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Abstract
Asymptotically tight lower bounds are derived for the I/O complexity of a general class of hy-
brid algorithms computing the product of n × n square matrices combining “Strassen-like” fast
matrix multiplication approach with computational complexity Θ

(
nlog2 7), and “standard” matrix

multiplication algorithms with computational complexity Ω
(
n3). We present a novel and tight

Ω
((

n

max{
√

M,n0}

)log2 7 (
max{1, n0

M
}
)3

M

)
lower bound for the I/O complexity of a class of “uni-

form, non-stationary” hybrid algorithms when executed in a two-level storage hierarchy with M

words of fast memory, where n0 denotes the threshold size of sub-problems which are computed
using standard algorithms with algebraic complexity Ω

(
n3).

The lower bound is actually derived for the more general class of “non-uniform, non-stationary”
hybrid algorithms which allow recursive calls to have a different structure, even when they refer
to the multiplication of matrices of the same size and in the same recursive level, although the
quantitative expressions become more involved. Our results are the first I/O lower bounds for these
classes of hybrid algorithms. All presented lower bounds apply even if the recomputation of partial
results is allowed and are asymptotically tight.

The proof technique combines the analysis of the Grigoriev’s flow of the matrix multiplication
function, combinatorial properties of the encoding functions used by fast Strassen-like algorithms,
and an application of the Loomis-Whitney geometric theorem for the analysis of standard matrix
multiplication algorithms. Extensions of the lower bounds for a parallel model with P processors
are also discussed.
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1 Introduction

Data movement plays a critical role in the performance of computing systems, in terms of
both time and energy. This technological trend [16] appears destined to continue, as physical
limitations on minimum device size and on maximum message speed lead to inherent costs
when moving data, whether across the levels of a hierarchical memory system or between
processing elements of a parallel system [13]. While the communication requirements of
algorithms have been widely investigated in the literature, obtaining significant and tight
lower bounds based on such requirements remains an important and challenging task.
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33:2 The I/O Complexity of Hybrid Algorithms for Square Matrix Multiplication

In this paper, we focus on the I/O complexity of a general class of hybrid algorithms
for computing the product of square matrices. Such algorithms combine fast algorithms
with base case 2× 2 similar to Strassen’s matrix multiplication algorithm [36] with algebraic
(or computational) complexity O

(
nlog2 7) with standard (or classic) matrix multiplication

algorithms with algebraic complexity Ω
(
n3). Further, these algorithms allow recursive

calls to have a different structure, even when they refer to the multiplication of matrices
in the same recursive level and of the same input size. These algorithms are referred in
literature as “non-uniform, non-stationary”. This class includes, for example, algorithms that
optimize for input sizes [19, 20, 23]. Matrix multiplication is a pervasive primitive utilized in
many applications.

While of actual practical importance, to the best of our knowledge, no characterization of
the I/O complexity of such algorithms has presented before this work. This is likely due to
the the fact that the irregular nature of hybrid algorithms and, hence, the irregular structure
of the corresponding Computational Directed Acyclic Graphs (CDAGs), complicates the
analysis of the combinatorial properties of the CDAG which is the foundation of many of
I/O lower bound technique presented in literature (e.g., [8, 25, 32]).

The technique used in this work overcomes such challenges and yields asymptotically
tight I/O lower bounds which hold even if recomputation of intermediate values is allowed.

Previous and Related Work. Strassen [36] showed that two n×n matrices can be multiplied
with O(nω) operations, where ω = log2 7 ≈ 2.8074, hence with asymptotically fewer than the
n3 arithmetic operations required by the straightforward implementation of the definition
of matrix multiplication. This result has motivated a number of efforts which have led
to increasingly faster algorithms, at least asymptotically, with the current record being at
ω < 2.3728639 [28].

I/O complexity has been introduced in the seminal work by Hong and Kung [25]; it is
essentially the number of data transfers between the two levels of a memory hierarchy with a
fast memory of M words and a slow memory with an unbounded number of words. Hong and
Kung presented techniques to develop lower bounds to the I/O complexity of computations
modeled by computational directed acyclic graphs (CDAGs). The resulting lower bounds
apply to all the schedules of the given CDAG, including those with recomputation, that is,
where some vertices of the CDAG are evaluated multiple times. Among other results, they
established a Ω

(
n3/
√
M
)
lower bound to the I/O complexity of standard, definition-based

matrix multiplication algorithms, which matched a known upper bound [15]. The techniques
of [25] have also been extended to obtain tight communication bounds for the definition-based
matrix multiplication in some parallel settings [4, 24]. Ballard et al. generalized the results
on matrix multiplication of Hong and Kung [25] in [7, 6] by using the approach proposed
in [24] based on the Loomis-Whitney geometric theorem [29, 37].

In an important contribution, Ballard et al. [8], obtained an Ω((n/
√
M)log2 7M) I/O

lower bound for Strassen’s algorithm, using the “edge expansion approach”. The authors
extend their technique to a class of “Strassen-like” fast multiplication algorithms and to
fast recursive multiplication algorithms for rectangular matrices [3]. This result was later
generalized to increasingly broader classes of “Strassen-like” algorithms by Scott et. al [33]
using the “path routing” technique, and De Stefani [17] using a combination the concept of
Grigoriev’s flow of a function and the “dichotomy width” technique [14]. While the previously
mentioned results hold only under the restrictive assumption that no intermediate result may
be more than once (i.e., the no-recomputation assumption), in [10] Bilardi and De Stefani
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introduced the first asymptotically tight I/O lower bound which holds if recomputation is
allowed. Their technique was later extended to the analysis of Strassen-like algorithms with
base case 2× 2 [30], and to the analysis of Toom-Cook integer multiplication algorithms [11].

A parallel, “communication avoiding” implementation of Strassen’s algorithm whose
performance matches the known lower bound [8, 33], was proposed by Ballard et al. [5].

In [34], Scott derived a lower bound for the I/O complexity of a class of uniform, non-
stationary algorithms combining Strassen-like algorithm with recursive standard algorithms.
This result holds only under the restrictive no-recomputation assumption and considers only
compositions of recursive matrix multiplication algorithms.

To the best of our knowledge, ours is the first work presenting asymptotically tight I/O
lower bounds for non-uniform, non-stationary hybrid algorithms for matrix multiplication
that hold when recomputation is allowed.

On the impact of recomputation. While it is of interest to study the I/O complexity
under the no-recomputation assumption, it is also very important to investigate what can be
achieved with recomputation. For some CDAGs, recomputing intermediate values allows
reducing the space and/or the I/O complexity of an algorithm [32]. As shown [12], some
algorithms admit a “portable schedule” (i.e., a schedule which achieves optimal performance
across memory hierarchies with different access costs) only if recomputation is allowed.
Recomputation can also enhance the performance of simulations among networks (see [27]
and references therein) and plays a key role in the design of efficient area-universal VLSI
architectures with constant slowdown [9].

Our results. In our main result, we present the first I/O lower bound for a class H of non-
uniform, non-stationary hybrid matrix multiplication algorithms when executed in a two-level
storage hierarchy with M words of fast memory. Algorithms in H combine fast Strassen-like
algorithms with base case 2×2 with algebraic complexity Θ

(
nlog2 7), and standard algorithms

based on the definition with algebraic complexity Ω
(
n3). These algorithms allow recursive

calls to have a different structure, even when they refer to the multiplication of matrices in
the same recursive level and of the same input size. The result in Theorem 9 relates the I/O
complexity of algorithms in H to the number and the input size of an opportunely selected
set of the sub-problems generated by the algorithms themselves.

By specializing the result in Theorem 9, we also present, in Theorem 11, a novel

Ω
((

n
max{

√
M,n0}

)log2 7 (
max{1, n0

M }
)3
M

)
lower bound for the I/O complexity of algorithms

in a subclass UH (n0) of H composed by uniform non-stationary hybrid algorithms where
n0 denotes the threshold input size of sub-problems which are computed using standard
algorithms with algebraic complexity Ω

(
n3).

The result in Theorem 11 considerably extends a previous result by Scott [34] as the
latter covers only a sub-class of UH (n0) composed by uniform, non-stationary algorithms
combining Strassen-like algorithms with the recursive standard algorithm, and holds only
assuming that no intermediate value is recomputed.

Our lower bounds in Theorem 9 and Theorem 11 allow for recomputation of intermediate
values and are asymptotically tight. As the matching upper bounds do not recompute any
intermediate value, we conclude that using recomputation may reduce the I/O complexity of
the considered classes of hybrid algorithms by at most a constant factor.

Our proof technique is of independent interest since it exploits to a significant extent
the “divide and conquer” nature exhibited by many algorithms. Our approach combines
elements from the “G-flow” I/O lower bound technique originally introduced by Bilardi
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and De Stefani, with an application of the Loomis-Whitney geometric theorem, which has
been used by Irony et al. to study the I/O complexity of standard matrix multiplication
algorithms [24], to recover an information which relates to the concept of “Minimum set”
introduced in Hong and Kung’s method. We follow the “dominator set” approach pioneered
by Hong and Kung in [25]. However, we focus the dominator analysis only on a select set
of target vertices, which, depending on the algorithm structure, correspond either to the
outputs of the sub-CDAGs that correspond to sub-problems of a suitable size (i.e., chosen as
a function of the fast memory capacity M) computed using a fast Strassen-like algorithm,
or to the the vertices corresponding to the elementary products evaluated by a standard
(definition) matrix multiplication algorithm.

We derive our main results for the hierarchical memory model (or external memory
model). Our results generalize to parallel models with P processors. For these parallel
models, we derive lower bounds for the “bandwith cost”, that is for the number of messages
(and, hence, the number of memory words) that must be either sent or received by at least
one processor during the execution of the algorithm.

Paper organization. In Section 2 we outline the notation and the computational models
used in the rest of the presentation. In Section 3 we rigorously define the class of hybrid
matrix multiplication algorithms H being considered. In Section 4 we discuss the construction
and important properties of the CDAGs corresponding to algorithms in H. In Section 5 we
introduce the concept of Maximal Sup-Problem (MSP) and describe their properties which
lead to the I/O lower bounds for algorithms in H in Section 6.

2 Preliminaries

We consider algorithms that compute the product of two square matrices A×B = C with
entries from a ring R. We use A to denote the set of variables each corresponding to an entry
of matrix A. We refer to the number of entries of a matrix A as its “size” and we denote it
as |A|. We denote the entry on the i-th row of the j-th column of matrix A as A[i][j].

In this work we focus on algorithms whose execution can be modeled as a computational
directed acyclic graph (CDAG) G = (V,E). Each vertex v ∈ V represents either an input
value or the result of a unit-time operation (i.e., an intermediate result or one of the output
values) which is stored using a single memory word. For example, each of the input (resp.,
output) vertices of G corresponds to one of the 2n2 entries of the factor matrices A and
B (resp., to the n2 entries of the product matrix C). The directed edges in E represent
data dependencies. That is, a pair of vertices u, v ∈ V are connected by an edge (u, v)
directed from u to v if and only if the value corresponding to u is an operand of the unit
time operation which computes the value corresponding to v. A directed path connecting
vertices u, v ∈ V is an ordered sequence of vertices starting with u and ending with v, such
that there is an edge in E directed from each vertex in the sequence to its successor.

We say that G′ = (V ′, E′) is a sub-CDAG of G = (V,E) if V ′ ⊆ V and E′ ⊆ E∩(V ′×V ′).
Note that, according to this definition, every CDAG is a sub-CDAG of itself. We say that
two sub-CDAGs G′ = (V ′, E′) and G′′ = (V ′′, E′′) of G are vertex-disjoint if V ′ ∩ V ′′ = ∅.
Analogously, two directed paths in G are vertex-disjoint if they do not share any vertex.

When analyzing the properties of CDAGs we make use of the concept of dominator set
originally introduced in [25]. We use the following – slightly different – definition:
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I Definition 1 (Dominator set). Given a CDAG G = (V,E), let I ⊂ V denote the set of its
input vertices. A set D ⊆ V is a dominator set for V ′ ⊆ V with respect to I ′ ⊆ I if every
path from a vertex in I ′ to a vertex in V ′ contains at least a vertex of D. When I ′ = I, D is
simply referred as “a dominator set for V ′”.

I/O model and machine models. We assume that sequential computations are executed
on a system with a two-level memory hierarchy, consisting of a fast memory or cache of size
M (measured in memory words) and a slow memory of unlimited size. An operation can
be executed only if all its operands are in cache. We assume that each entry of the input
and intermediate results matrices (including entries of the output matrix) is maintained in a
single memory word (the results trivially generalize if multiple memory words are used).

Data can be moved from the slow memory to the cache by read operations and, in the
other direction, by write operations. These operations are also called I/O operations. We
assume the input data to be stored in slow memory at the beginning of the computation.
The evaluation of a CDAG in this model can be analyzed by means of the “red-blue pebble
game” [25]. The number of I/O operations executed when evaluating a CDAG depends on
the “computational schedule”, that is, it depends on the order in which vertices are evaluated
and on which values are kept in/discarded from cache.

The I/O complexity IOG(M) of a CDAG G is defined as the minimum number of I/O
operations over all possible computational schedules. We further consider a generalization
of this model known as the “External Memory Model” by Aggarwal and Vitter [2], where
B ≥ 1 values can be moved between cache and consecutive slow memory locations with a
single I/O operation. For B = 1, this model clearly reduces to the red-blue pebble game.

Given an algorithm A, we only consider “parsimonious execution schedules”, that is
schedules such that: (i) each time an intermediate result (excluding the output entries of
C) is computed, such value is then used to compute at least one of the values of which it is
an operand before being removed from the memory (either the cache or slow memory); and
(ii) any time an intermediate result is read from slow to cache memory, such value is then
used to compute at least one of the values of which it is an operand before being removed
from the memory or moved back to slow memory using a write I/O operation. Clearly, any
non-parsimonious schedule C can be reduced to a parsimonious schedule C′ by removing all
the steps which violate the definition of parsimonious computation. C′ has therefore less
computational and I/O operations than C. Hence, restricting the analysis to parsimonious
computations leads to no loss of generality.

We also consider a parallel model where P processors, each with a local memory of size
2n2/P ≤M < n2, are connected by a network. We do not, however, make any assumption
on the initial distribution of the input data nor regarding the balance of the computational
load among the P processors. Processors can exchange point-to-point messages, with every
message containing up to Bm memory words. For this parallel model, we derive lower
bounds for the number of messages that must be either sent or received by at least one
processor during the CDAG evaluation. The notion of “parsimonious execution schedules”
straightforwardly extends to this parallel model.

3 Hybrid matrix multiplication algorithms

In this work, we consider a family of hybrid matrix multiplication algorithms obtained by
hybridizing the two following classes of algorithms:

ISAAC 2019
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Standard matrix multiplication algorithms. This class includes all the square matrix
multiplication algorithms which, given the input factor matrices A,B ∈ Rn×n, satisfy
the following properties:

The n3 elementary products A[i][j]B[j][i], for i, j = 0, . . . , n− 1, are directly computed;
Each of the C[i][j] is computed by summing the values of the n elementary products
A[i][z]B[z][j], for z = 0, . . . , n−1, through a summation tree by additions and subtractions
only;
The evaluations of the C[i][j]’s are independent of each other. That is, internal vertex
sets of the summation trees of all the C[i][j]’s are disjoint from each other.

This class, also referred in literature as classic, naive or conventional algorithms, correspond
to that studied for the by Hong and Kung [25] (for the sequential setting) and by Irony et
al. [24] (for the parallel setting). Algorithms in this class have computational complexity
Ω
(
n3). This class includes, among others, the sequential iterative definition algorithm, the

sequential recursive divide and conquer algorithm based on block partitioning, and parallel
algorithms such as Cannon’s “2D” algorithm [15], the “2.5D” algorithm by Solomonik and
Demmel [35], and “3D” algorithms [1, 26].

Fast Strassen-like matrix multiplication algorithms with base case 2 × 2. This class
includes algorithms following a structure similar to that of Strassen’s [36] and Winograd’s
variation [38] (which reduces the leading coefficient of the arithmetic complexity reduced
from 7 to 6). For further details on Strassen’s algorithm we refer the reader to the extended
version of this work [18]). Algorithms in this class follow three common steps:
1. Encoding: Generate the inputs, of size n/2× n/2 of seven sub-problems, as linear sums

of the input matrices;
2. Recursive multiplications: Compute (recursively) the seven generated matrix multi-

plication sub-products;
3. Decoding: Computing the entries of the product matrix C via linear combinations of

the output of the seven sub-problems.
Algorithms in this class have algebraic complexity O

(
nlog2 7), which is optimal for algorithms

with base case 2× 2 [38].

Remarkably, the only properties of relevance for the analysis of the I/O complexity of
algorithms in these classes are those used in the characterization of the classes themselves.

In this work we consider a general class of non-uniform, non-stationary hybrid square
matrix multiplication algorithms, which allow mixing of schemes from the fast Strassen-like
class with algorithms from the standard class. Given an algorithm A let P denote the
problem corresponding to the computation of the product of the input matrices A and
B. Consider an “instruction function” fA(P ), which, given P as input returns either (a)
indication regarding the algorithm from the standard class which is to be used to compute P ,
or (b) indication regarding the fast Strassen-like algorithm to be used to recursively generate
seven sub-problems P1, P2, . . . , P7 and the instruction functions fA(Pi) for each of the seven
sub-problems. We refer to the class of non-uniform, non-stationary algorithms which can be
characterized by means of such instruction functions as H. Algorithms in H allow recursive
calls to have a different structure, even when they refer to the multiplication of matrices in
the same recursive level. E.g., some of the sub-problems with the same size may be computed
using algorithms form the standard class while others may be computed using recursive
algorithms from the fast class. This class includes, for example, algorithms that optimize for
input sizes, (for sizes that are not an integer power of a constant integer).
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This corresponds to actual practical scenarios, as the use of Strassen-like algorithms is
mostly beneficial for large input size. As the size of the input of the recursively generated
sub-problems decreases, the asymptotic benefit of fast algorithms is lost due to the increasing
relative impact of the constant multiplicative factor, and algorithms in the standard class
exhibit lower actual algebraic complexity. For a discussion on such hybrid algorithms and
their implementation issues we refer the reader to [20, 23] (sequential model) and [19]
(parallel model).

We also consider a sub-class UH (n0) of H constituted by uniform, non-stationary hybrid
algorithms which allow mixing of schemes from the fast Strassen-like class for the initial `
recursion levels, and then cut the recursion off once the size the generated sub-problems is
smaller or equal to a set threshold n0 × n0, and switch to using algorithm form the standard
class. Algorithms in this class are uniform, i.e., sub-problems of the same size are all either
recursively computed using a scheme form the fast class, or are all computed using algorithms
from the standard class.

4 The CDAG of algorithms in H

Let GA = (VA, EA) denote the CDAG that corresponds to an algorithm A ∈ H used for
multiplying input matrices A,B ∈ Rn×n. The challenge in the characterization of GA comes
from the fact that rather than considering to a single algorithm, we want to characterize the
CDAG corresponding to the class H. Further, the class H is composed of a rich variety of
vastly different and irregular algorithm. Despite such variety, we show a general template for
the construction of GA and we identify some of its properties which crucially hold regardless
of the implementation details of A and, hence, of GA.

Construction. GA can be obtained by using a recursive construction that mirrors the
recursive structure of the algorithm itself. Let P denote the entire matrix multiplication
problem computed by A. Consider the case for which, according to the instruction function
fA(P ), P is to be computed using an algorithm from the standard class. As we do not fix
a specific algorithm, we do not correspondingly have a fixed CDAG. The only feature of
interest for the analysis is that, in this case, the CDAG GA corresponds to the execution of
an algorithm from the standard class for input matrices of size n× n.

Consider instead the case for which, according to fA(P ), P is to be computed using
an algorithm from the fast class. In the base case for n = 2 the problem P is computed
without generating any further sub-problems. As an example, we present in Figure 1a the
base case for Strassen’s original algorithm [36]. If n > 2, then fA(P ) specifies the divide
and conquer scheme to be used to generate the seven sub-problems P1, P2, . . . , P7, and the
instruction function for each of them. The sub-CDAGs of GA corresponding to each of
the seven sub-problems Pi, denoted as GAPi

are constructed according to fA(Pi), following
recursively the steps discussed previously. GA can then be constructed by composing the
seven sub-CDAGs GAPi

. n2 disjoint copies of an encoder sub-CDAG EncA (resp., EncB) are
used to connect the input vertices of GA, which correspond to the values of the input matrix
A (resp., B) to the appropriate input vertices of the seven sub-CDAGs GAPi

; the output
vertices of the sub-CDAGs GAPi

(which correspond to the outputs of the seven sub-products)
are connected to the appropriate output vertices of the entire GA CDAG using n2 copies
of the decoder sub-CDAG Dec. We present an example of such recursive construction in
Figure 1b.
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A[0][0] A[0][1] A[1][0] A[1][1] B[0][0] B[0][1] B[1][0] B[1][1]

C[0][0] C[0][1] C[1][0] C[1][1]

M7 M5 M4 M1 M3 M2 M6

EncA EncB

Dec

(a) GA CDAG for base case n = 2, using Strassen’s
algorithm [36] (for details see extended version [18]).

A1,1 A1,2 A2,1 A2,2 B1,1 B1,2 B2,1 B2,2

C1,1 C1,2 C2,1 C2,2

GAP7 GAP5 GAP4 GAP1 GAP3 GAP2 GAP6

n2 × EncA n2 × EncB

n2 ×Dec

(b) Recursive construction of GA. Ai,j , Bi,j and
Ci,j denote the block-partition of A, B and C.

Figure 1 Blue vertices represent combinations of the input values from the factor matrices A
and B used as input values for the seven sub-problems; red vertices represent the output of the
seven sub-problems which are used to compute the values of the output matrix C.

Properties of GA. While the actual internal structure GA, and, in particular, the structure
of encoder and decoder sub-CDAGs depends on the specific Strassen-like algorithm being
used by A, all versions share some properties of great importance. Let G(X,Y,E) denote
an encoder CDAG for a fast multiplication algorithm 2 × 2 base case, with X (resp., Y )
denoting the set of input (resp., output) vertices, and E denoting the set of edges directed
from X to Y .

I Lemma 2 (Lemma 3.3 [30]). Let G = (X,Y,E) denote an encoder graph for a fast matrix
multiplication algorithm with base case 2× 2. There are no two vertices in Y with identical
neighbors sets.

While the correctness of this Lemma can be simply verified by inspection in the case of
Strassen’s algorithm [36], Lemma 2 generalizes the statement to all encoders corresponding
to fast matrix multiplication algorithms with base case 2× 2. From Lemma 2 we have:

I Lemma 3. Let A ∈ H and let P1 and P2 be any two sub-problems generated by A with
input size greater than n0 × n0, such that P2 is not recursively generated while computing P1
and vice versa. Then, the sub-CDAGs of GA corresponding, respectively, to P1 and to P2 are
vertex-disjoint.

The following lemma, originally introduced for Strassen’s algorithm in [10] and then
generalized for Strassen-like algorithms with base case 2×2 in in [30], captures a connectivity
property of encoder sub-CDAGs.

I Lemma 4 (Lemma 3.1 [30]). Given an encoder CDAG for any Strassen-like algorithm
with base case 2 × 2, for any subset Y of its output vertices, there exists a subset X of
its input vertices, with min{|Y |, 1 + d(|Y | − 1) /2e} ≤ |X| ≤ |Y |, such that there exist |X|
vertex-disjoint paths connecting the vertices in X to vertices in Y .

The proofs of Lemma 2 and Lemma 4 are based on an argument originally presented by
Hopcroft and Kerr [22]. We refer the reader to [30] for the proofs.

5 Maximal sub-problems and their properties

For an algorithm A ∈ H, let P ′ denote a sub-problem generated by A. In our presentation
we consider the entire matrix multiplication problem as an improper sup-problem generated
by A. Given a sub=problem P ′ let P ′0, P ′2, . . . , P ′i be the sequence of sub-problems generated
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by A such that P ′j+1 was recursively generated to compute P ′j for j = 0, 1, . . . , i − 1, and
such that P ′ was recursively generated to compute P ′i . We refer to the sub-problems in such
sequence as the ancestor sub-problems of P ′. If P ′ is the entire problem, it has no ancestors.

Towards studying the I/O complexity of algorithms in H we focus on the analysis of a
particular set of sub-problems.

I Definition 5 (Maximal Sub-Problems (MSP)). Let A ∈ H be an algorithm used to multiply
matrices A,B ∈ Rn×n. If n ≤ 2

√
M we say that A does not generate any Maximal

Sub-Problem (MSP).
Let Pi be a sub-problem generated by A with input size ni × ni, with ni ≥ 2M , and such that
all its ancestors sub-problems are computed, according to A using algorithms from the fast
class. We say that:

Pi is a Type 1 MSP of A if, according to A, is computed using an algorithm from the
standard class. If the entire problem is solved using an algorithm from the standard class,
we say that the entire problem is the unique (improper) Type 1 MSP generated by A.
Pi is a Type 2 MSP of A if, according to A, is computed by generating 7 sub-problems
according to the recursive scheme corresponding to an algorithm from the fast (Strassen-
like) class, and if the generated sub-problems have input size strictly smaller than 2

√
M ×

2
√
M . If the entire problem uses a recursive algorithm from the fast class to generate 7

sub-problems with input size smaller than 2
√
M × 2

√
M , we say that the entire problem

is the unique, improper, Type 2 MSP generated by A.
In the following we denote as ν1 (resp., ν2) the number of Type 1 (resp., Type 2) MSPs
generated by A.

Let Pi denote the i-th MSP generated by A and let GAPi
denote the corresponding sub-

CDAG of GA. We denote as Ai and Bi (resp., Ci) the input factor matrices (resp., the
output product matrix) of Pi.

Properties of MSPs and their corresponding sub-CDAGs. By Definition 5, we have that
for each pair of distinct MMSPs P1 and P2, P2 is not recursively generated by A in order to
compute P1 or vice versa. Hence, by Lemma 3, the sub-CDAGs of GA that correspond each
to one of the MSPs generated by A are vertex-disjoint.

In order to obtain our I/O lower bound for algorithms in H, we characterize properties
regarding the minimum dominator size of an arbitrary subset of Y and Z.

I Lemma 6. Let GA be the CDAG corresponding to an algorithm A ∈ H which admits
n1 Type 1 MSPs. For each Type 1 MSP Pi let Yi denote the set of input vertices of the
associated sub-CDAG GAPi

which correspond each to an entry of the input matrices Ai and
Bi. Further, we define Y = ∪ν1

i=1Yi.
Let Y ⊆ Y in GA such that |Y ∩Yi| = ai/

√
bi, with ai, bi ∈ N, ai ≥ bi for i = 1, 2, . . . , ν1,

and such that bi = 0 if and only if ai = 0.1 Any dominator set D of Y satisfies |D| ≥
min{2M,

∑ν1
i=1 ai/

√∑ν1
i=1 bi}.

I Lemma 7. Let GA be the CDAG corresponding to an algorithm A ∈ H which admits n2
Type 2 MSPs. Further let Z denote the set of vertices corresponding to the entries of the
output matrices of the n2 Type 2 MSPs. Given any subset Z ⊆ Z in GA with |Z| ≤ 4M , any
dominator set D of Z satisfies |D| ≥ |Z|/2.

1 Here we use as convention that 0/0 = 0.
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For each Type 1 MSP Pi generated by A, with input size2 ni × ni, we denote as Ti the
set of variables whose value correspond to the n3

i elementary products Ai[j][k]Bi[k][j] for
j, k = 0, 1, . . . , ni − 1. Further, we denote as Ti the set of vertices corresponding to the
variables in Ti, and we define T = ∪ν1

i=1Ti.

I Lemma 8. For any Type 1 MSPs generated by A consider T ′i ⊆ Ti. Let Y(A)
i ⊆ Yi (resp.,

Y(B)
i ⊆ Yi) denote a subset of the vertices corresponding to entries of Ai (resp., Bi) which

are multiplied in at least one of the elementary products in T ′i . Then any dominator D of
the vertices corresponding to T ′i with respect to the the vertices in Yi is such that

|D| ≥ max{|Y ′i ∩Ai|, |Y ′i ∩Bi|}.

For the proofs of Lemmas 6, 7 and 8 we refer the reader to the extended version of this
work [18]. The proofs are based on the analysis of the combinatorial properties of Strassen-like
algorithms, and on the analysis of the Grigoriev’s information flow of the square matrix
multiplication function [21, 31].

6 I/O lower bounds for algorithms in H and UH (n0)

I Theorem 9. Let A ∈ H be an algorithm to multiply two square matrices A,B ∈ Rn×n.
If run on a sequential machine with cache of size M and such that up to B memory words
stored in consecutive memory locations can be moved from cache to slow memory and vice
versa using a single memory operation, A’s I/O complexity satisfies:

IOA (n,M,B) ≥ max{2n2, c|T |M−1/2, ν2M}B−1 (1)

for c = 0.38988157484, where |T | denotes the total number of internal elementary products
computed by the Type 1 MSPs generated by A and ν2 denotes the total number of Type 2
MSPs generated by A.

If run on P processors each equipped with a local memory of size M < n2 and where for
each I/O operation it is possible to move up to Bm ≤M words, A’s I/O complexity satisfies:

IOA (n,M,Bm, P ) ≥ max{c|T |M−1/2, ν2M} (PBm)−1 (2)

Proof. We prove the result in (1) (resp., (2)) for the case B = 1 (resp., Bm = 1). The
result then trivially generalizes for a generic B (resp., Bm). We first prove the result for the
sequential case in in (1). The bound for the parallel case in (2) will be obtained as a simple
generalization. For simplicity of presentation, we assume

√
M ∈ N+.

The fact that IOA(n,M, 1) ≥ 2n2 follows trivially from the fact that as in our model
the input matrices A and B are initially stored in slow memory, it will necessary to move
the entire input to the cache at least once using at least 2n2 I/O operations. If A does not
generate any MSPs the statement in (1) is trivially verified. In the following, we assume
ν1 + ν2 ≥ 1.

Let GA denote the CDAG associated with algorithm A according to the construction in
Section 4. By definition, and from Lemma 3, the ν1 + ν2 sub-CDAGs of GA corresponding
each to one of the MSPs generated by A are vertex-disjoint. Hence, the Ti’s are a partition
of T and |T | =

∑ν1
i=1 |Ti|.

2 In general, different Type 1 MSP may have different input sizes



L. De Stefani 33:11

By Definition 5, the MSP generated by A have input (resp., output) matrices of size
greater or equal to 2

√
M × 2

√
M . Recall that we denote as Z the set of vertices which

correspond to the outputs of the ν2 Type 2 MSPs, we have |Z| ≥ 4Mνl.
Let C be any computation schedule for the sequential execution of A using a cache of size

M . We partition C into non-overlapping segments C1, C2, . . . such that during each Cj either
(a) exactlyM3/2 distinct values corresponding to vertices in T , denoted as T (j), are explicitly
computed (i.e., not loaded from slow memory), or (b) 4M distinct values corresponding to
vertices in Z (denoted as Zj) are evaluated for the first time. Clearly there are at least
max{|T |/M3/2, ν2} such segments. Below we show that the number gj of I/O operations
executed during each Cj satisfies gj ≥ cM for case (a) and gj ≥M for case (b), from which
the theorem follows.

Case (a): For each Type 1 MSP Pi let T (j)
i = T (j) ∩ Ti. As the ν1 sub-CDAGs

corresponding each to one of the Type 1 MSPs are vertex-disjoint, so are the sets Ti. Hence,
the T (j)

i ’s constitute a partition of T (j). Let Ai and Bi (resp., Ci) denote the input matrices
(resp., output matrix) of Pi with Ai,Bi,Ci ∈ Rni×ni , and let Ai and Bi (resp., Ci) denote
the set of the variables corresponding to the entries of Ai and Bi (resp., Ci). Further, we
denote as Ti the set of values corresponding to the vertices in Ti. For r, s = 0, 1, . . . , ni−1, we
say that Ci[r][s] is “active during Cj” if any of the elementary multiplications Ai[r][k]Bi[k][s],
for k = 0, 1, . . . , ni − 1, correspond to any of the vertices in T (j)

i . Further we say that a
Ai[r][s] (resp., Bi[r][s]) is “accessed during Cj” if any of the elementary multiplications
Ai[r][s]Bi[s][k] (resp., Ai[k][r]Bi[r][s]), for k = 0, 1, . . . , ni − 1, correspond to any of the
vertices in T (j)

i . Our analysis makes use of the following property of standard matrix
multiplication algorithms:

I Lemma 10 (Loomis-Whitney inequality [24, Lemma 2.2]). Let Y ′i,A (resp., Y ′i,B) denote
the set of vertices corresponding to the entries of Ai (resp., Bi) which are accessed during
Cj, and let Z ′i denote the set of vertices corresponding to the entries of Ci which are active
during Cj. Then

|T (j)
i | ≤

√
|Y ′i,A||Y ′i,B||Z ′i|. (3)

Lemma 10 is a reworked version of a property originally presented by Irony et al. [24, Lemma
2.2], which itself is a consequence of the Loomis-Whitney geometric theorem [29]. We refer
the reader to [24, Lemma 2.2] for the proof of of Lemma 10.

Let Ci[r][s] be active during Cj . In order to compute Ci[r][s] entirely during Cj (i.e.,
without using partial accumulation of the summation

∑ni−1
k=0 Ai[r][k]B[k][s]), it will be

necessary to evaluate all the ni elementary products Ai[r][k]Bi[k][s], for k = 0, 1, . . . , ni − 1,
during Cj itself. Thus, at most b|T (j)

i |/nic entries of Ci[r][s] can be entirely computed during
Cj .

Let Ci[r][s] denote an entry of Ci which is active but not entirely computed during Cj .
There are two possible scenarios:

Ci[r][s] is computed during Cj : The computation thus requires for a partial accumulation
of
∑ni−1
k=0 Ai[r][k]B[k][s] to have been previously computed and either held in the cache

at the beginning of Cj , or to moved to cache using a read I/O operation during Cj ;
Ci[r][s] is not computed during Cj : As C is a parsimonious computation, the partial
accumulation of

∑ni−1
k=0 Ai[r][k]B[k][s] obtained from the elementary products computed

during Cj must either remain in the cache at the end of Cj , or be moved to slow memory
using a write I/O operation during Cj ;
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In both cases, any partial accumulation either held in memory at the beginning (resp., end)
of Cj or read from slow memory to cache (resp., written from cache to slow memory) during
Cj is, by definition, not shared between multiple entries in Ci.

Let GAPi
denote the sub-CDAG of GA corresponding to the Type 1 MSP Pi. In the

following, we refer as D′i to the set of vertices of GAPi
corresponding to the values of such

partial accumulators. For each of the least |D′i| = max{0, |Z ′i| − |T
(j)
i |/ni} entries of Ci

which are active but not entirely computed during Cj , either one of the entries of the cache
must be occupied at the beginning of Cj , or one I/O operation is executed during Cj . Let
D′ = ∪ν1

i=1D
′
i. As, by Lemma 3, the sub-CDAGs corresponding to the ν1 Type 1 MSPs are

vertex-disjoint, so are the the sets D′i. Let Z ′ =
∑νl

i=1 |Z ′i|. We have:

|D′| =
ν1∑
i=1
|D′i| =

ν1∑
i=1

max{0, |Z ′i| − |T
(j)
i |/ni} ≥ |Z| − |T

(j)|/2
√
M, (4)

where the last passage follows from the fact that, by Definition 5, ni ≥ 2M .
From Lemma 10, the set of vertices Y ′i,A (resp., Y ′i,B) which correspond to entries of Ai

(resp., Bi) which are accessed during Cj satisfies |Y ′i,A||Y ′i,B| ≥ |T
(j)
i |2/|Z ′i|. Hence, at least

|Y ′i,A|+ |Y ′i,B| ≥ 2|T (j)
i |/

√
|Z ′i| entries from the input matrices of Pi are accessed during Cj .

Let Y denote the set of vertices corresponding to the entries of the input matrices Ai,Bi of
Pi. From Lemma 8 we have that there exists a set Y ′i ⊆ Yi, with|Y ′i| ≥ max{|Y ′i,A|, |Y ′i,B|} ≥
|T (j)
i |/

√
|Z ′i|, such that the vertices in Y ′i are connected by vertex-disjoint pats to the vertices

in T (j)
i . Let Y = ∪ν1

i=1Y ′i. As, by Lemma 3, the sub-CDAGs corresponding to the νl Type 1
MSPs are vertex-disjoint, so are the the sets Y ′i for i = 1, 2, . . . , ν1. Hence

|Y | =
ν1∑
i=1
|Y ′i| ≥

ν1∑
i=1

|T (j)
i |√
|Z ′i|

.

From Lemma 6 any dominator DY of Y , must be such that

|DY | ≥ min
{

2M,

∑ν1
i=1 |T

(j)
i |∑ν1

i=1
√
|Z ′i|

}
= min

{
2M,

|T (j)|√
|Z ′|

}
.

Hence, we can conclude that any dominator D′′ of T (j) must be such that

|D′′| ≥ min
{

2M, |T (j)|/
√
|Z ′|

}
. (5)

Consider the set D of vertices of GA corresponding to the at most M values stored in
the cache at the beginning of Cj and to the at most gj values loaded into the cache form the
slow memory (resp., written into the slow memory from the cache) during Cj by means of a
read (resp., write) I/O operation. Clearly, |D| ≤M + gj .

In order for the M3/2 values from T (j) to be computed during Cj there must be no path
connecting any vertex in T (j), and, hence, Y , to any input vertex of GA which does not
have at least one vertex in D, that is D has to admit a subset D′′ ⊆ D such that D′′ is a
dominator set of T (j). Note that, as the values corresponding to vertices in T (j) are actually
computed during CJ (i.e., not loaded from memory using a read I/O operation), D′′ does
not include vertices in T (j) itself. Further, as motivated in the previous discussion, D must
include all the vertices in the set D′ corresponding to values of partial accumulators of the
active output values of Type 1 MSPs during Cj .

By construction, D′ and D′′ are vertex-disjoint. Hence, from (4) and (5) we have:

|D| ≥ |D′|+ |D′′| ≥ |Z ′| − |T (j)|/2
√
M + min

{
2M, |T (j)|/

√
|Z ′|

}
.
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As, by construction, |T (j)| = M3/2, we have:

|D| > |Z ′| −M/2 + min
{

2M,M3/2/
√
|Z ′|

}
. (6)

By studying its derivative after opportunely accounting for the minimum, we have that (6)
is minimized for |Z ′| = 2−2/3M . Hence we have: |D| > 2−2/3M + 21/3M3/2 −M/2 =
1.38988157484M . Whence |D| ≤M + gj , which implies gj ≥ |D| −M > 0.38988157484M ,
as stated above.

Case (b): In order for the 4M values from Zj to be computed during Cj there must
be no path connecting any vertex in Zj to any input vertex of GA which does not have
at least one vertex in Dj , that is Dj has to be a dominator set of Zj . From Lemma 7,
any dominator set D of any subset Z ⊆ Z with |Z| ≤ 4M satisfies |D| ≥ |Z|/2, whence
M + gi ≥ |Di| ≥ |Zj |/2 = 2M , which implies gj ≥M as stated above. This concludes the
proof for the sequential case in (1).

The proof for the bound for the parallel model in (2), follows from the observation
that at least one of the P processors, denoted as P ∗, must compute at least |T |/P values
corresponding to vertices in T or |Z|/P values corresponding to vertices in Z (or both).
The bound follows by applying the same argument discussed for the sequential case to the
computation executed by P ∗. J

Note that if A is such that the product is entirely computed using an algorithm from
the standard class (resp., a fast matrix multiplication algorithm), the bounds of Theorem 9
corresponds asymptotically to the results in [25] for the sequential case, and in [24] for the
parallel case (resp., the results in [10]).

For the sub-class of uniform, non stationary algorithms UH (n0) , given the values of n,
M and n0 is possible to compute a closed form expression for the values of ν1, ν2 and |T |.
Then, by applying Theorem 9 we have:

I Theorem 11. Let A ∈ UH (n0) be an algorithm to multiply two square matrices A,B ∈
Rn×n. If run on a sequential machine with cache of size M and such that up to B memory
words stored in consecutive memory locations can be moved from cache to slow memory and
vice versa using a single memory operation, A’s I/O complexity satisfies:

IOA (n,M,B) ≥ max{2n2,

(
n

max{n0, 2
√
M}

)log2 7(
max

{
1, n0

2
√
M

})3
M}B−1 (7)

If run on P processors each equipped with a local memory of size M < n2 and where for each
I/O operation it is possible to move up to Bm memory words, A’s I/O complexity satisfies:

IOA (n,M,Bm, P ) ≥
(

n

max{n0, 2
√
M}

)log2 7(
max

{
1, n0

2
√
M

})3
M

PBm
. (8)

Proof. The proof follows by bounding the values ν1,ν2 and |T | for A ∈ UH (n0) , and by
applying the general result from Theorem 9. To simplify the presentation, in the following we
assume that the values n, n0 and

√
M are powers of two. If that is not the case, the theorem

holds with some minor adjustments to the constant multiplicative factor.
Let let i be the smallest value in N such that n/2i = max{n0, 2

√
M}. By definition of H,

at each of the i recursive levels A generates 7i sub-problems of size n/2i.

If n0 > 2
√
M , A generates ν1 = 7i = 7log2 n/n0 = (n/n0)log2 7 Type 1 MSP each with

input size n0 × n0. As, by Definition 5, the Type 1 MSP are input-disjoint we have
|T | = ν1n0

3 = (n/n0)log2 7
n0

3.
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Otherwise, if n0 ≤ 2
√
M , A generates ν2 = 7i = 7log2 n/2

√
M =

(
n/2
√
M
)log2 7

Type 2
MSP each with input size 2

√
M × 2

√
M .

The statement then follows by applying the result in Theorem 9. J

The constants terms in (7) and (8) hold under the assumption that n, n0 and
√
M are

powers of two. If that is not the case the statement holds with minor adjustments to said
constant factors.

Theorem 11 extends the result by Scott [34] by expanding the class of hybrid matrix
multiplication algorithms being considered (e.g., it does not limit the class of standard matrix
multiplication to the divide and conquer algorithm based on block-partitioning), and by
removing the assumption that no intermediate value may be recomputed.

On the tightness of the bound. An opportune composition of the cache-optimal version
of the Strassen’s algorithm [36] (as discussed in [5]) with the standard cache-optimal divide
and conquer algorithm for square matrix multiplication based on block-partitioning [15]
leads to a sequential hybrid algorithms in H (resp., UH (n0) ) whose I/O cost asymptotically
matches the I/O complexity lower bounds in Theorem 9 (1) (resp., Theorem 11 (7)).

Parallel algorithms in H (resp., UH (n0) ) asymptotically matching the I/O lower bounds in
for the parallel case in Theorem 9 (2) (resp., Theorem 11 (8)) can be obtained by composing
the communication avoiding version of Strassen’s algorithm by Ballard et al. [5] with the
communication avoiding “2.5” standard algorithm by Solomonik and Demmel [35].

Hence, the lower bounds in Theorem 9 and Theorem 11 are asymptotically tight and
the mentioned algorithms form H and UH (n0) whose I/O cost asymptotically match the
lower bounds are indeed I/O optimal. Further, as the mentioned I/O optimal algorithms
from H and UH (n0) do not recompute any intermediate value, we can conclude that using
recomputation may lead to at most a constant factor reduction of the I/O cost of hybrid
algorithms in H and UH (n0) . Note that the replication of the input used by the mentioned
algorithms as recomputation it should be considered as repeated access to the input values,
and not as recomputation.

Generalization to fast matrix multiplication model with base other than 2 × 2. The
general statement of Theorem 9 can be extended by enriching H to include any fast Strassen-
like algorithm with base case other than 2× 2 provided that the associated encoder CDAG
satisfies properties equivalent to those expressed by Lemma 3 (i.e., the input disjointedness
of the sub-problems generated at each recursive step) and Lemma 4 (i.e., the connectivity
between input and output of the encoder CDAGs via vertex disjoint paths) for the 2× 2 base.
If these properties hold, so does the general structure of Theorem 9, given an opportune
adjustment of the definition of maximal sub-problem.

7 Conclusion

This work contributed to the characterization of the I/O complexity of hybrid matrix multi-
plication algorithms combining fast Strassen-like algorithms with standard algorithms. We
established asymptotically tight lower bounds that hold even when recomputation is allowed.
The generality of the technique used for the analysis makes it promising for the analysis of
other hybrid recursive algorithms, e.g., hybrid algorithms for integer multiplication [11].
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