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Abstract
Integrity constraints such as functional dependencies (FD), and multi-valued dependencies (MVD)
are fundamental in database schema design. Likewise, probabilistic conditional independences (CI)
are crucial for reasoning about multivariate probability distributions. The implication problem
studies whether a set of constraints (antecedents) implies another constraint (consequent), and
has been investigated in both the database and the AI literature, under the assumption that all
constraints hold exactly. However, many applications today consider constraints that hold only
approximately. In this paper we define an approximate implication as a linear inequality between
the degree of satisfaction of the antecedents and consequent, and we study the relaxation problem:
when does an exact implication relax to an approximate implication? We use information theory
to define the degree of satisfaction, and prove several results. First, we show that any implication
from a set of data dependencies (MVDs+FDs) can be relaxed to a simple linear inequality with
a factor at most quadratic in the number of variables; when the consequent is an FD, the factor
can be reduced to 1. Second, we prove that there exists an implication between CIs that does not
admit any relaxation; however, we prove that every implication between CIs relaxes “in the limit”.
Finally, we show that the implication problem for differential constraints in market basket analysis
also admits a relaxation with a factor equal to 1. Our results recover, and sometimes extend, several
previously known results about the implication problem: implication of MVDs can be checked by
considering only 2-tuple relations, and the implication of differential constraints for frequent item
sets can be checked by considering only databases containing a single transaction.
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1 Introduction

Traditionally, integrity constraints are assertions about a database that are stated by the
database administrator and enforced by the system during updates. However, in several
applications of Big Data, integrity constraints are discovered, or mined in a database instance,
as opposed to being asserted by the administrator [13, 34, 7, 3, 20]. For example, data cleaning
can be done by first learning conditional functional dependencies in some reference data, then
using them to identify inconsistencies in the test data [16, 7]. Causal reasoning [35, 28, 31] and
learning sum-of-product networks [29, 11, 26] repeatedly discover conditional independencies
in the data. Constraints also arise in many other domains, for example in the frequent itemset
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18:2 Integrity Constraints Revisited: From Exact to Approximate Implication

Table 1 Summary of results: relaxation bounds for the implication Σ⇒ τ for the sub-cones of
Γn under various restrictions. (1) General; no restrictions to either Σ or τ (2) Σ is a set of saturated
CIs and conditional entropies (i.e., MVDs+FDs in databases), and τ is a conditional entropy. (3) Σ
is a set of saturated CIs and conditional entropies, τ is any CI (4) Disjoint integrity constraints.
The terms in Σ are both saturated and disjoint (see definition 10 in Sec. 4), and τ is saturated.

Cone
Relaxation Bounds

General MVDs+FDs MVDs+FDs Disjoint MVDs+FDs
⇒ FD ⇒ any ⇒ MVD/FD

Γn (2n)! (Thm. 21) 1 (Thm. 6) n2

4 (Thm. 6) 1 (Thm. 11)
Γ∗n ∞ (Thm. 16) 1 (Thm. 6) n2

4 (Thm. 6) 1 (Thm. 11)
Pn 1 (Thm. 23) 1 (Thm. 23) 1 (Thm. 23) 1 (Thm. 23)

problem (FIS) [22, 5], or as measure based constraints [32] in applications like Dempster-Shafer
theory, possibilistic theory, and game theory (see discussion in [32]). In all these applications,
quite often the constraints are learned from the data, and are not required to hold exactly,
but it suffices if they hold only to a certain degree.

The classical implication problem asks whether a set of constraints, called the antecedents,
logically imply another constraint called the consequent. In this setting, both antecedents
and consequent are required to hold exactly, hence we refer to it as an exact implication
(EI). The database literature has extensively studied the EI problem for integrity constraints
and shown that the implication problem is decidable and axiomatizable for Functional
Dependencies (FDs) and Multivalued Dependencies (MVDs) [23, 19, 1, 2], and undecidable
for Embedded Multivalued Dependencies (EMVDs) [15]. The AI community has studied
extensively the EI problem for Conditional Independencies (CI), which are assertions of the
form X ⊥ Y | Z, stating that X is independent of Y conditioned on Z, and has shown that
the implication problem is decidable and axiomatizable for saturated CIs [12] (where XY Z =
all variables), but not finitely axiomatizable in general [36]. In the FIS problem, a constraint
like X → Y ∨ Z ∨ U means that every basket that contains X also contains at least one of
Y, Z, U , and the implication problem here is also decidable and axiomatizable [33].

The Relaxation Problem. In this paper we consider a new problem, called the relaxation
problem: if an exact implication holds, does an approximate implication hold too? For
example, suppose we prove that a given set of FDs implies another FD, but the input data
satisfies the antecedent FDs only to some degree: to what degree does the consequent FD
hold on the database? An approximate implication (AI) is an inequality that (numerically)
bounds the consequent by a linear combination of the antecedents. The relaxation problem
asks whether we can convert an EI into an AI. When relaxation holds, then any inference
system for proving exact implication, e.g. using a set of axioms or some algorithm, can be
used to infer an approximate implication.

In order to study the relaxation problem we need to measure the degree of satisfaction of
a constraint. In this paper we use Information Theory. This is the natural semantics for
modeling CIs of multivariate distributions, becauseX ⊥ Y | Z iff I(X;Y |Z) = 0 where I is the
conditional mutual information. FDs and MVDs are special cases of CIs [21, 8, 38] (reviewed
in Sec. 2.1), and thus they are naturally modeled using the information theoretic measure
I(X;Y |Z) or H(Y |X); in contrast, EMVDs do not appear to have a natural interpretation
using information theory, and we will not discuss them here. Several papers have argued
that information theory is a suitable tool to express integrity constraints [21, 8, 38, 24, 13].
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An exact implication (EI) becomes an assertion of the form (σ1 = 0 ∧ σ2 = 0 ∧ . . .)⇒
(τ = 0), while an approximate implication (AI) is a linear inequality τ ≤ λ ·

(∑
σi
)
, where

λ ≥ 0, and τ, σ1, σ2, . . . are information theoretic measures. We say that a class of constraints
can be relaxed if EI implies AI; we also say that it λ-relaxes, when we want to specify the
factor λ in the AI. We notice an AI always implies EI.

Results. We make several contributions, summarized in Table 1. We start by showing in
Sec. 4 that MVDs+FDs admit an n2/4-relaxation, where n is the number of variables. When
the consequent is an FD, we show that implication admits a 1-relaxation. Thus, whenever an
exact implication holds between MVD+FDs, a simple linear inequality also holds between
their associated information theoretic terms. In fact, we prove a stronger result that holds
for CIs in general, which implies the result for MVDs+FDs. In addition, under some mild
syntactic restrictions to the antecedents, we strengthen the result from a n2/4-relaxation to
a 1-relaxation, even when the consequent is an MVD; we leave open the question whether
1-relaxation exists in general.

So far, we have restricted ourselves to saturated or conditional CIs (which correspond to
MVDs or FDs). In Sec. 5 we remove any restrictions, and prove a negative result: there exists
an EI that does not relax (Eq. (9), based on an example in [17]). Nevertheless, we show that
every EI can be relaxed to an AI plus an error term, which can be made arbitrarily small,
at the cost of increasing the factor λ. This result implies that every EI can be proven from
some inequality, corresponding to the AI associated to the EI, plus an error term. In fact,
the EI in Eq. (9) follows from an inequality by Matúš [25], which is precisely the associated
AI plus an error term; our result shows that every EI can be proven in this style.

Next, we consider two restrictions, which are commonly used in model theory. First, in
Sec. 6 we restrict the class of axioms used to prove implications, to Shannon’s inequalities
(monotonicity and submodularity, reviewed in Sec. 2.2). In general, Shannon’s inequalities
are sound but incomplete for proving exact and approximate implications that hold for all
probability distributions [41, 42], but they are complete for deriving inequalities that hold
for all polymatroids [40]. We show that they are also complete for saturated+conditional
constraints (as we show in Sec 4), and for measure-based constraints [32] (Sec. 7). We
prove that every exact implication that holds for all polymatroids relaxes to an approximate
implication, and prove an upper bound λ ≤ (2n)!, and a lower bound λ ≥ 3; the exact bound
remains open. Second, in Sec. 7 we restrict the class of models used to check an implication,
to probability distributions with exactly 2 outcomes (tuples), each with probability 1/2; we
justify this shortly. We prove that, under this restriction, the implication problem has a
1-relaxation. Restricting the models leads to a complete but unsound method for checking
general implication, however this method is sound for saturated+conditional (as we show in
Sec 4) and is also sound for checking FIS constraints (as we show in Sec. 7).

Two Consequences. While our paper is focused on relaxation, our results have two con-
sequences for the exact implication problem. The first is a 2-tuple model property: an exact
implication, where the antecedents are saturated or conditional CIs, can be verified on
uniform probability distributions with 2 tuples. A similar result is known for MVD+FDs [30].
Geiger and Pearl [12], building on an earlier result by Fagin [10], prove that every set of CIs
has an Armstrong model: a discrete probability distribution that satisfies only the CIs and
their consequences, and no other CI. The Armstrong model is also called a global witness,
and, in general, can be arbitrarily large. Our result concerns a local witness: for any EI, if it
fails on some probability distribution, then it fails on a 2-tuple uniform distribution.

ICDT 2020



18:4 Integrity Constraints Revisited: From Exact to Approximate Implication

The second consequence concerns the equivalence between the implication problem of
saturated+conditional CIs with that of MVD+FDs. It is easy to check that the former
implies the latter (Sec. 2). Wong et al. [38] prove the other direction, relying on the sound
and complete axiomatization of MVDs [2]. Our 2-tuple model property implies the other
direction immediately.

2 Notation and Preliminaries

We denote by [n] = {1, 2, . . . , n}. If Ω = {X1, . . . , Xn} denotes a set of variables and
U, V ⊆ Ω, then we abbreviate the union U ∪ V with UV .

2.1 Integrity Constraints and Conditional Independence
A relation instance R over signature Ω = {X1, . . . , Xn} is a finite set of tuples with attributes
Ω. Let X,Y, Z ⊆ Ω. We say that the instance R satisfies the functional dependency (FD)
X → Y , and write R |= X → Y , if forall t1, t2 ∈ R, t1[X] = t2[X] implies t1[Y ] = t2[Y ].
We say that R satisfies the embedded multivalued dependency (EMVD) X � Y | Z, and
write R |= X � Y | Z, if for all t1, t2 ∈ R, t1[X] = t2[X] implies ∃t3 ∈ R such that
t1[XY ] = t3[XY ] and t2[XZ] = t3[XZ]. One can check that X � Y | Y iff X → Y . When
XY Z = Ω, then we call X � Y | Z a multivalued dependency, MVD; notice that X,Y, Z are
not necessarily disjoint [2].

A set of constraints Σ implies a constraint τ , in notation Σ⇒ τ , if for every instance R,
if R |= Σ then R |= τ . The implication problem has been extensively studied in the literature;
Beeri et al. [2] gave a complete axiomatization of FDs and MVDs, while Herrman [15] showed
that the implication problem for EMVDs is undecidable.

Recall that two discrete random variables X,Y are called independent if p(X = x, Y =
y) = p(X = x) · p(Y = y) for all outcomes x, y. Fix Ω = {X1, . . . , Xn} a set of n jointly
distributed discrete random variables with finite domains D1, . . . ,Dn, respectively; let p be
the probability mass. For α ⊆ [n], denote by Xα the joint random variable (Xi : i ∈ α)
with domain Dα

def=
∏
i∈αDi. We write p |= Xβ ⊥ Xγ |Xα when Xβ , Xγ are conditionally

independent given Xα; in the special case β = γ, then p |= Xβ ⊥ Xβ |Xα iff Xα functionally
determines1 Xβ , and we write p |= Xα → Xβ .

An assertion Y ⊥ Z|X is called a Conditional Independence statement, or a CI; this
includes X → Y as a special case. When XY Z = Ω we call it saturated, and when Z = ∅
we call it marginal. A set of CIs Σ implies a CI τ , in notation Σ⇒ τ , if every probability
distribution that satisfies Σ also satisfies τ . This implication problem has also been extensively
studied: Pearl and Paz [27] gave a sound but incomplete set of graphoid axioms, Studeny [36]
proved that no finite axiomatization exists, while Geiger and Pearl [12] gave a complete
axiomatization for saturated, and marginal CIs.

Lee [21] observed the following connection between database constraints and CIs. The
empirical distribution of a relation R is the uniform distribution over its tuples, in other
words, ∀t ∈ R, p(t) = 1/|R|. Then:

I Lemma 1. ([21]) Forall X,Y, Z ⊂ Ω such that XY Z = Ω.

R |=X → Y ⇔ p |= X → Y and R |=X � Y |Z ⇔ p |= (Y ⊥ Z|X) (1)

1 This means: ∀u ∈ Dα, if p(Xα = u) 6= 0 then ∃v ∈ Dβ s.t. p(Xβ = v|Xα = u) = 1, and v is unique.
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The lemma no longer holds for EMVDs, and for that reason we no longer consider EMVDs
in this paper. The lemma immediately implies that if Σ, τ are saturated and/or conditional
CIs and the implication Σ⇒ τ holds for all probability distributions, then the corresponding
implication holds in databases, where the CIs are interpreted as MVDs or FDs respectively.
Wong [38] gave a non-trivial proof for the other direction; we will give a much shorter proof
in Corollary 8.

2.2 Background on Information Theory
We adopt required notation from the literature on information theory [40, 6]. For n > 0, we
identify vectors in R2n with functions 2[n] → R.

Polymatroids. A function2 h ∈ R2n is called a polymatroid if h(∅) = 0 and satisfies the
following inequalities, called Shannon inequalities:
1. Monotonicity: h(A) ≤ h(B) for A ⊆ B
2. Submodularity: h(A ∪B) + h(A ∩B) ≤ h(A) + h(B) for all A,B ⊆ [n]
The set of polymatroids is denoted Γn ⊆ R2n , and forms a polyhedral cone (reviewed in
Sec. 5). For any polymatroid h and subsets A,B,C ⊆ [n], we define3

h(B|A) def= h(AB)− h(A) (2)

Ih(B;C|A) def= h(AB) + h(AC)− h(ABC)− h(A) (3)

Then, ∀h ∈ Γn, Ih(B;C|A) ≥ 0 and h(B|A) ≥ 0. The chain rule is the identity:

Ih(B;CD|A) = Ih(B;C|A) + Ih(B;D|AC) (4)

We call Ih(B;C|A) saturated if ABC = [n], and elemental if |B| = |C| = 1; h(B|A) is a
special case of Ih, because h(B|A) = Ih(B;B|A).

Entropic Functions. If X is a random variable with a finite domain D and probability mass
p, then H(X) denotes its entropy

H(X) def=
∑
x∈D

p(x) log 1
p(x) (5)

For a set of jointly distributed random variables Ω = {X1, . . . , Xn} we define the function
h : 2[n] → R as h(α) def= H(Xα); h is called an entropic function, or, with some abuse, an
entropy. The set of entropic functions is denoted Γ∗n. The quantities h(B|A) and Ih(B;C|A)
are called the conditional entropy and conditional mutual information respectively. The
conditional independence p |= B ⊥ C | A holds iff Ih(B;C|A) = 0, and similarly p |= A→ B

iff h(B|A) = 0, thus, entropy provides us with an alternative characterization of CIs.

2-Tuple Relations and Step functions. 2-tuple relations play a key role for the implication
problem of MVDs+FDs: if an implication fails, then there exists a witness consisting of only
two tuples [30]. We define a step function as the entropy of the empirical distribution of a

2 Most authors consider rather the space R2n−1, by dropping h(∅) because it is always 0.
3 Recall that AB denotes A ∪B.

ICDT 2020
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X1 X2 U1 U2 Pr
0 0 0 0 1/2
1 1 0 0 1/2

(a)

X Y Z Pr
0 0 0 1/4
0 1 1 1/4
1 0 1 1/4
1 1 0 1/4

(b)

A B C D Pr
0 0 0 0 1/2− ε
0 1 0 1 1/2− ε
1 0 1 0 ε

1 1 0 0 ε

(c)

Figure 1 Two relations and their empirical distribution (a),(b); a distribution from [17] (c).

2-tuple relation; R = {t1, t2}, t1 6= t2, and p(t1) = p(t2) = 1/2. We denote the step function
by hU , where U ( Ω is the set of attributes where t1, t2 agree. One can check:

hU (W ) =

0 if W ⊆ U
1 otherwise

(6)

If we set U = Ω in (6) then hΩ ≡ 0. Unless otherwise stated, in this paper we do not consider
hΩ to be a step function. Thus, there are 2n − 1 step functions and their set is denote Sn.
We will use the following fact extensively in this paper: IhU

(Y ;Z|X) = 1 if X ⊆ U and
Y, Z 6⊆ U , and IhU

(Y ;Z|X) = 0 otherwise.

I Example 2. Consider the relational instance in Fig. 1 (a). It’s entropy is the step
function hU1U2(W ), which is 0 for W ⊆ U1U2 and 1 otherwise. R |= X1 → X2 because
h(X2|X1) = h(X1X2) − h(X1) = 1 − 1 = 0, and R 6|= U1 → X1 because h(X1|U1) =
h(X1U1)− h(U1) = 1− 0 6= 0.

The relational instance R = {(x, y, z) | x+ y + z mod 2 = 0} in Fig. 1 (b) is called the
parity function. It’s entropy is h(X) = h(Y ) = h(Z) = 1, h(XY ) = h(XZ) = h(Y Z) =
h(XY Z) = 2. We have that R |= Y ⊥ Z because Ih(Y ;Z) = h(Y ) + h(Z) − h(Y Z) =
1 + 1− 2 = 0, but R 6|= Y ⊥ Z|X because Ih(Y ;Z|X) = 1 4.

2.3 Discussion
This paper studies exact and approximate implications, expressed as equalities or inequalities
of entropic functions h. For example, the augmentation axiom for MVDs [2] A� B|CD ⇒
AC � B|D is expressed as Ih(B;CD|A) = 0⇒ Ih(B;D|AC) = 0, which holds by the chain
rule (4). Thus, our golden standard is to prove that (in)equalities hold forall entropic functions,
Γ∗n. It is known that Γ∗n is not topologically closed [40]; its topological closure, cl (Γ∗n), is
called the set of almost entropic functions. If an inequality holds for all entropic functions
h ∈ Γ∗n, then, by continuity, it also holds for all almost entropic functions h ∈ cl (Γ∗n).
However, this observation does not extend to implications of (in)equalities; Kaced and
Romashchenko [17] gave an example of an exact implication that holds only for entropic
functions but fails for almost entropic functions. Thus, when discussing an EI, it matters
whether we assume that it holds for Γ∗n or for cl (Γ∗n). The only result in this paper where
this distinction matters are the two main theorems in Sec. 5: the negative result Theorem 16
holds for both Γ∗n and for cl (Γ∗n), while the positive result Theorem 17 holds only for cl (Γ∗n).
The results in Sec. 4 apply to any set of polymatroids K that contains all step functions, i.e.
Sn ⊆ K ⊆ Γn, thus they apply to both Γ∗n and cl (Γ∗n), while those in Sec 6 and Sec. 7 are
stated only for Γn and only for (the conic closure of) Sn respectively.

4 h(XY ) + h(XZ)− h(X)− h(XY Z) = 2 + 2− 1− 2 = 1
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3 Definition of the Relaxation Problem

We now formally define the relaxation problem. We fix a set of variables Ω = {X1, . . . , Xn},
and consider formulas of the form σ = (Y ;Z|X), where X,Y, Z ⊆ Ω, which we call a
conditional independence, CI; when Y = Z then we write it as X → Y and call it a
conditional. An implication is a formula Σ⇒ τ , where Σ is a set of CIs called antecedents
and τ is a CI called consequent. For a CI σ = (B;C|A), we define h(σ) def= Ih(B;C|A), for a
set of CIs Σ, we define h(Σ) def=

∑
σ∈Σ h(σ). Fix a set K s.t. Sn ⊆ K ⊆ Γn.

I Definition 3. The exact implication (EI) Σ⇒ τ holds in K, denoted K |=EI (Σ⇒ τ) if,
forall h ∈ K, h(Σ) = 0 implies h(τ) = 0. The λ-approximate implication (λ-AI) holds in K,
in notation K |= λ · h(Σ) ≥ h(τ), if ∀h ∈ K, λ · h(Σ) ≥ h(τ). The approximate implication
holds, in notation K |=AI (Σ⇒ τ), if there exist a λ ≥ 0 such that the λ-AI holds.

We will sometimes consider an equivalent definition for AI, as
∑
σ∈Σ λσh(σ) ≥ h(τ),

where λσ ≥ 0 are coefficients, one for each σ ∈ Σ; these two definitions are equivalent, by
taking λ = maxσ λσ. Notice that both EI and AI are preserved under subsets of K in the
sense that K1 ⊆ K2 and K2 |=x (Σ⇒ τ) implies K1 |=x (Σ⇒ τ), for x ∈ {EI,AI}.

AI always implies EI. Indeed, h(τ) ≤ λ · h(Σ) and h(Σ) = 0, implies h(τ) ≤ 0, which
further implies h(τ) = 0, because h(τ) ≥ 0 for every CI τ , and every polymatroid h. In this
paper we study the reverse.

I Definition 4. Let I be a syntactically-defined class of implication statements (Σ⇒ τ), and
let K ⊆ Γn. We say that I admits a relaxation in K if, every implication statement (Σ⇒ τ)
in I that holds exactly, also holds approximately: K |=EI Σ⇒ τ implies K |=AI Σ⇒ τ . We
say that I admits a λ-relaxation if every EI admits a λ-AI.

I Example 5. Let Σ={(A;B|∅), (A;C|B)} and τ=(A;C|∅). Since Ih(A;C|∅) ≤ Ih(A;B|∅)+
Ih(A;C|B) by the chain rule (4), then the exact implication Γn |=EI Σ⇒ τ admits a 1-AI.

4 Relaxation for FDs and MVDs: Always Possible

In this section we consider the implication problem where the antecedents are either saturated
CIs, or conditionals. This is a case of special interest in databases, because the constraints
correspond to MVDs, or FDs. Recall that a CI (B;C|A) is saturated if ABC = Ω (i.e., the
set of all attributes). Our main result in this section is:

I Theorem 6. Assume that each formula in Σ is either saturated, or a conditional, and let
τ be an arbitrary CI. Assume Sn |=EI Σ⇒ τ . Then:
1. Γn |= n2

4 h(Σ) ≥ h(τ).
2. If τ is a conditional, Z → X, then Γn |= h(Σ) ≥ h(τ).

Before we prove the theorem, we list two important consequences.

I Corollary 7. Let Σ consist of saturated CIs and/or conditionals, and let τ be any CI. Then
Sn |= Σ⇒EI τ implies Γn |= Σ⇒EI τ

Proof. If Sn |= Σ⇒EI τ then ∀h ∈ Γn, h(τ) ≤ n2

4 h(Σ), thus h(Σ) = 0 implies h(τ) = 0. J

The corollary has an immediate application to the inference problem in graphical mod-
els [12]. There, the problem is to check if every probability distribution that satisfies all CIs
in Σ also satisfies the CI τ ; we have seen that this is equivalent to Γ∗n |=EI Σ ⇒ τ . The

ICDT 2020



18:8 Integrity Constraints Revisited: From Exact to Approximate Implication

corollary states that it is enough that this implication holds on all of the uniform 2-tuple
distributions, i.e. Sn |= Σ ⇒EI τ , because this implies the (even stronger!) statement
Γn |= Σ⇒EI τ . Decidability was already known: Geiger and Pearl [12] proved that the set
of graphoid axioms is sound and complete for the case when both Σ and τ are saturated,
while Gyssens et al. [14] improve this by dropping any restrictions on τ .

The second consequence is the following:

I Corollary 8. Let Σ, τ consist of saturated CIs and/or conditionals. Then the following two
statements are equivalent:
1. The implication Σ⇒ τ holds, where we interpret Σ, τ as MVDs and/or FDs.
2. Γn |=EI Σ⇒ τ .

Proof. We have shown right after Lemma 1 that (2) implies (1). For the opposite direction,
by Th. 6, we need only check Sn |=EI Σ ⇒ τ , which holds because on every uniform
probability distribution a saturated CI holds iff the corresponding MVD holds, and similarly
for conditionals and FDs. Since the 2-tuple relation satisfies the implication for MVDs+FDs,
it also satisfies the implication for CIs, proving the claim. J

Wong et al. [38] have proven that the implication for MVDs is equivalent to that of the
corresponding saturated CIs (called there BMVD); they did not consider FDs. For the proof
in the hard direction, they use the sound and complete axiomatization of MVDs in [2]. In
contrast, our proof is independent of any axiomatic system, and is also much shorter. Finally,
we notice that the corollary also implies that, in order to check an implication between
MVDs and/or FDs, it suffices to check it on all 2-tuple databases: indeed, this is equivalent
to checking Sn |=EI Σ ⇒ τ , because this implies Item (2), which in turn implies item (1).
This rather surprising fact was first proven in [30].

We now turn to the proof of Theorem 6. Before proceeding, we note that we can assume
w.l.o.g. that Σ consists only of saturated CIs. Indeed, if Σ contains a non-saturated term,
then by assumption it is a conditional, X → Y , and we will replace it with two saturated
terms: (Y ;Z|X) and XZ → Y , where Z = Ω \XY . Denoting Σ′ the new set of formulas,
we have h(Σ) = h(Σ′), because h(Y |X) = Ih(Y ;Z|X) + h(Y |XZ). Thus, we will assume
w.l.o.g. that all formulas in Σ are saturated.

Theorem 6 follows from the next result, which is also of independent interest. We say
that a CI (X;Y |Z) is elemental if |X| = |Y | = 1. We say that σ covers τ if all variables in τ
are contained in σ; for example σ = (abc; d|e) covers τ = (cd; be). Then:

I Theorem 9. Let τ be an elemental CI, and suppose each formula in Σ covers τ . Then
Sn |=EI (Σ⇒ τ) implies Γn |= h(τ) ≤ h(Σ).

Notice that this result immediately implies Item (1) of Theorem 6, because every τ =
(Y ;Z|X) can be written as a sum of |Y | · |Z| ≤ n2/4 elemental terms (by the chain rule). In
what follows we prove Theorem 9, then use it to prove item (2) of Theorem 6.

Finally, we consider whether (1) of Theorem 6 can be strengthened to a 1-relaxation; we
give in Th. 11 below a sufficient condition, whose proof uses the notion of I-measure [40] and
is included in the full paper [18], and leave open the question whether 1-relaxation holds in
general for implications where the antecedents are saturated CIs and conditionals.

I Definition 10. We say that two CIs (X;Y |Z) and (A;B|C) are disjoint if at least one of
the following four conditions holds: (1) X ⊆ C, (2) Y ⊆ C, (3) A ⊆ Z, or (4) B ⊆ Z.

If τ = (X;Y |Z) and σ = (A;B|C) are disjoint, then for any step function hW , it cannot be
the case that both hW (τ) 6= 0 and hW (σ) 6= 0. Indeed, if such W exists, then Z,C ⊆W and,
assuming (1) X ⊆ C (the other three cases are similar), we have ZX ⊆W thus hW (τ) = 0.
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I Theorem 11. Let Σ be a set of saturated, pairwise disjoint CI terms (Def. 10), and τ be
a saturated mutual information. Then, Sn |=EI (Σ⇒ τ) implies Γn |= h(τ) ≤ h(Σ).

4.1 Proof of Theorem 9
The following holds by the chain rule (proof in the appendix), and will be used later on.

I Lemma 12. Let σ = (A;B|C) and τ = (X;Y |Z) be CIs such that X ⊆ A, Y ⊆ B, C ⊆ Z
and Z ⊆ ABC. Then, Γn |= h(τ) ≤ h(σ).

We now prove theorem 9. We use lower case for single variables, thus τ = (x; y|Z) because
it is elemental. We may assume w.l.o.g. x, y 6∈ Z (otherwise Ih(x; y|Z) = 0 and the lemma
holds trivially). The deficit of an elemental CI τ = (x; y|Z) is the quantity |Ω − Z|. We
prove by induction on the deficit of τ that Sn |=EI Σ⇒ τ implies Γn |= h(τ) ≤ h(Σ).

Assume Sn |=EI Σ ⇒ τ , and consider the step function at Z. Since hZ(τ) = 1, there
exists σ ∈ Σ, σ = (A;B|C), such that hZ(σ) = 1; this means that C ⊆ Z, and A,B 6⊆ Z. In
particular x, y 6∈ C, therefore x, y ∈ AB, because σ covers τ . If x ∈ A and y ∈ B (or vice
versa), then Γn |= h(τ) ≤ h(σ) by Lemma 12, proving the theorem. Therefore we assume
w.l.o.g. that x, y ∈ A and none is in B. Furthermore, since B 6⊆ Z, there exists u ∈ B − Z.

Base case: τ is saturated. Then u 6∈ xyZ, contradicting the assumption that τ is saturated;
in other words, in the base case, it is the case that x ∈ A and y ∈ B.

Step: Let ZA = Z∩A, and ZB = Z∩B. Since C ⊆ Z, and σ = (A;B|C) covers τ , then
Z = ZAZBC. We also write A = xyA′ZA (since x, y ∈ A) and B = uB′ZB. So, we have
that σ = (A;B|C) = (xyA′ZA;uB′ZB |C), and we use the chain rule to define σ1, σ2:

h(σ) =Ih(xyA′ZA;uB′ZB |C) = Ih(xyA′ZA;uZB |C︸ ︷︷ ︸
def= σ1

) + Ih(xyA′ZA;B′|uCZB︸ ︷︷ ︸
def= σ2

)

We also partition Σ s.t. h(Σ) = h(σ1) + h(Σ2), where Σ2
def= (Σ \ {σ}) ∪ {σ2}.

Next, define τ ′ def= (x;uy|Z) and use the chain rule to define τ1, τ2:

h(x; y|Z︸ ︷︷ ︸
τ

) ≤ Ih(x;uy|Z︸ ︷︷ ︸
τ ′

) = Ih(x;u|Z︸ ︷︷ ︸
def= τ1

) + Ih(x; y|uZ︸ ︷︷ ︸
def= τ2

) (7)

By Lemma 12, Γn |= h(σ1) ≥ h(τ1). We will prove: Sn |=EI Σ2 ⇒ τ2. This implies the
theorem, because Σ2 is saturated, and by the induction hypothesis Γn |= h(Σ2) ≥ h(τ2)
(since the deficit of τ2 is one less than that of τ), and the theorem follows from h(Σ) =
h(σ1) + h(Σ2) ≥ h(τ1) + h(τ2) = h(τ ′) ≥ h(τ). It remains to prove Sn |=EI Σ2 ⇒ τ2, and we
start with a weaker claim:

B Claim 13. Sn |=EI Σ⇒ τ2.

Proof. By Lemma 12 we have that h(σ) = Ih(xyA′ZA;uB′ZB |C) ≥ Ih(xy;u|Z) =
Ih(y;u|Z) + Ih(x;u|yZ). Therefore, Σ ⇒ (x;u|yZ). Since Σ ⇒ (x; y|Z), then by the
chain rule we have that Σ⇒ (x;uy|Z) = τ ′, and the claim follows from (7). C

Finally, we prove Sn |=EI Σ2 ⇒ τ2. Assume otherwise, and let hW be a step function such
that hW (τ2) = IhW

(x; y|uZ) = 1, and hW (Σ2) = 0. This means that uZ ⊆ W . Therefore
uZB ⊆W , implying IhW

(xyA′ZA;uZB |C) = hW (σ1) = 0 (because uZBC ⊆ uZ). Therefore,
hW (Σ) = hW (σ1) + hW (Σ2) = 0, contradicting the fact that Sn |=EI Σ⇒ τ2.
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4.2 Proof of Theorem 6 Item 2
I Lemma 14. Suppose Sn |=EI Σ⇒ τ , where τ = (X;Y |Z). Let σ ∈ Σ such that τ, σ are
disjoint (Def. 10). Then: Sn |=EI

(
Σ\{σ}

)
⇒ τ.

Proof. Let Σ′ def= Σ \ {σ}. Assume by contradiction that there exists a step function hW
such that hW (Σ′) = 0 and hW (τ) = 1. Since σ, τ are disjoint, hW (σ) = 0. Then hW (Σ) = 0,
contradicting the assumption Sn |=EI Σ⇒ τ . J

I Lemma 15. Let Σ be a set of saturated CIs s.t. Sn |=EI Σ⇒ τ . Suppose τ = (Z → uX)
(which, recall, is a shorthand for (uX;uX|Z)), and define τ1 = (Z → u), τ2 = (uZ → X);
thus, h(τ) = h(τ1)+h(τ2). Then there exists Σ1 and Σ2 such that: (1) h(Σ) = h(Σ1)+h(Σ2);
we say that Σ1,Σ2 form a parition of Σ. (2) Σ1 covers τ1 and Sn |=EI Σ1 ⇒ τ1. (3) Σ2 is
saturated and Sn |= Σ2 ⇒ τ2.

Proof. We partition Σ into Σ1 and Σ2 as follows. For every σ = (A;B|C) ∈ Σ, if u ∈ C then
we place σ in Σ2. Otherwise, assume w.l.o.g that u ∈ A, and we write A = uAZAXA

′ where
AZ = A ∩ Z, AX = A ∩X, and A′ = A\{uAZAX}. We use the chain rule to define σ1, σ2:

Ih(A;B|C) = Ih(uAZAXA′;B|C) = Ih(uAZ ;B|C︸ ︷︷ ︸
def= σ1

) + I(AXA′;B|uAZC︸ ︷︷ ︸
def= σ2

) (8)

We place σ1 in Σ1, and σ2 in Σ2. We observe that σ1 covers τ1 (because Z = AZBZCZ ⊆
AZBC) and σ2 is saturated. Furthermore, h(Σ1) + h(Σ2) = h(Σ). We prove Σ1 |=EI τ1.
By assumption, Σ |=EI τ1 = (Z → u). Let any σ2 = (A;B|C) ∈ Σ2; since u ∈ C, by
Lemma 14 we can remove it, obtaining Σ \ {σ2} |=EI τ1; repeating this process proves
Σ1 |=EI τ1. Finally, we prove Σ2 |=EI τ2. By assumption, Σ |=EI τ2 = (uZ → X). Let
any σ1 = (uAZ ;B|C) ∈ Σ1; since uAZ ⊆ uZ, by Lemma 14 we can remove it, obtaining
Σ \ {σ1} |=EI τ2; repeating this process proves Σ2 |=EI τ2. J

We now complete the proof of Theorem 6 item 2. Let τ = (Z → X), and Σ be saturated.
We show, by induction on |X|, that if Sn |=EI Σ⇒ τ then Γn |= h(τ) ≤ h(Σ). If |X| = 1,
then X = {x}, h(x|Z) = I(x;x|Z) is elemental, and the claim follows from Th. 9. Otherwise,
let u be any variable in X, write τ = (Z → uX ′), and apply Lemma 15 to τ1 = (Z → u),
τ2 = (Zu→ X ′), which gives us a partition of Σ into Σ1,Σ2. On one hand, Sn |=EI Σ1 ⇒ τ1,
and from Th. 9 we derive h(τ1) ≤ h(Σ1) (because τ1 is elemental, and covered by Σ1);
on the other hand Sn |=EI Σ2 ⇒ τ2 where Σ2 is saturated, which implies, by induction,
h(τ2) ≤ h(Σ2). The result follows from h(τ) = h(τ1) + h(τ2) ≤ h(Σ1) + h(Σ2) = h(Σ),
completing the proof.

5 Relaxation for General CIs: Sometimes Impossible

We consider the relaxation problem for arbitrary Conditional Independence statements.
Recall that our golden standard is to check (in)equalities forall entropic functions, h ∈ Γ∗n.
As we saw, for MVD+FDs, these (in)equalities coincide with those satisfied by Sn, and with
those satisfied by Γn. In general, however, they differ. We start with an impossibility result,
then prove that relaxation with an arbitrarily small error term always exists. Both results
are for the topological closure, cl (Γ∗n). This makes the negative result stronger, but the
positive result weaker; it is unlikely for the positive result to hold for Γ∗n, see [17, Sec.V.(A)]
and Appendix A.
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I Theorem 16. There exists Σ, τ with four variables, such that cl (Γ∗4) |=EI (Σ⇒ τ) and
cl (Γ∗4) 6|=AI (Σ⇒ τ).

For the proof, we adapt an example by Kaced and Romashchenko [17, Inequality (I5′)
and Claim 5], built upon an earlier example by Matúš [25]. Let Σ and τ be the following:

Σ ={(C;D|A), (C;D|B), (A;B), (B;C|D)} τ =(C;D) (9)

We first prove that, for any λ ≥ 0, there exists an entropic function h such that:

Ih(C;D) >λ · (Ih(C;D|A) + Ih(C;D|B) + Ih(A;B) + Ih(B;C|D)) (10)

Indeed, consider the distribution shown in Fig. 1 (c) (from [17]). By direct calculation,
Ih(C;D) = ε + O(ε2) = Ω(ε), while Ih(C;D|A) = Ih(C;D|B) = Ih(A;B) = 0 and
Ih(B;C|D) = O(ε2) and we obtain Eq.(10) by choosing ε small enough. Next, we prove
cl (Γ∗n) |=EI (Σ⇒ τ). Matúš [25] proved the following5 ∀h ∈ Γ∗n and ∀k ∈ N:

Ih(C;D) ≤Ih(C;D|A) + k+3
2 Ih(C;D|B) + Ih(A;B) + k−1

2 Ih(B;C|D) + 1
k
Ih(B;D|C) (11)

The inequality obviously holds for cl (Γ∗n) too. The EI follows by taking k →∞. Inequality
(11) is almost a relaxation of the implication (9): the only extra term is the last term, which
can be made arbitrarily small by increasing k. Our second result generalizes this:

I Theorem 17. Let Σ, τ be arbitrary CIs, and suppose cl (Γ∗n) |= Σ⇒ τ . Then, for every
ε > 0 there exists λ > 0 such that, forall h ∈ cl (Γ∗n):

h(τ) ≤λ · h(Σ) + ε · h(Ω) (12)

Intuitively, the theorem shows that every EI can be relaxed in cl (Γ∗n), if one allows for an
error term, which can be made arbitrarily small. We notice that the converse of the theorem
always holds: if h(Σ) = 0, then (12) implies h(τ) ≤ ε · h(Ω), ∀ε > 0, which implies h(τ) = 0.

Proof of Theorem 17. For the proof we need a brief review of cones [37, 4]. A set C ⊆ RN
is convex if, for any two points x1, x2 ∈ C and any θ ∈ [0, 1], θx1 + (1 − θ)x2 ∈ C; and
it is called a cone, if for every x ∈ C and θ ≥ 0 we have that θx ∈ C. The conic hull of
C, conhull (C), is the set of vectors of the form θ1x1 + · · · + θkxk, where x1, . . . , xk ∈ C
and θi ≥ 0,∀i ∈ [k]. A cone K is finitely generated if K = conhull (L) for some finite set
L ⊂ RN , and is polyhedral if there exists u1, . . . , ur ∈ RN s.t. K = {x | ui·x ≥ 0, i ∈ [r]}; a
cone is finitely generated iff it is polyhedral. For any K ⊆ RN , the dual is the set K∗ ⊆ RN
defined as:

K∗
def= {y | ∀x ∈ K,x·y ≥ 0} (13)

K∗ represents the linear inequalities that hold for all x ∈ K, and is always a closed, convex
cone (it is the intersection of closed half-spaces). We warn that the ∗ in Γ∗n does not represent
the dual; the notation Γ∗n for entropic functions is by now well established, and we adopt it
here too, despite it’s clash with the standard notation for the dual cone. The following are
known properties of cones (reviewed and proved in the Appendix):
(A) For any set K, cl

(
conhull (K)

)
= K∗∗.

5 Matus [25] proved I(C;D) ≤ I(C;D|A) + I(C;D|B) + I(A;B) + I(C;E|B) + 1
k I(B;E|C) +

k−1
2 (I(B;C|D) + I(C;D|B)). Inequality (11) follows by setting E = D.
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(B) If L is a finite set, then conhull (L) is closed.
(C) If K1 and K2 are closed, convex cones then: (K1 ∩K2)∗ =

(
cl
(
conhull (K∗1 ∪K∗2 )

))
.
J

Theorem 17 follows from a more general statement about cones:

I Theorem 18. Let K ⊆ RN be a closed, convex cone, and let y1, . . . , ym, y be m+ 1 vectors
in RN . The following are equivalent:
(a) For every x ∈ K, if x · y1 ≤ 0, . . . , x · ym ≤ 0 then x · y ≤ 0.
(b) For every ε > 0 there exists θ1, . . . , θm ≥ 0 and an error vector e ∈ RN such that
||e||∞ < ε and, for every x ∈ K, x · y ≤ θ1x · y1 + · · ·+ θmx · ym + x · e.

Proof. Let L def= {−y1,−y2, . . . ,−ym}. Statement (a) is equivalent to −y ∈ (K ∩ L∗)∗.
Consider statement (b). It asserts ∀ε > 0,∃||e||∞ < ε such that

∃θ1 ≥ 0, . . . ,∃θk ≥ 0,∀x ∈ K,x · y ≤ x · (
∑

θiyi + e)︸ ︷︷ ︸
−y+

∑
θiyi+e∈K∗

In other words, −y + e ∈ conhull (K∗ ∪ L) and, since this must hold for arbitrarily small
||e||∞, statement (b) is equivalent to −y ∈ cl

(
conhull (K∗ ∪ L)

)
. We prove equivalence of

(a) and (b):

(K ∩ L∗)∗ =cl
(
conhull (K∗ ∪ L∗∗)

)
Item (C)

=cl
(

conhull
(
K∗ ∪ cl

(
conhull (L)

)))
Item (A)

=cl
(

conhull
(
K∗ ∪ conhull (L)

))
Item (B)

=cl
(
conhull (K∗ ∪ L)

)
Def. of conhull (−) J

We now prove Theorem 17, using the fact that K def= cl (Γ∗n) is a closed cone [40]. Let
Σ = {σ1, . . . , σm}. Associate to each term σi = (Bi;Ci|Ai) the vector yi ∈ R2n such that,
forall h ∈ R2n , h · yi = Ih(Bi;Ci|Ai) = h(AiBi) + h(AiCi)− h(AiBiCi)− h(Ci) (i.e. yi has
two coordinates equal to +1, and two equal to −1), for i = 1,m. Denote by y the similar
vector associated to τ . To prove Theorem 17, let ε > 0. By assumption, cl (Γ∗n) |= Σ⇒ τ ,
thus condition (a) of Th. 18 holds, and this implies condition (b), where we choose e such
that ||e||∞ < ε/2n. Then, condition (b) becomes:

h(τ) = h · y ≤
∑
i

θih · yi + h · e =
∑
i

θih(σi) +
∑
W⊆[n]

|eW |h(W ) ≤ λh(Σ) + εh(Ω)

where λ = maxi θi. This completes the proof of Theorem 17.

6 Restricted Axioms

The characterization of the entropic cone cl (Γ∗n) is currently an open problem [40]. In
other words, there is no known decision procedure capable of deciding whether an exact
or approximate implication holds for all entropic functions. In this section, we consider
implications that can be inferred using only the Shannon inequalities (e.g., (2), and (3)),
and thus hold for all polymatroids h ∈ Γn. Several tools exists (e.g. ITIP or XITIP [39]) for
checking such inequalities.
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This study is important for several reasons. First, by restricting to Shannon inequalities
we obtain a sound, but in general incomplete method for deciding implications. All axioms
for reasoning about MVD, FD, or semi-graphoid axioms6 [2, 27, 12] are, in fact, based on
Shannon inequalities. Second, under some syntactic restrictions, they are also complete; as we
saw, they are complete for MVD and/or FDs, for saturated constraints and/or conditionals,
and also for marginal constraints [12]. Third, Shannon inequalities are complete for reasoning
for a different class of constraints, called measure-based constraints, which were introduced by
Sayrafi et al. [32] (where Γn is denoted byMSI) and shown to have a variety of applications.

We start by showing that every exact implication of CIs can be relaxed over Γn. This
result was known, e.g. [17]; we re-state and prove it here for completeness.

I Theorem 19. Let Σ, τ be arbitrary CIs. If Γn |=EI Σ ⇒ τ , then there exist λ ≥ 0, s.t.
Γn |= h(τ) ≤ λ · h(Σ). In other words, CIs admit relaxation over Γn.

Proof. (Sketch) We set K = Γn in Th. 18. Then K is polyhedral, hence K∗ is finitely
generated. Therefore, in the proof of Th. 18, the set K∗ ∪ L is finitely generated, hence
conhull (K∗ ∪ L) is closed, therefore there is no need for an error vector e in Statement (b)
of Th. 18, and, hence, no need for ε in AI (12) J

It follows that Shannon inequalities are incomplete for proving the implication Σ⇒ τ ,
where Σ, τ are given by Eq. (9). This is a “non-Shannon” exact implication, i.e. it holds only
in cl (Γ∗n), but fails in Γn, otherwise it would admit a relaxation. The explanation is that
Matus’ inequality (11) is a non-Shannon inequality. (The first example of a non-Shannon
inequality is due to Yeung and Zhang [42].) Next, we turn our attention to the size of the
factor λ. We prove a lower bound of 3:

I Theorem 20 ([9]). The following inequality holds for all polymatroids h ∈ Γn:

h(Z) ≤ Ih(A;B|C) + Ih(A;B|D) + Ih(C;D|E) + Ih(A;E) + 3h(Z|A) + 2h(Z|B) (14)

but the inequality fails if any of the coefficients 3, 2 are replaced by smaller values. In particular,
denoting τ,Σ the terms on the two sides of Eq.(14), the exact implication Γn |=EI Σ ⇒ τ

holds, and does not have a 1-relaxation.

We have checked the two claims in the theorem using the ITIP7 tool. For the positive
result, we also provide direct (manual) proof in the full version of this paper [18]. Since some
EIs relax only with λ ≥ 3, the next question is, how large does λ need to be? We prove this
upper bound in [18]:

I Theorem 21. If Γn |= Σ⇒ τ then Γn |= τ ≤ (2n)! ·h(Σ). In other words, every implication
of CIs admits a (2n)!-relaxation over Γn.

7 Restricted Models

In this section we restrict ourselves to models of uniform 2-tuple distributions. Recall
that their entropic functions are the step functions, Sn. Denoting their conic hull by
Pn

def= conhull (Sn), we prove here that all EI’s admit a 1-relaxation on Pn. This study has
two motivations. First, it leads to a complete, but unsound procedure for implication. A

6 Semi-graphoid axioms restricted to “strictly positive” distributions, which fail Γ∗n.
7 http://user-www.ie.cuhk.edu.hk/~ITIP/
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model checking system may verify an EI or AI by checking it on all 2-tuple distributions. As
we saw in Sec. 4 this procedure is sound and complete for saturated or conditional CI’s, but
it may be unsound in general, for example the inequality Ih(X;Y |Z) ≤ Ih(X;Y ) holds for all
step functions, but fails on the “parity function” in Fig. 1 (b). Second, this model checking
procedure is sound and complete in an important application, namely for checking differential
constraints in market basket analysis [33]. Differential constraints are more general than the
CIs we discussed so far, yet we prove here that they, too, admit a 1-relaxation in Pn. Thus,
our relaxation result has immediate application to market basket constraints.

Consider a set of items Ω = {X1, . . . , Xn}, and a set of baskets B = {b1, . . . , bN}
where every basket is a subset bi ⊆ Ω. The support function f : 2Ω → N assigns to
every subset W ⊆ B the number of baskets in B that contain the set W : f(W ) = |{i |
i ∈ [N ],W ⊆ bi ∈ B}|. A constraint f(W ) = f(WX) asserts that every basket that contains
W also contains X. Sayrafi and Van Gucht [33] define the density of a function f : 2Ω → N
as df (W ) def=

∑
Z:W⊆Z(−1)|Z−W |f(Z); we show below this equals the number of baskets

bi ∈ B s.t. W = bi. Then, they define a differential constraint to be a statement of the form
df (W ) = 0, for some W ⊆ Ω, and study the implication problem of differential constraints.

We now explain the connection to step functions Sn; for the purpose of this discussion we
consider hΩ to be a step function, which is hΩ ≡ 0 (Sec 2.2). Fix i ∈ [N ] and consider the
single basket bi ∈ B. Define fbi

to be the support function for the singleton set {bi}, that is
fbi

(W ) = 1 if W ⊆ bi and 0 otherwise. It follows that hbi
(W ) def= 1− fbi

(W ) is precisely the
step function at bi. The support function for B = {b1, . . . , bN} is f =

∑
i∈[N ] fbi

= N − h,

where h def=
∑
i∈[N ] hbi ∈ Pn. Thus, any support function f gives rise to a polymatroid

h
def= N − f ∈ Pn. By linearity, their densities are related by df = dN − dh, where dN is the

density of the constant function N : dN (W ) = N ·
∑
Z:W⊆Z⊆Ω(−1)|Z−W |, thus dN (Ω) = N

and dN (W ) = 0 for W ( Ω; in particular, df (W ) = −dh(W ) for W ( Ω. Conversely, any
h =

∑
U(Ω cUhU ∈ Pn, where cU ≥ 0, and any N ≥

∑
U cU gives rise to a set of baskets B

of size N , where each set U ( Ω occurs exactly cU times and Ω occurs exactly N −
∑
U cU

times, such that the support function of B is f = |B|−h. Therefore, the implication problem
of differential constraints studied in [33] is equivalent to the implication problem for Pn. We
prove that the latter admits a 1-relaxation. We start with a lemma (proof in Appendix):

I Lemma 22. Fix a function h : 2Ω → R s.t. h(∅) = 0. Then h =
∑
Z(Ω(−dh(Z)) · hZ . In

other words, the step functions hZ form a basis for the vector space {h ∈ R2n | h(∅) = 0}.

Fix a step function, h = hW . By the Lemma, hW admits a unique decomposition
hW =

∑
Z(Ω(−dhW

(Z))hZ ; it follows that dhW
(Z) = −1 when Z = W and dhW

(Z) = 0
otherwise. In particular, dh ≤ 0 forall h ∈ Pn. Fix a set of baskets B = {b1, . . . , bN}, and let f
be its support function. We prove that df (Z) is equal to the number of baskets bi s.t. Z = bi;
in particular df ≥ 0. Indeed, for Z = Ω this follows from the definition of the differential df ,
while for Z ( Ω we use the fact that f = N −

∑
i hbi and df (Z) = −

∑
i dhbi

(Z).
The quantity Ih(y1; y2; · · · ; ym|W ) def= −

∑
Z:W⊆Z⊆{y1,...,ym}(−1)|Z−W |h(Z) is called the

conditional multivariate mutual information, thus, −dh(W ) is a saturated conditional mul-
tivariate mutual information. We show in the full paper [18] that −dh(W ) is precisely the
I-measure of an atom in I-measure theory [40].

Once we have motivated the critical role of the negated densities −dh(W ), we define
an I-measure constraint to be an arbitrary sum σ = −

∑
i dh(Wi); the exact constraint is

the assertion σ = 0, while an approximate constraint asserts some bound, σ ≤ c. The
differential constraints [33] are special cases of I-measure constraints. Any CI constraint
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is also a special case of an I-measure, for example h(Y |X) = −
∑
W :X⊆W,Y 6⊆W dh(W ), and

Ih(Y ;Z|X) = −
∑
W :X⊆W,X 6⊆W,Y 6⊆W dh(W ). Since dh ≤ 0 for h ∈ Pn, it follows that all

I-measure constraints are ≥ 0. We prove8:

I Theorem 23. Exact implications of I-measure constraints admit a 1-relaxation in Pn.

Proof. Consider an implication Σ⇒ τ where all constraints in Σ, τ are I-measure constraints.
Let τ = −

∑
i dh(Wi). Then, for every i, there exists some constraint σ = −

∑
j dh(Wj) ∈ Σ

such thatWi = Wj for some j, proving the theorem. If not, then for the step function h def= hWi

we have h(σ) = 0 forall σ ∈ Σ, yet h(τ) = 1, contradicting the assumption Pn |= Σ⇒ σ. J

I Example 24. Consider Example 4.3 in [33]: d1 = f(A) +f(ABCD)−f(ABC)−f(ACD),
d2 = f(C)− f(CD), and d = f(AB)− f(ABD). Sayrafi and Van Gucht prove d1 = d2 = 0
implies d = 0 for all support functions f . The quantity d1 represents the number of baskets
that contain A, but do not contain BC nor CD, while d2 is the number of baskets that
contain C but not D. Our theorem converts the exact implication into an inequality as follows.
Denote by σ1

def= Ih(BC;CD|A), σ2
def= h(D|C), τ def= h(D|AB), Pn |= (σ1 = σ2 = 0⇒ τ = 0)

relaxes to Pn |= σ1 + σ2 ≥ τ , which translates into d1 + d2 ≤ d forall support functions f .

8 Discussion and Future Work

Number of Repairs. A natural way to measure the degree of a constraint in a relation
instance R is by the number of repairs needed to enforce the constraint on R. In the case of
a key constraint, X → Y , where XY = Ω, our information-theoretic measure is naturally
related to the number of repairs, as follows. If h(Y |X) = c, where h is the entropy of the
empirical distribution on R, then one can check |R|/|ΠX(R)| ≤ 2c. Thus, the number of
repairs |R| − |ΠX(R)| is at most (2c − 1)|ΠX(R)|. We leave for future work an exploration
of the connections between number of repairs and information theoretic measures.

Small Model Property. We have proven in Sec. 4 that several classes of implications
(including saturated CIs, FDs, and MVDs) have a “small model” property: if the implication
holds for all uniform, 2-tuple distributions, then it holds in general. In other words, it suffices
to check the implication on the step functions Sn. One question is whether this small model
property continues to hold for other tractable classes of implications in the literature. For
example, Geiger and Pearl [12] give an axiomatization (and, hence, a decision procedure) for
marginal CIs. However, marginal CIs do not have the same small model property. Indeed,
the implication (X ⊥ Y )&(X ⊥ Z)⇒ (X ⊥ Y Z) holds for all uniform 2-tuple distributions
(because Ih(X;Y Z) ≤ Ih(X;Y ) + Ih(X;Z) holds for all step functions), however it fails for
the “parity distribution” in Fig.1(b). We leave for future work an investigation of the small
model property for other classes of constraints.

Proof Techniques. Since we had to integrate concepts from both database theory and
information theory, we had to make a choice of which proof techniques to favor. In particular,
Pn, the cone closure of the step functions, is better known in information theory as the
set of entropic functions with a non-negative I-measure. After trying both alternatives, we
have chosen to favor the step functions in most of the proofs, because of their connection
to 2-tuple relations. We explain in the full paper [18] the connection to the I-measure, and
include the proof of Th. 11, which is easier to express in that language.

8 A version of this proof based on I-measure theory appears in the full version of the paper [18].
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Bounds on the factor λ. In the early stages of this work we conjectured that all CIs in Γn
admit 1-relaxation, until we discovered the counterexample in Th. 20, where λ = 3. On the
other hand, the only general upper bound is (2n)!. None of them is likely to be tight. We
leave for future work the task of finding tighter bounds for λ.
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A Example for Section 5

Theorem 16 states that some EI does not relax to an AI. The example, based on [17], uses
4 random variables, hence it is essentially a statement about R15, making it difficult to
visualize its underlying geometry. We give here a simpler counterexample, in R3, albeit in a
vector space unrelated to information theory.

Let K def= {
(
x1 x2
x2 x3

)
| x1 ≥ 0, x3 ≥ 0, x1x3 ≥ x2

2} be the cone of semi-positive def-

inite 2 × 2 matrices. This is known to be a convex cone, also called the positive semi-
definite cone [4]. Equivalently, we view K as a cone in R3, namely K = {(x1, x2, x3) |
x1 ≥ 0, x3 ≥ 0, x1x3 ≥ x2

2} Then K satisfies the following Exact Implication:

∀(x1, x2, x3) ∈ K : x1 ≤ 0⇒ x2 ≤ 0

because x1 ≤ 0 is equivalent to x1 = 0, implying x2
2 ≤ 0 thus x2 = 0. However, K does not

satisfy the corresponding Approximate Implication, more precisely the following is false:

∃λ > 0,∀(x1, x2, x3) ∈ K : x2 ≤ λx1 (this is false)

Indeed, for every choice of λ > 0, choose 0 < x1 < 1/λ, and let x2 = 1, x3 = 1/x1. Then
(x1, x2, x3) ∈ K, yet x2 > λx1.

Instead, Theorem 18 states that, for every ε > 0, there exists λ > 0, and an error term
e = (e1, e2, e3), with e1, e2, e3 < ε, such that:

∀x ∈ K : x2 ≤ λx1 + e1x1 + e2x2 + e3x3

In our simple example, this statement is easily verified. Indeed, given ε > 0, define λ def= 1/ε
and e def= (0, 0, ε/4). Then λx1 + (e1x1 + e2x2 + e3x3) = 1

εx1 + ε
4x3 ≥ 2

√
1
4x1x3 = √x1x3 ≥
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|x2| ≥ x2 proving the AI. This simple example explains why the error term is necessary in
Theorem 18.

Geometrically, the error term is necessary whenever the cone conhull (K∗ ∪ L) used in
the proof of Theorem 18 is not closed. In our example K∗ = K because the positive, semi-
definite cone is self-dual [4], and L def= {(−1, 0, 0)}, and will check that conhull (K∗ ∪ L) =
conhull (K ∪ L) is not closed. For that, consider the sequence yn

def= (0, 1, 1/n). On one
hand, we have (n, 1, 1/n) ∈ K, therefore yn = (0, 1, 1/n) = (n, 1, 1/n) + n(−1, 0, 0) ∈
conhull (K ∪ L). On the other hand, limn→∞ yn = (0, 1, 0) 6∈ conhull (K ∪ L). To see this,
it suffices to notice that every vector in conhull (K ∪ L) has the form (x1 − λ, x2, x3) for
some (x1, x2, x3) ∈ K and λ ≥ 0, and, therefore, it satisfies the EI x3 = 0 ⇒ x2 = 0; our
limit vector (0, 1, 0) does not satisfy this EI, hence it is not in conhull (K ∪ L). This proves
the fact that conhull (K∗ ∪ L) is not closed, and hence taking its closure in the proof of
Theorem 18 is necessary, leading to the error term.

B Proof of Cone Properties and Identities from Section 5

We need several known properties of cones; we give the proofs of some of them, for complete-
ness, and refer for the others to [4].

I Theorem 25. Let K,K1,K2 ⊆ Rn. The following holds.
1. K1 ⊆ K2 ⇒ K∗2 ⊆ K∗1
2. K1 ⊆ K∗2 iff K∗1 ⊇ K2.
3. If K 6= ∅ then cl

(
conhull (K)

)
= K∗∗.

4. K∗ =
(

cl
(
conhull (K)

))∗
.

5. If K1 and K2 are closed, convex cones then: (K1 ∩K2)∗ =
(

cl
(
conhull (K∗1 ∪K∗2 )

))
.

6. A cone K is finitely generated iff K∗ is finitely generated.

Proof.
Proof of (1) Let x ∈ K∗2 , and let y ∈ K1. Since x · z ≥ 0 for every vector z ∈ K2, and since

K2 ⊇ K1 then x · y ≥ 0 as well. Therefore, x ∈ K∗1 .
Proof of (2) Both statements assert ∀x ∈ K1,∀y ∈ K2, x·y ≥ 0.

We omit the proofs of (3) and (4) and refer to [4].
Proof of (5) By definition of union we have that: K∗i ⊆ cl

(
conhull (K∗1 ∪K∗2 )

)
for

i ∈ {1, 2}. By item (1) we have that K∗∗i ⊇
(

cl
(
conhull (K∗1 ∪K∗2 )

))∗
for i ∈ {1, 2}.

Since K1 and K2 are closed convex cones then by item (3) it holds that K∗∗1 = K1 and
K∗∗2 = K2. Therefore, for i ∈ {1, 2} we have that Ki ⊇

(
cl
(
conhull (K∗1 ∪K∗2 )

))∗
.

From the above we get that K1 ∩K2 ⊇
(

cl
(
conhull (K∗1 ∪K∗2 )

))∗
. By property (1) we

get that:
(K1 ∩K2)∗ ⊆

(
cl
(
conhull (K∗1 ∪K∗2 )

))∗∗
. By property (3) we have that

(
cl
(
conhull (K∗1 ∪K∗2 )

))∗∗
= cl

(
conhull (K∗1 ∪K∗2 )

)
.

Overall, we get that (K1 ∩K2)∗ ⊆ cl
(
conhull (K∗1 ∪K∗2 )

)
.

Proof of (6). Suppose K is finitely generated, K = conhull({x1, . . . , xn}). Then K∗ = {y |
x1 · y ≥ 0, . . . , xn · y ≥ 0}, hence it is polyhedral by definition. J
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C Proof of Lemma 22

Recall that h(Ω|Z) = h(Ω)− h(Z). Define δh(W ) to be the Möbius inverse of h(Ω|W ), in
other words:

∀W : δh(W ) =
∑

Z:W⊆Z
(−1)|Z−W |h(Ω|Z) ∀W : h(Ω|W ) =

∑
Z:W⊆Z

δh(Z) (15)

We claim that, for W ( Ω, δh(W ) = −dh(W ). Indeed, δh(W ) =∑
Z:W⊆Z(−1)|Z−W |h(Ω|Z) = h(Ω)

∑
Z:W⊆Z⊆Ω(−1)|Z−W | − dh(W ) and the claim follows

from
∑
Z:W⊆Z⊆Ω(−1)|Z−W | = 0 when W ( Ω. We prove that h =

∑
Z(Ω δh(Z) · hZ , by

using the right part of Eq.(15):

h(W ) =h(Ω|∅)− h(Ω|W ) =
∑
Z

δh(Z)−
∑

Z:W⊆Z

δh(Z) =
∑

Z:W 6⊆Z

δh(W ) =
∑
Z

δh(Z) · hZ(W )

because hZ(W ) = 1 iff W 6⊆ Z, and h(W ) = 0 otherwise. This proves that the 2n − 1 step
functions span the vector space {h ∈ R2n | h(∅) = 0}; since the latter has dimension 2n − 1,
it follows that the step functions form a basis.
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