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Abstract
The disjoint set cover (DSC) problem is a fundamental combinatorial optimization problem concerned
with partitioning the (hyper)edges of a hypergraph into (pairwise disjoint) clusters so that the number
of clusters that cover all nodes is maximized. In its online version, the edges arrive one-by-one and
should be assigned to clusters in an irrevocable fashion without knowing the future edges. This
paper investigates the competitiveness of online DSC algorithms. Specifically, we develop the first
(randomized) online DSC algorithm that guarantees a poly-logarithmic (O(log2 n)) competitive ratio
without prior knowledge of the hypergraph’s minimum degree. On the negative side, we prove that
the competitive ratio of any randomized online DSC algorithm must be at least Ω( log n

log log n
) (even if

the online algorithm does know the minimum degree in advance), thus establishing the first lower
bound on the competitive ratio of randomized online DSC algorithms.
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1 Introduction

1.1 Model and Problem Statement
A hypergraph G = (V,E) consists of a set V of nodes and a multiset E of hyperedges (or
simply edges), where each edge is a non-empty subset of V .1 Unless stated otherwise, we
denote n = |V | and m = |E|.

The input to the disjoint set cover (DSC) problem is a hypergraph G = (V,E) and the
output is a color assignment C : E → Z>0 to the edges in E. The objective is to maximize
the number of colors c ∈ Z>0 that cover V , where color c is said to cover V (a.k.a. a covering
color) if the union over all edges e ∈ E with color C(e) = c equals V . (The DSC problem

1 The problem we address in this paper is often defined in terms of the equivalent set system terminology,
where the nodes in V are identified with the elements of some abstract universe and the edges in E are
simply referred to as sets or subsets.
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44:2 Online Disjoint Set Cover Without Prior Knowledge

should not be confused with the classic hypergraph edge coloring problem that also involves
assigning colors to the edges. In particular, in the DSC context, it is not required that edges
with the same color are disjoint.)

In the online DSC problem, the nodes in V are known in advance while the edges in
E, assumed hereafter to be totally ordered with edges indexed as E = {e1, . . . , em}, arrive
sequentially in an online fashion so that edge et, 1 ≤ t ≤ m, arrives at time t. An online
DSC algorithm should decide on the color C(et) at (or immediately after) time t, without
knowing the future edges et+1, . . . , em, and this decision is irrevocable.

Let Alg(G) be the number of covering colors obtained by (online or offline) DSC algorithm
Alg when invoked on hypergraph G. Following the common practice in the realm of online
computation (cf. [4]), we measure the quality of online DSC algorithms by means of competitive
analysis. A deterministic online DSC algorithm Alg is α-competitive if for every n, there
exists some β = β(n) ≥ 0 such that for every n-node hypergraph G, it holds that

Alg(G) ≥ Opt(G)
α

− β , (1)

where Opt is an optimal offline algorithm. A randomized online DSC algorithm Alg is
α-competitive in expectation if the bound in (1) holds in expectation; if this bound also holds
with high probability (abbreviated whp), then Alg is said to be α-competitive whp.2 We
emphasize that these probabilistic statements should hold with respect to the coin tosses
of Alg, making no assumptions on the input edge sequence. Notice that since DSC is a
maximization problem, it follows that if Alg is α-competitive whp, then it is O(α)-competitive
in expectation. We refer to α as the online algorithm’s competitive ratio and say that this
competitive ratio is pure if the bound in (1) holds with β = 0 and impure otherwise.

By definition, the minimum degree δ = minv∈V |{e ∈ E : v ∈ e}| of hypergraph G = (V,E)
serves as an obvious upper bound on Opt(G). Recalling that E may exhibit edge multiplicities,
we emphasize that δ (and Opt(G)) may become arbitrarily large with respect to n as the
length m of the input edge sequence increases. To a large extent, this fact is what makes
the online DSC problem interesting: if δ would have been bounded as a function of n,
then one could have included it in the additive term β and trivially obtain an (impure)
competitive ratio of 1.

1.2 Background and Related Work
The DSC problem is a fundamental combinatorial optimization problem with many ap-
plications in both the offline and online domains. These applications include scheduling
the operation of sensors in sensor networks, allocating servers to users in file systems, and
assigning users to tasks in crowd-sourcing platforms; refer to [9] for more details. The offline
version of the problem is known to be NP-hard and it can be approximated to within an
asymptotically tight O(logn) approximation ratio [10].

The rigorous study of the online DSC problem was initiated by Pananjady et al. [9].3
They first prove that a deterministic online DSC algorithm that does not hold a prior

2 Throughout this paper, we say that event A holds whp if P(A) ≥ 1 − n−z for an arbitrarily large
constant z.

3 The authors of [9] also define the DSC problem in terms of a hypergraph, however, in that paper, the
role of the nodes and edges is reversed so that the nodes in V arrive in an online fashion, each reporting
the edges in E to which it belongs. To avoid confusion, we discuss the results of [9] using the current
paper’s model that follows the common convention in the literature on online and streaming hypergraph
algorithms (see, e.g., [12, 7, 8, 6]), where the hypergraph objects that arrive in an online fashion are the
edges in E.
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knowledge of the minimum degree δ cannot admit a pure competitive ratio better than Ω(n).4
Following that, Pananjady et al. focus their attention on online algorithms that know δ (or an
approximation thereof) in advance and develop a deterministic purely O(logn)-competitive
online DSC algorithm. They also establish an Ω(

√
logn) lower bound on the (impure)

competitive ratio of any such algorithm.
The DSC problem can be viewed as a (maximization) extension of the classic (minimiza-

tion) set cover problem, where (using our hypergraph terminology) the goal is to construct
a covering edge subset of minimum size. In its online version, the hypergraph G = (V,E)
is known in advance, but only a subset V ′ ⊆ V of the nodes should be covered. Those are
revealed one-by-one in an online fashion and must be covered immediately upon arrival.
Using the online primal-dual technique (see [5]), Alon et al. [1] developed a (deterministic)
online algorithm for this problem with competitive ratio O(logn logm). They also proved
that this is optimal up to an O(logn+ logm) factor.

1.3 Our Contribution
Our goal in this paper is to lift the assumption that the minimum degree δ is known in
advance, aiming for online DSC algorithms that do not hold any initial knowledge of that
hypergraph parameter, referred to hereafter as δ-oblivious online algorithms. As a warm
up, we develop a simple deterministic δ-oblivious online algorithm with linear (in n) pure
competitive ratio, thus matching the Ω(n) lower bound of [9]. Nevertheless, we wish to
obtain a sublinear competitiveness which means that our online algorithms must be either
randomized or admit an impure competitive ratio (or both). We advocate for this compromise:
randomization as well as impure competitiveness are omnipresent in the online computation
literature and seem like a small price to pay for lifting the often unrealistic assumption that
the online algorithm knows the parameter δ in advance, recalling that this parameter would
typically increase with the length of the input sequence.

The main technical contribution of the current paper is twofold: On the positive side, we
develop a randomized δ-oblivious online DSC algorithm and prove that it is purely O(log2 n)-
competitive in expectation and impurely O(log2 n)-competitive whp. On the negative side,
we prove that no randomized online DSC algorithm can have impure competitive ratio better
than Ω(logn/ log logn) in expectation or whp. Interestingly, this result holds even for online
algorithms that know δ in advance, thus improving upon the Ω(

√
logn) lower bound of [9]. A

comparison between the results of [9] and those established in the current paper is presented
in Table 1.

1.4 Paper’s Organization
The remainder of this paper is organized as follows. Following some preliminaries in Section 2,
we present our simple deterministic δ-oblivious online DSC algorithm in Section 3, where
we also prove that it is O(n)-competitive. Section 4 is then dedicated to our main positive
result: a randomized δ-oblivious online DSC algorithm with competitive ratio O(log2 n).
The Ω(log(n)/ log logn) lower bound on the competitiveness of randomized online DSC
algorithms is established in Section 5. Finally, Section 6 is dedicated to some open questions.

4 This negative result is obtained on hypergraphs whose δ parameter is proportional to n and the authors
of [9] state it as an Ω(δ) lower bound. We prefer to view it as an Ω(n) lower bound since in the current
paper, all competitive ratio bounds are expressed as a function of n, and since it does not rule out the
existence of a deterministic online DSC algorithm with pure competitive ratio O(n) that works even for
instances with δ � n (see Section 1.3).

ESA 2019
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Table 1 A comparison between the existing state of the art (top cell in each table entry) and the
new results established in the current paper (bottom cell in each table entry). Empty cells indicate
the lack of known results or lack of improvement over the existing results.

known δ unknown δ
up. bound low. bound up. bound low. bound

deterministic
pure O(logn) Ω

(√
logn

)
Ω(n)

Ω
(

logn
log logn

)
O(n)

impure O(logn) Ω
(√

logn
)

Ω
(√

logn
)

Ω
(

logn
log logn

)
O(n) Ω

(
logn

log logn

)

rand. whp
pure O(logn)

Ω
(

logn
log logn

)
O(n) Ω

(
logn

log logn

)
impure O(logn)

Ω
(

logn
log logn

)
O
(
log2 n

)
Ω
(

logn
log logn

)

rand. in expect.
pure O(logn)

Ω
(

logn
log logn

)
O
(
log2 n

)
Ω
(

logn
log logn

)
impure O(logn)

Ω
(

logn
log logn

)
O
(
log2 n

)
Ω
(

logn
log logn

)

2 Preliminaries

Consider some hypergraph G = (V,E). Given node v ∈ V , let E(v) = {e ∈ E | v ∈ e} be the
set of edges that contain v and define the degree of v in G to be the size of this set, denoted
by d(v) = |E(v)|. Let δ = minv∈V d(v) denote the minimum degree in G.

For 1 ≤ t ≤ m, let Et = {e1, . . . , et} be the set of edges that arrive up to (including) time
t. Let Et(v) = Et ∩ E(v) and let dt(v) = |Et(v)| be the degree of node v in the hypergraph
(V,Et). Define ηt = minv∈et

dt(v) to be the minimum degree, at time t, among the nodes
included in edge et.

Recall that the goal in the DSC problem is to assign some color C(e) ∈ Z>0 to each edge
e ∈ E. Color c ∈ Z>0 is said to cover node v ∈ V if C(e) = c for some edge e ∈ E(v). Cast
in this terminology, the objective of the DSC problem is to maximize the number of covering
colors, that is, the colors that cover every v ∈ V (see Section 1.1).

Given two integers x ≤ x′, let [x, x′] denote the set of integers y satisfying x ≤ y ≤ x′

and let [x] = [1, x]. We generalize this notation to x ∈ R>1 by defining [x] = [dxe]. (The
notation [x, x′] is reserved in the current paper only for integral x and x′.) A log(·) operator
with an unspecified base refers to log2(·).

Concentration Bounds

Binary random variables X1, . . . , Xk are said to be non-positively correlated if the following
two properties hold for any I ⊆ [k]:5
(a) P

(∧
i∈I Xi = 0

)
≤
∏
i∈I P(Xi = 0); and

(b) P
(∧

i∈I Xi = 1
)
≤
∏
i∈I P(Xi = 1).

The following theorem, referred to as Chernoff’s bounds for non-positively correlated random
variables, was proved in [11] (see also [3]).

5 In some literature, the term negatively correlated is used instead of non-positively correlated.
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I Theorem 2.1. Let X1, . . . , Xk be non-positively correlated binary random variables and
let 0 ≤ a1, . . . , ak ≤ 1. Let X =

∑
i∈[k] aiXi and let µ = E(X). Then,

P(X ≤ (1− δ)µ) ≤ exp(−δ2µ/2) for any 0 ≤ δ ≤ 1; and
P(X ≥ d) ≤ 2−d for any d ≥ 6µ.

Notice that independent random variables are, in particular, non-positively correlated.
Indeed, by replacing the requirement that the random variables X1, . . . , Xk are non-positively
correlated by the requirement that they are independent, one obtains (two of) the classic
Chernoff bounds.

3 Warmup: a Deterministic Greedy Algorithm

We begin with a simple δ-oblivious deterministic online DSC algorithm, referred to as
Greedy, whose competitive ratio is purely O(n), thus matching the Ω(n) lower bound of
[9] for such algorithms. For each color c ∈ Z>0, the algorithm maintains the variable Ut(c)
defined to be the set of all nodes covered by the edges in Et whose color is c, that is,
Ut(c) =

⋃
1≤t′≤t:C(et′ )=c et′ .

Greedy uses the Ut−1(·) variables to decide on the color assignment of edge et, 1 ≤ t ≤ m,
setting C(et) to be the smallest color c ∈ Z>0 such that et * Ut−1(c). This can be viewed as
coloring et with the smallest color whose cover “benefits” from this assignment. The analysis
of Greedy’s competitive ratio relies on the following two observations.

I Observation 3.1. If δ ≥ 1, then Greedy(G) ≥ 1.

Proof. Follows immediately from the greedy nature of the algorithm that colors edge et with
color C(et) = 1 if et contains a node that does not belong to any edge e1, . . . , et−1. J

I Observation 3.2. Greedy colors at most n edges with color c for every c ∈ Z>0.

Proof. If edge et is assigned with color c, then |Ut(c)| ≥ |Ut−1(c)|. The assertion follows
since Ut(c) ⊆ V for every 1 ≤ t ≤ m. J

We are now ready to prove the following theorem.

I Theorem 3.3. Greedy is purely O(n)-competitive.

Proof. If d(v) = 0 for some node v ∈ V , then clearly Greedy(G) = Opt(G) = 0, so assume
hereafter that δ ≥ 1. We argue that Greedy(G) ≥ bδ/nc. Combined with Observation 3.1,
this implies that

Greedy(G) ≥ max{1, δ/n− 1} ≥ max{1, Opt(G)/n− 1} ≥ Opt(G)/(2n) ,

thus establishing the assertion. To that end, consider some node v ∈ V and recall that
Observation 3.2 ensures that each color c ∈ Z>0 is assigned to at most n edges in E(v).
Therefore, there must exist at least bd(v)/nc ≥ bδ/nc colors c ∈ Z>0 that cover v. Due to
the greedy nature of the algorithm, we deduce that the colors 1, . . . , bδ/nc cover v which
establishes the assertion since this is true for every v ∈ V . J

ESA 2019
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4 The Main Algorithm

In this section, we present our main positive contribution: a randomized δ-oblivious online
DSC algorithm, referred to as Oblv. We start by providing an intuitive overview for this
algorithm in Section 4.1. The algorithm itself is then presented in Section 4.2. In Section 4.3,
we establish a combinatorial lemma regarding the online DSC problem in general. This
lemma plays a key role in Section 4.4, where we prove that Oblv is O(log2 n)-competitive in
expectation. Finally, the proof presented in Section 4.4 is extended in Section 4.5 to show
that the same (asymptotic) competitive ratio bound holds also whp.

4.1 Technical Challenges and Intuition

Pananjady et al. [10] developed a randomized offline DSC algorithm that on hypergraph
G = (V,E), simply colors each edge e ∈ E by a color C(e) picked uniformly at random
(abbreviated hereafter by uar) from the palette P = [Θ(δ/ logn)]. Since the degree d(v)
of every node v ∈ V is at least δ, it is easy to see that each color c ∈ P covers v whp,
hence, by the union bound, c covers all V whp. Using standard arguments, one can conclude
that the expected number of covering colors is at least Ω(|P |) = Ω(δ/ logn), which is an
O(logn)-approximation as δ ≥ Opt(G).

In [9], Pananjady et al. observed that the offline algorithm of [10] can be implemented as
an online algorithm assuming that δ is known in advance. Their main technical contribution
was then to derandomize this randomized algorithm by employing the method of conditional
expectation (see, e.g., [2]), carefully adjusted to work in an online fashion.

In contrast, in the current paper we aim for a δ-oblivious online algorithm and hence,
cannot use P = [Θ(δ/ logn)] as the palette from which a color is picked for each edge
et ∈ E. Instead, we estimate δ by the parameter ηt = minv∈et

dt(v) that can be calculated
at time t as it depends only on information that was already exposed to the algorithm. The
combinatorial key to our algorithm is that (at least) a constant fraction of the edges et that
contain node v ∈ V satisfy ηt ≥ Ω(d(v)/n). This means that we can identify (in hindsight) a
sufficiently large subset of the edges et ∈ E(v) for which Ω(δ/n) ≤ ηt ≤ δ, or equivalently,
log ηt ≤ log δ ≤ log ηt +O(logn).

We rely on this combinatorial insight for the design of Oblv: Upon arrival of edge
et, the algorithm assigns the variable rt to be an integer picked uar from the integers
in the range [log ηt, log ηt + O(logn)], thus ensuring that 2rt is a constant approximation
of δ with probability Ω(1/ logn). The algorithm then uses 2rt to construct the palette
Pt = [Ω(2rt/ log2 n)] from which the color C(et) of edge et is picked (uar), where the role
of the extra logn factor in the denominator is to account for the probability that 2rt is a
good estimate for δ. The rest of the analysis follows the aforementioned line of arguments,
concluding that Oblv is O(log2 n)-competitive in expectation.

For whp competitiveness we have to work a little bit harder though. While we identify
(in hindsight) a palette P of size Θ(δ/ log2 n) such that each color c ∈ P covers V whp, the
number of such colors may be too large to apply the union bound over all of them, thus we
cannot simply argue that all colors in P cover V (simultaneously) whp. Instead, we show
that for each node v ∈ V , the random variables that indicate the events that color c ∈ P does
not cover v are non-positively correlated. By applying the Chernoff bound for non-positively
correlated random variables, we conclude that at most a (1/(2n))-fraction of the colors in P
do not cover v whp, hence the total number of colors in P that do not cover the whole of V
is at most |P |/2 whp.
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4.2 Algorithm’s Description
Algorithm Oblv works as follows. Upon arrival of edge et, 1 ≤ t ≤ m, the algorithm calculates
ηt = minv∈et

dt(v) and `t = dlog ηte and then assigns the variable rt to an integer picked uar
from the set [`t, `t + dlog(n− 1)e+ 2]. Following that, the color C(et) of edge et is picked uar
from the palette Pt =

[
ξ · 2rt/ log2 n

]
, where ξ > 0 is a constant whose value is determined

(implicitly) later on. A pseudocode description of Oblv is provided in Algorithm 1.

Algorithm 1 The operation of Oblv upon arrival of edge et, 1 ≤ t ≤ m.
1: ηt ← minv∈et

dt(v)
2: `t ← dlog ηte
3: pick rt uar from [`t, `t + dlog(n− 1)e+ 2]
4: Pt ←

[
ξ · 2rt/ log2 n

]
. ξ > 0 is a constant

5: color edge et with color C(et) picked uar from Pt

4.3 A Combinatorial Lemma
Fix some node v ∈ V . Edge et ∈ E(v) is said to be heavy (for v) if

dt(v) ≤ 2(n− 1)ηt ;

otherwise, we say that it is light (for v).

I Lemma 4.1. For every time 1 ≤ T ≤ m, more than dT (v)/2 of the edges in ET (v)
are heavy.

Proof. Consider the edge sequence σ = (e1, . . . , eT ). By the definition of ηt, edge et ∈ ET (v)
is light if and only if there exists some node u ∈ et − {v} whose degree at time t satisfies
dt(u) < dt(v)/(2(n− 1)). On an intuitive level, this means that the challenge in constructing
an edge sequence σ that contradicts the assertion, is to increase the degree of v while keeping
the degrees of the other nodes small, thus enabling the generation of many light edges with
few heavy edges. We employ this intuition to make the following simplifying assumptions.

The first assumption we make for the sake of simplifying the proof is that v is contained
in all edges of the sequence σ, that is, ET (v) = ET . This assumption is clearly without loss
of generality since the existence of an edge et that does not contain v (and hence is neither
heavy nor light) increases the degrees of the nodes in et without increasing the degree of v.

Next, notice that all singleton edges of the form et = {v} are heavy. The second
assumption we make for the sake of simplifying the proof is that every heavy edge et in σ is
a singleton, i.e., et = {v}. To see that this assumption is without lose of generality, suppose
that et includes additional nodes u 6= v and consider the edge sequence σ′ obtained from σ by
removing these nodes u from et. Comparing σ′ to σ, one observes that dt′(u) decreases and
dt′(v) remains unchanged for every t′ ≥ t, thus if σ contradicts the assertion, then so does σ′.

The third assumption we make for the sake of simplifying the proof is that every light
edge et in σ is of size |et| = 2. To see that this assumption is without lose of generality,
suppose that et is light with |et| ≥ 3 and let u be a node of minimum degree dt(u) in et.
Consider the edge sequence σ′ obtained from σ by removing from et any node u′ ∈ et−{v, u}.
Comparing σ′ to σ, one observes that edge et remains light (due to the existence of u) while
dt′(u′) decreases and dt′(v) remains unchanged for every t′ ≥ t, thus if σ contradicts the
assertion, then so does σ′.

ESA 2019
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The fourth assumption we make for the sake of simplifying the proof is that σ is composed
of a prefix of heavy edges followed by a suffix of light edges; i.e., there exists some 1 ≤ t̂ ≤ T
such that edge et is heavy if 1 ≤ t ≤ t̂ and light if t̂+ 1 ≤ t ≤ T . To see that this assumption
is without loss of generality, suppose that there exists some 1 ≤ t ≤ T − 1 such that edge
et = {v, u} is light and edge et+1 = {v} is heavy and consider the edge sequence σ′ obtained
from σ by swapping between et and et+1. By construction, this swap does not turn et (now
arriving at time t+ 1) into a heavy edge as du(t+ 1) = du(t) and dv(t+ 1) > dv(t), thus if
σ contradicts the assertion, then so does σ′. Our assumption is now justified by repeating
these swap operations.

So, based on the aforementioned four assumptions, the edge sequence σ = (e1, . . . , eT )
consists of a prefix (e1, . . . , et̂) of heavy edges of the form et = {v} and a suffix (et̂+1, . . . , eT )
of light edges of the form et = {v, u} for some node u 6= v referred to hereafter as the extra
node of edge et. The fifth and last assumption we make for the sake of simplifying the
proof is that the degrees of the extra nodes are monotonically non-decreasing; that is, if u
is the extra node of edge et, t̂+ 1 ≤ t ≤ T − 1, and u′ is the extra node of edge et+1, then
dt(u) ≤ dt+1(u′). To see that this assumption is without loss of generality, suppose that
dt(u) > dt+1(u′) and consider the edge sequence σ′ obtained from σ by swapping between et
and et+1. By construction, since et and et+1 are light in σ, they are also light in σ′, thus if
σ contradicts the assertion, then so does σ′. Our assumption is now justified by repeating
these swap operations.

Observe that the last simplifying assumption implies that if u is the extra node of edge
et, t̂+ 1 ≤ t ≤ T , and there exists some node u′ /∈ {v, u} with dt−1(u′) < dt−1(u), then u′
does not appear as the extra node of any edge et′ , t ≤ t′ ≤ T . This observation allows us to
conclude that if u is the extra node of edge et, t̂+ 1 ≤ t ≤ T , then dt(u) ≥ (t− t̂)/(n− 1).

We are now ready to establish the assertion by proving that t̂ > T/2. To that end, recall
that by the definition of a light edge, if u is the extra node of edge et, t̂+ 1 ≤ t ≤ T , then

dt(u) < dt(v)
2(n− 1) = t

2(n− 1) .

Put together with the bound dt(u) ≥ (t − t̂)/(n − 1), we conclude that t/2 > t − t̂ which
holds if and only if t̂ > t/2, thus completing the proof by taking t = T . J

I Corollary 4.2. For every time 1 ≤ T ≤ m, if dT (v) ≥ z, then∣∣∣∣{et ∈ ET (v) | ηt >
z

8(n− 1)

}∣∣∣∣ > z/4 .

Proof. Let et(1), . . . , et(z) be the first z edges in the sequence (e1, . . . , eT ) that contain node v,
ordered so that t(1) < · · · < t(z) (we know that these z edges exist as dT (v) ≥ z). Lemma 4.1
ensures that more than z/2 of the edges et(j), 1 ≤ j ≤ z, are heavy (for v), hence even
if all edges in

{
et(j) | 1 ≤ j ≤ z/4

}
are heavy, we still have more than z/4 heavy edges in

H =
{
et(j) | z/4 < j ≤ z

}
. Since dt(j)(v) = j > z/4 for every edge et(j) ∈ H, it follows that

more than z/4 of the edges et(j) ∈ H satisfy ηt(j) > z/(8(n − 1)), thus establishing the
assertion. J

4.4 Competitiveness in Expectation
We now turn to bound the competitive ratio of Oblv in expectation, based on Corollary 4.2.
Let w = blog δc and let

P =
[
ξ · 2w/ log2 n

]
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be the palette from which Oblv picks a color C(et) (uar) when the random variable rt is
assigned to rt = w. Given node v ∈ V , let

T (v) = min {1 ≤ t ≤ m | dt(v) = 2w}

be the first time t at which the degree of v reaches 2w ≤ δ. Let

F (v) =
{
et ∈ ET (v)(v) | ηt >

2w

8(n− 1)

}
,

recalling that ET (v)(v) is the set of edges et ∈ E(v) with 1 ≤ t ≤ T (v), and let

Fw(v) = {et ∈ F (v) | rt = w}

be the (random) set of edges et in F (v) for which Oblv picks a color (uar) from the palette P .

I Lemma 4.3. If δ ≥ Ω(log2 n), then |Fw(v)| ≥ Ω(δ/ logn) whp for every node v ∈ V .

Proof. Consider some edge et ∈ F (v) and let At denote the event et ∈ Fw(v). By definition,

2w

8(n− 1) < ηt ≤ dt(v) ≤ 2w ,

hence

w − (log(n− 1) + 3) < log ηt ≤ w .

Since w is an integer, it follows that

w − (dlog(n− 1)e+ 2) ≤ `t ≤ w ,

where recall that `t = dlog ηte. Therefore, w ∈ [`t, `t + dlog(n− 1)e+ 2] and by the design
of the algorithm, we conclude that rt is assigned to w with probability 1/(dlog(n− 1)e+ 3)
implying that P(At) ≥ Ω(1/ logn).

Corollary 4.2 guarantees that |F (v)| > 2w/4 ≥ Ω(δ), hence

E (|Fw(v)|) =
∑

et∈F (v)

P(At) ≥ Ω(δ/ logn) .

If δ ≥ Ω(log2 n), then E(|Fw(v)|) ≥ Ω(logn), therefore, as the events At are independent,
we can apply Theorem 2.1 to conclude that |Fw(v)| ≥ Ω(δ/ logn) whp. J

I Corollary 4.4. Fix some color c ∈ P . If δ ≥ Ω(log2 n), then c covers v whp for every
node v ∈ V .

Proof. Lemma 4.3 ensures that |Fw(v)| ≥ Ω(δ/ logn) whp; condition hereafter on this event.
The algorithm is designed so that each edge et ∈ Fw(v) is colored C(et)← c with probability
1/|P | = Ω(log2(n)/δ). Therefore, the probability that none of the edges in Fw(v) is colored
c is at most(

1− Ω
(
log2(n)/δ

))Ω(δ/ logn) ≤ exp(−Ω(logn)) ,

thus establishing the assertion. J

We are now ready to establish the desired competitive ratio bound.
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I Theorem 4.5. Oblv is (impurely) O(log2 n)-competitive in expectation.

Proof. We prove the assertion by showing that

E (Oblv(G)) ≥ Ω
(
Opt(G)/ log2 n

)
− 1 .

This bound holds trivially if Opt(G) ≤ δ ≤ O(log2 n), so assume that δ ≥ Ω(log2 n). Applying
the union bound to the promise of Corollary 4.4, we conclude that color c ∈ P covers all
nodes in V whp and, in particular, with probability at least (say) 1/2. Therefore, by the
linearity of expectation,

E(Oblv(G)) ≥ |P | /2 ≥ Ω
(
δ/ log2 n

)
≥ Ω

(
Opt(G)/ log2 n

)
, (2)

thus completing the proof. J

Recall that in Section 3, we presented the deterministic online DSC algorithm Greedy
whose competitive ratio is purely O(n). By combining it with Oblv, we can turn the
competitive ratio bound promised by Theorem 4.5 into a pure one. To that end, consider
the online algorithm Oblvp that runs Oblv with probability 1/2 and Greedy with probability
1/2. If δ = 0, then clearly Opt(G) = Oblvp(G) = 0. If δ ≥ Ω(log2 n), then

E(Oblvp(G)) ≥ E(Oblv(G))/2 ≥ Ω(Opt(G)/ log2 n) ,

where the last transition holds due to (2). If 1 ≤ δ ≤ O(log2 n), then

E(Oblvp(G)) ≥ Greedy(G)/2 ≥ 1/2 ≥ Ω(Opt(G)/ log2 n) ,

where the second transition holds due to Observation 3.1. Put together, we obtain the
following corollary.

I Corollary 4.6. Oblvp is purely O(log2 n)-competitive in expectation.

4.5 Competitiveness with High Probability
We now turn to show that the competitive ratio bound established in Section 4.4 holds also
whp (though not purely). For node v ∈ V and color c ∈ P , define the random variable
Xv(c) to be an indicator for the event that color c does not cover v, namely, Xv(c) = 1 if
and only if C(et) 6= c for all edges et ∈ E(v). Recall that Corollary 4.4 guarantees that if
δ ≥ Ω(log2 n), then

E (Xv(c)) ≤ n−z (3)

for an arbitrarily large constant z.
The analysis in this section relies on proving that the random variables Xv(·) are non-

positively correlated (Lemma 4.8), based on the following observation.

I Observation 4.7. For every node v ∈ V , color subset Q ⊂ P , and color c′ ∈ P −Q, we
have
(a) P

(∧
c∈QX

v(c) = 0 | Xv(c′) = 0
)
≤ P

(∧
c∈QX

v(c) = 0
)
; and

(b) P
(∧

c∈QX
v(c) = 1 | Xv(c′) = 1

)
≤ P

(∧
c∈QX

v(c) = 1
)
.
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Proof. To see that property (a) holds, notice that if Xv(c′) = 0, then at least one edge in
E(v) is colored c′ which means that there is one less edge available for the colors in Q, hence
P
(∧

c∈QX
v(c) = 0

)
decreases. To see that property (b) holds, notice that if Xv(c′) = 1,

then none of the edges in P is colored c′ which means that there is one less color in P to
compete with the colors in Q, hence P

(∧
c∈QX

v(c) = 1
)
decreases. J

I Lemma 4.8. For every node v ∈ V , the random variables Xv(c), c ∈ P , are non-positively
correlated.

Proof. Fix some Q ⊆ P . We prove that P
(∧

c∈QX
v(c) = 0

)
≤
∏
c∈Q P(Xv(c) = 0); the

proof that P
(∧

c∈QX
v(c) = 1

)
≤
∏
c∈Q P(Xv(c) = 1) is analogous. To that end, we let

Q = {c1, . . . , ck} and prove by induction on k that

P

(
k∧
i=1

Xv(ci) = 0
)
≤

k∏
i=1

P (Xv(ci) = 0) .

The case k = 1 holds trivially, so assume that the inequality holds for k − 1 and develop

P

(
k∧
i=1

Xv(ci) = 0
)

=P

(
k−1∧
i=1

Xv(ci) = 0 | Xv(ck) = 0
)
· P (Xv(ck) = 0)

≤P

(
k−1∧
i=1

Xv(ci) = 0
)
· P (Xv(ck) = 0)

≤
k−1∏
i=1

P (Xv(ci) = 0) · P (Xv(ck) = 0) =
k∏
i=1

P (Xv(ci) = 0) ,

where the second transition follows from Observation 4.7 and the third transition holds due
to the inductive hypothesis. J

Assume hereafter that δ ≥ z′n log3 n for a sufficiently large constant z′ which means that
|P | ≥ 2zn logn for a constant z that can be made arbitrarily large. Consider some node
v ∈ V and let Xv =

∑
c∈P X

v(c). Applying the linearity of expectation to (3), we deduce
that E(Xv) ≤ |P | · n−z for an arbitrarily large constant z. Lemma 4.8 allows us to apply
Theorem 2.1, thus obtaining the bound

P
(
Xv ≥ |P |2n

)
≤ 2−|P |/(2n) ≤ 2−2zn logn/(2n) = n−z (4)

for an arbitrarily large constant z. We are now ready to establish the desired competitive
ratio bound.

I Theorem 4.9. Oblv is (impurely) O(log2 n)-competitive whp.

Proof. We prove the assertion by showing that

Oblv(G) ≥ Ω
(
Opt(G)/ log2 n

)
−O(n logn)

whp. This bound holds trivially if Opt(G) ≤ δ < z′n log3 n (recall that z′ is a constant), so
assume that δ ≥ z′n log2 n which means that the bound in (4) holds for every node v ∈ V .
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Let X be the random variable that takes on the number of colors in P that do not
cover V . Notice that by the definition of Xv, we know that X ≤

∑
v∈V X

v. Applying the
union bound over all nodes to (4), we conclude that Xv < |P |/(2n) for all nodes v ∈ V
simultaneously whp; condition hereafter on this event. We can now develop

X ≤
∑
v∈V

Xv < |P |/2

which means that Oblv(G) > |P |/2. The assertion follows since |P | ≥ Ω(δ/ log2 n). J

5 Lower Bound

This section is dedicated to our main negative result: there does not exist a randomized
online DSC algorithm with (impure) competitive ratio better than Ω(log(n)/ log logn) in
expectation (and thus also whp). This lower bound is derived from the following theorem by
Yao’s min-max principle.

I Theorem 5.1. For every n0 and δ0, there exist n ≥ n0, δ ≥ δ0, and a distribution D over
n-node hypergraphs with minimum degree δ such that (1) Opt(G) = δ for every hypergraph
G in the support of D; and (2) EG∼D(Alg(G)) ≤ O

(
δ log logn

logn

)
for any deterministic online

DSC algorithm Alg.

Theorem 5.1 is established in two stages. First, in Section 5.1, we construct the promised
distribution D for the special case that δ = Θ(log(n)/ log logn) (and Alg(G) ≤ O(1)).
Then,in Section 5.2, we show how this construction is extended for arbitrarily large values of
the parameter δ

5.1 The Basic Construction
Let q = 22z for an arbitrarily large integer z and let r = q/(2 log q) (an integer by the choice
of q). Each hypergraph in the support of D has 2q nodes, q + r edges, and minimum degree
δ = r. We present the construction of a random hypergraph G = (V,E) in D and then show
that Opt(G) = r, whereas

EG (Alg(G)) < 3 (5)

for any deterministic online DSC algorithm Alg, thus establishing Theorem 5.1 under the
restriction that δ = Θ(log(n)/ log logn).

The nodes in V are identified with the vectors in {0, 1}q. The edges in E arrive in the
form of a deterministic prefix ep1, . . . , epq followed by a random suffix es1, . . . , esr. The prefix is
defined by setting

epi = {v ∈ {0, 1}q | v(i) = 1}

for every i ∈ [q]. For the suffix, we pick a partition S = {S1, . . . , Sr} of [q] into r equally
sized clusters (each of size |S`| = q/r = 2 log q) uar among the collection of all such partitions.
The suffix is then defined by setting

es` = {v ∈ {0, 1}q | v(i) = 0 for all i ∈ S`}

for every ` ∈ [r]. Refer to Figure 1 for an illustration of the suffix edges.

I Lemma 5.2. The hypergraph G satisfies Opt(G) = δ = r.
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Figure 1 The construction of the suffix edges for q = 16 assuming that the random partition
S = {S1, S2} consists of the clusters S1 = {4, 5, 6, 7, 8, 12, 13, 16} and S2 = {1, 2, 3, 9, 10, 11, 14, 15}.
The × symbol represents a ’dont-care’ vector entry, i.e., it can be a 0 or a 1.

Proof. Since the zero vector v0 = (0, . . . , 0) is included in all suffix edges es` , ` ∈ [r] and
is not included in any prefix edge vpi , i ∈ [q], it follows that δ ≤ d(v0) = r. The proof is
completed by showing that Opt(G) ≥ r, recalling that Opt(G) ≤ δ.

Consider the color assignment C∗ : E → [r] that colors each suffix edge es` , ` ∈ [r], by
color C∗(es`) = ` and each prefix edge epi , i ∈ [q], by color C∗(epi ) = `(i) defined to be the
unique ` ∈ [r] that satisfies i ∈ S` (this is well defined since S = {S1, . . . , Sr} is a partition
of [q]). We argue that under color assignment C∗, color ` covers V for every ` ∈ [r]. Indeed,
if vector v ∈ {0, 1}q is not included in es` , then v(i) = 1 for some i ∈ S`, hence v is included
in edge epi . This means that `(i) = `, thus C∗(epi ) = `. The assertion follows. J

The rest of this section is dedicated to proving that (5) holds. Fix some deterministic
DSC algorithm Alg. We assume that Alg uses only (a subset of) the colors in [q]. To see that
this assumption is without loss of generality, notice that if color c ∈ Z>0 is not assigned to
any prefix edge epi , i ∈ [q], then it cannot cover V since the vector (1, . . . , 1) is not included
in any suffix edge.

So, let C : E → [q] be the color assignment returned by Alg. Color c ∈ [q] is said to
be heavy, if it is assigned to at least q/2 prefix edges, i.e., |{i ∈ [q] | C(epi ) = c}| ≥ q/2;
otherwise, it is said to be light. By definition, there exists at most 2 heavy colors, so Alg(G)
is bounded from above by 2 plus the number of covering light colors. The proof that (5)
holds is completed by the following lemma due to the linearity of expectation as clearly,
there are at most q light colors in [q].

I Lemma 5.3. If color c ∈ [q] is light, then c covers V with probability smaller than 1/q.

Proof. Consider some light color c and let I = {i ∈ [q] | C(epi ) = c}. Color c is said to be
`-free, ` ∈ [r], if S` * I, that is, if there exists some index j ∈ S` such that the prefix edge
epj is not colored c. It is said to be free if it is `-free for all ` ∈ [r].

We argue that if c is free, then it does not cover V even if all suffix edges are colored c.
To that end, let b`, ` ∈ [r], be some index in S` − I (this is well defined since c is `-free) and
let B = {b` | ` ∈ [r]}. Consider the vector v defined by setting v(i) = 1 if i ∈ B; and v(i) = 0
otherwise. The vector v is not included in any prefix edge epi , i ∈ I, because B ∩ I = ∅, hence
v(i) = 0 for all i ∈ I. It is also not included in any suffix edge es` , ` ∈ [q], because v(b`) = 1.
Therefore, if c is free, then there exists at least one vector in {0, 1}q that it does not cover.
Refer to Figure 2 for an illustration. To complete the proof, we show that c is free with
probability greater than 1− 1/q. Fix some ` ∈ [q] and recall that the cluster S` is a random
subset of [q] of size q/r = 2 log q. For the sake of this proof, we think of S` as being formed
by randomly choosing 2 log q indices from [q] without repetitions; denote these indices by
i1, . . . , i2 log q. By definition, color c is not `-free if and only if ij ∈ I for all 1 ≤ j ≤ 2 log q.
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Figure 2 Building on the example depicted in Figure 1, the color c with I = {2, 4, 7, 11, 14} is
free: it is 1-free because 5 ∈ S1 − I; it is 2-free because 3 ∈ S2 − I. Therefore, the vector v is not
covered by any edge in {ep

2, e
p
4, e

p
7, e

p
11, e

p
14} ∪ {e

s
1, e

s
2}.

We can now develop

P

2 log q∧
j=1

ij ∈ I

 =
2 log q∏
j=1

P

ij ∈ I | j−1∧
j′=1

ij′ ∈ I

 =
2 log q−1∏
j=0

|I| − j
q − j

≤ (|I|/q)2 log q .

As c is assumed to be light, we have |I| < q/2, hence the probability that c is not `-free is
smaller than (1/2)2 log q = 1/q2. By the union bound over all ` ∈ [r], we conclude that the
probability that c is not `-free for any (at least one) ` ∈ [r] is smaller than r/q2 < 1/q, thus
establishing the assertion. J

5.2 The Multiplied Construction
In this section, we extend the distribution D presented in Section 5.1 to a distribution Dk,
where k is an arbitrarily large (positive) integer. Each hypergraph in the support of Dk has
2q nodes, k(q + r) edges, and minimum degree δk = kr. We present the construction of a
random hypergraph Gk = (Vk, Ek) in Dk and then show that Opt(Gk) = kr, whereas

EGk
(Alg(Gk)) < 3k (6)

for any deterministic online DSC algorithm Alg, thus completing the proof of Theorem 5.1.
Like the construction of G = (V,E) presented in Section 5.1, the nodes in Vk are also

identified with the vectors in {0, 1}q. The basic idea behind the construction of the edge
set Ek is to multiply the edges in E, creating k copies for each one of them. A naive
attempt to do so would be to simply introduce k independent instantiations of E one after
the other with the hope that the arguments used in Section 5.1 can be applied to each
instantiation separately. The problem with this approach is that the prefix edges of the
(j + 1)-st instantiation arrive after the suffix edges of the j-th instantiation, allowing the
online algorithm to “color them together” optimally.

To overcome this obstacle, we design the edge sequence so that (all copies of) the prefix
edges arrive before (all copies of) the suffix edges. Specifically, the edges in Ek arrive in the
form of a deterministic prefix ep1,1, . . . , e

p
1,k, e

p
2,1, . . . , e

p
2,k, . . . , e

p
q,1, . . . , e

p
q,k followed by a ran-

dom suffix es1,1, . . . , es1,k, es2,1, . . . , es2,k, . . . , esr,1, . . . , esr,k, where e
p
i,1, . . . , e

p
i,k and es`,1, . . . , es`,k

are k identical copies of the edges epi , i ∈ [q], and es` , ` ∈ [r], respectively, as defined in
Section 5.1. We emphasize that the same (random) partition S = {S1, . . . , Sr} is used to
determine all copies of the suffix edges and that this partition is revealed to the online
algorithm only after (all copies of) all prefix edges have been colored.
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Since Gk is obtained from G by edge multiplicity, it follows that δk = kδ = kr, and by
Lemma 5.2, we conclude that Opt(Gk) = δk = kr, so it remains to show that (6) holds. To
that end, we employ the same proof scheme as in Section 5.1: Fix some deterministic online
DSC algorithm Alg. Since a color that is not assigned to any prefix edge does not cover the
vector (1, . . . , 1), we assume without loss of generality that Alg uses only (a subset of) the
colors in [kq]. As in Section 5.1, we classify the colors in [kq] according to the number of
prefix edges they are assigned to, with heavy colors assigned to at least q/2 prefix edges and
light colors assigned to less than q/2 prefix edges. Lemma 5.3 ensures that each light color
covers V = Vk with probability smaller than 1/q, hence, since there are at most kq light
colors, we conclude by the linearity of expectation that the expected gain of Alg from all
light colors is smaller than k. The proof that (6) holds is completed by noticing that there
are at most kq/(q/2) = 2k heavy colors.

6 Discussion

Our investigation of the online DSC problem leaves several interesting open questions. The
first one concerns the gap between our O(log2 n) upper bound and Ω(log(n)/ log logn) lower
bound on the competitive ratio of randomized δ-oblivious online DSC algorithms. Since
our lower bound holds for online DSC algorithms that know δ in advance as well, one also
wonders about the gap it leaves from the O(logn) upper bound of Pananjady et al. [9] for
such algorithms.

The role of randomization in δ-oblivious online DSC algorithms is also not fully understood
yet. While the lower bound of [9] states that a deterministic δ-oblivious online DSC algorithm
cannot have a pure competitive ratio better than Ω(n), we still do not know if this is true
also for the impure competitiveness of such online algorithms. In particular, it is not clear if
the method of conditional expectation applied by Pananjady et al. [9] to derandomize their
online algorithm can be applied also to our randomized online algorithm, especially since the
derandomization technique of Pananjady et al. relies heavily on the knowledge of δ.

Finally, recall our assumption that the nodes of the hypergraph, and in particular their
number n, are known in advance. While the simple deterministic online algorithm presented
in Section 3 can be implemented to operate without this assumption, coming up with such an
implementation of the randomized online algorithm of Section 4 seems to be a challenging task.
More generally, it would be interesting to design online DSC algorithms that are (initially)
oblivious to all “global” parameters of the input hypergraph, including both n and δ.
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