohamed I Abouelhoda. Computing the Burrows–Wheeler
transform of a string and its reverse in parallel. Journal of Discrete Algorithms, 25:21–33,
2014.

29 Alessio Orlandi and Rossano Venturini. Space-efficient substring occurrence estimation.
In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2011, June 12-16, 2011, Athens, Greece, pages 95–106, 2011.
doi:10.1145/1989284.1989300.

30 Thomas Schnattinger, Enno Ohlebusch, and Simon Gog. Bidirectional search in a string with
wavelet trees and bidirectional matching statistics. Information and Computation, 213:13–22,
2012. doi:10.1016/j.ic.2011.03.007.

31 Wing-Kin Sung. Algorithms in Bioinformatics: A Practical Introduction. Chapman &
Hall/CRC, 1st edition, 2009.

32 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
doi:10.1007/BF01206331.

33 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11, 1973. doi:
10.1109/SWAT.1973.13.

https://doi.org/10.1145/321941.321946
https://doi.org/10.1093/bioinformatics/btx067
https://doi.org/10.1145/1216370.1216372
https://doi.org/10.1145/1989284.1989300
https://doi.org/10.1016/j.ic.2011.03.007
https://doi.org/10.1007/BF01206331
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13

	Introduction
	Relative Compression of the Reverse Suffix Array
	Motivation and Related Work
	Our Results

	Burrows-Wheeler Transform and FM–Index
	The Method
	 Decoding overleftarrow{SA}[i] for a given i
	Decoding overleftarrow{ISA}[r] for a given r

	Experimental Results
	Conclusion

