
Characterizing Demand Graphs for
(Fixed-Parameter) Shallow-Light Steiner Network
Amy Babay
Johns Hopkins University, Baltimore, Maryland, USA
babay@cs.jhu.edu

Michael Dinitz
Johns Hopkins University, Baltimore, Maryland, USA
mdinitz@cs.jhu.edu

Zeyu Zhang
Johns Hopkins University, Baltimore, Maryland, USA
zyzhang92@gmail.com

Abstract
We consider the Shallow-Light Steiner Network problem from a fixed-parameter perspec-
tive. Given a graph G, a distance bound L, and p pairs of vertices (s1, t1), . . . , (sp, tp), the
objective is to find a minimum-cost subgraph G′ such that si and ti have distance at most L in
G′ (for every i ∈ [p]). Our main result is on the fixed-parameter tractability of this problem for
parameter p. We exactly characterize the demand structures that make the problem “easy”, and
give FPT algorithms for those cases. In all other cases, we show that the problem is W[1]-hard.
We also extend our results to handle general edge lengths and costs, precisely characterizing which
demands allow for good FPT approximation algorithms and which demands remain W[1]-hard
even to approximate.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases fixed-parameter tractable, network design, shallow-light steiner network,
demand graphs

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.33

Related Version A full version of the paper is available at [2], https://arxiv.org/abs/1802.
10566.

Funding Supported in part by NSF award 1535887.

1 Introduction

In many network design problems we are given a graph G = (V,E) and some demand pairs
(s1, t1), (s2, t2), . . . , (sp, tp) ⊆ V ×V , and are asked to find the “best” (usually minimum-cost)
subgraph in which every demand pair satisfies some type of connectivity requirement. In
the simplest case, if the demands are all pairs and the connectivity requirement is just to
be connected, then this is the classical Minimum Spanning Tree problem. If we consider
other classes of demands, then we get more difficult but still classical problems. Most
notably, if the demands form a star (or any connected graph on V ), then we have the famous
Steiner Tree problem. If the demands are completely arbitrary, then we have the Steiner
Forest problem. Both problems are known to be in FPT parameterized by the number of
demands [9] (i.e., they can be solved in f(p) · poly(n) time for some function f).

© Amy Babay, Michael Dinitz, and Zeyu Zhang;
licensed under Creative Commons License CC-BY

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya; Article No. 33; pp. 33:1–33:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:babay@cs.jhu.edu
mailto:mdinitz@cs.jhu.edu
mailto:zyzhang92@gmail.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.33
https://arxiv.org/abs/1802.10566
https://arxiv.org/abs/1802.10566
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


33:2 Characterizing Demand Graphs for Shallow-Light Steiner Network

There are many obvious generalizations of Steiner Tree and Steiner Forest of
the general network design flavor given above. We will be particularly concerned with
length-bounded variants, which are related to (but still quite different from) directed variants.
In Directed Steiner Tree (DST) the input graph is directed and the demands are a
directed star (either into or out of the root), while in Directed Steiner Network (DSN)
the input graph and demands are both directed, but the demands are an arbitrary subset of
V × V . Both problems have been well-studied (e.g., [5, 19, 6, 8, 1]), and in particular it is
known that the same basic dynamic programming algorithm used for Steiner Tree will
also give an FPT algorithm for DST. However, DSN is known to be W[1]-hard, so it is not
believed to be in FPT [11].

In the length-bounded setting, we typically assume that the input graph and demands
are undirected but each demand has a distance bound, and a solution is only feasible if
every demand is connected within distance at most the given bound (rather than just being
connected). One of the most basic problems of this form is the Shallow-Light Steiner
Tree problem (SLST), where the demands form a star with root r = s1 = s2 = · · · = sp and
there is a global length bound L (so in any feasible solution the distance from r to ti is at most
L for all i ∈ [p]). As with DST and DSN, SLST has been studied extensively [16, 18, 14, 13].
If we generalize this problem to arbitrary demands, we get the Shallow-Light Steiner
Network problem, which is the main problem we study in this paper. Surprisingly, it has
not received nearly the same amount of study (to the best of our knowledge, this paper is
the first to consider it explicitly). It is formally defined as follows (note that we focus on the
special case of unit lengths, and will consider general lengths in Section 5:

I Definition 1 (Shallow-Light Steiner Network). Given a graph G = (V,E), a cost
function c : E → R+, a length function l : E → R+, a distance bound L, and p pairs of
vertices {s1, t1}, . . . , {sp, tp}. The objective of SLSN is to find a minimum cost subgraph
G′ = (V, S), such that for every i ∈ [p], there is a path between si and ti in G′ with length
less or equal to L.

LetH be the graph with {s1, . . . , sp, t1, . . . , tp} as its vertex set and {{s1, t1}, . . . , {sp, tp}}
as its edge set. We call H the demand graph of the problem. We use |H| to represent the
number of edges in H.

Both the directed and the length-bounded settings share a dichotomy between considering
either star demands (DST/SLST) or totally general demands (DSN/SLSN). But this gives an
obvious set of questions: what demand graphs make the problem “easy” (in FPT) and what
demand graphs make the problem “hard” (W[1]-hard)? Recently, Feldmann and Marx [11]
gave a complete characterization for this for DSN. Informally, they proved that if the demand
graph is transitively equivalent to an “almost-caterpillar” (the union of a constant number of
stars where their centers form a path, as well as a constant number of extra edges), then the
problem is in FPT, and otherwise the problem is W[1]-hard.

While a priori there might not seem to be much of a relationship between the directed
and the length-bounded problems, there are multiple folklore results that relate them, usually
by means of some sort of layered graph. For example, any FPT algorithm for the DST
problem can be turned into an FPT algorithm for SLST (with unit edge lengths) and vice
versa through such a reduction (though this is a known result, to the best of our knowledge
it has not been written down before, so we include it for completeness in Section 3.2). Such
a relationship is not known for more general demands, though.

In light of these relationships between the directed and the length-bounded settings and
the recent results of [11], it is natural to attempt to characterize the demand graphs that make
SLSN easy or hard. We solve this problem, giving (as in [11]) a complete characterization of



A. Babay, M. Dinitz, and Z. Zhang 33:3

easy and hard demand graphs. Our formal results are given in Section 2, but informally we
show that SLSN is significantly harder than DSN: the only “easy” demand graphs are stars
(in which case the problem is just SLST) and constant-size graphs. Even tiny modifications,
like a star with a single independent edge, become W[1]-hard (despite being in FPT for
DSN).

1.1 Connection to Overlay Routing

SLSN is particularly interesting due to its connection to overlay routing protocols that use
dissemination graphs to support next-generation Internet services. In fact, our motivation
for studying the fixed-parameter complexity of SLSN is from our use of heuristics for SLSN
in a recent system [3] in which the number of demands was relatively small.

Many emerging applications (such as remote surgery) require extremely low-latency yet
highly reliable communication, which the Internet does not natively support. Babay et
al. [3] recently showed that such applications can be supported by using overlay networks to
enable routing schemes based on subgraphs (dissemination graphs) rather than paths. Their
extensive analysis of real-world data shows that two node-disjoint overlay paths effectively
overcome any one fault in the middle of the network, but specialized dissemination graphs are
needed to address problems at a flow’s source or destination. Because problems affecting a
source typically involve probabilistic loss on that source’s outgoing links, a natural approach
to increase the probability of a packet being successfully transmitted is to increase the number
of outgoing links on which it is sent. In [3], when a problem is detected at a particular
flow’s source, that source switches to use a dissemination graph that floods its packets to
all of its overlay neighbors and then forwards them from these neighbors to the destination.
The paths from the source’s neighbors to the destination must meet the application’s strict
latency requirement, but since the bandwidth used on every edge a packet traverses must
be paid for, the total number of edges used should be minimized. Thus, constructing the
optimal dissemination graph in this setting is precisely the Shallow-Light Steiner Tree
problem, where the root of the demands is the destination and the other endpoints are the
neighbors of the source.

However, in order to achieve the desired reliability, it was shown in [3] that simultaneous
failures at both the source and the destination of a flow must also be addressed. Since
it is not known in advance which neighbors of the source or destination will be reachable
during a failure, the most resilient approach is to require a latency-bounded path from every
neighbor of the source to every neighbor of the destination. This is precisely SLSN with
a complete bipartite demand graph. Since no FPT algorithm for SLSN with complete
bipartite demands was known, [3] relied on a heuristic that worked well in practice. The
search for an FPT algorithm for SLSN with complete bipartite demands was the main
motivation for this work.

In the context of dissemination-graph-construction problems, our results provide a good
solution for problems affecting either a source or a destination: the FPT algorithm for the
SLST problem is quite practical, since overlay topologies typically have bounded degree
(and thus a bounded total number of demands). Unfortunately a trivial corollary of our main
result implies that the other case which was particularly important in this setting, SLSN
with complete bipartite demands, is W[1]-hard. This has important applications to future
system design, since (like all hardness results) it will allow system designers to focus on issues
other than perfect algorithms, even for dissemination graphs that provide only slightly more
resiliency than SLST.

FSTTCS 2018



33:4 Characterizing Demand Graphs for Shallow-Light Steiner Network

2 Our Results and Techniques

In order to distinguish the easy from the hard cases of the SLSN problem with respect to
the demand graph, we should first define the problem with respect to a class (set) of demand
graphs.

I Definition 2. Given a class C of graphs. The problem of Shallow-Light Steiner
Network with restricted demand graph class C (SLSNC) is the SLSN problem with the
additional restriction that the demand graph H of the problem must be isomorphic to some
graph in C.

We define Cλ as the class of all demand graphs with at most λ edges, and C∗ as the class
of all star demand graphs (there is a central vertex called the root, and every other vertex
in the demand graph is adjacent to the root and only the root). Our main result is that
these are precisely the easy classes: We first prove that SLSN is in XP parameterized by
the number of demands (i.e. solvable in nf(p) time for some function f), which immediately
implies that SLSNCλ can be solved in polynomial time if λ is a constant. Note that SLSNC∗
is precisely the SLST problem, for which a folklore FPT algorithm exists, thus SLSNC∗
(while NP-hard) is in FPT for parameter p. We also show that, for any other class C (i.e.,
any class which is not just a subset of C∗ ∪ Cλ for some constant λ), the problem SLSNC is
W[1]-hard for parameter p. In other words, if the class of demand graphs includes arbitrarily
large non-stars, then the problem is W[1]-hard parameterized by the number of demands.

More formally, we prove the following theorems.

I Theorem 3. The unit-length arbitrary-cost SLSN problem with parameter p is in XP,
and it can be solved in nO(p4) time.

By “unit-length arbitrary-cost” we mean that the length l(e) = 1 for all edges e ∈ E,
while the cost c is arbitrary. To prove this theorem, we first prove a structural lemma which
shows that the optimal solution must be the union of several lowest cost paths with restricted
length (these paths may be between steiner nodes, but we show that there cannot be too
many). Then we just need to guess all the endpoints of these paths, as well as all the lengths
of these paths. We prove that there are only nO(p4) possibilities, and the running time is
also nO(p4). The algorithm and proof is in Section 3.1.

I Theorem 4. The unit-length arbitrary-cost SLSNC∗ problem is FPT for parameter p.

As mentioned, SLSNC∗ is exactly the same as SLST, so we use a folklore reduction
between SLST and DST in Section 3.2 to prove this theorem.

I Theorem 5. If C is a recursively enumerable class, and C * Cλ ∪ C∗ for any constant λ,
then SLSNC is W[1]-hard for parameter p, even in the unit-length and unit-cost case.

Many W[1]-hardness results for network design problems reduce from the Multi-
Colored Clique (MCC) problem, and ours are no exception. We reduce from MCC
to SLSNC′ , where C′ is a specific subset of C which has some particularly useful properties,
and which we show must exist for any such C. Since C′ ⊆ C, this will imply the theorem.
The reduction is in Section 4.2.

All of the above results are in the unit-length setting. We extend both our upper bounds
and hardness results to handle arbitrary lengths, but with some extra complications. If
p = 1 (there is only one demand), then with arbitrary lengths and arbitrary costs the SLSN
problem is equivalent to the Restricted Shortest Path problem, which is known to be



A. Babay, M. Dinitz, and Z. Zhang 33:5

NP-hard [15]. Therefore we can no longer hope for a polynomial time exact solution when
p = 1, and thus cannot hope for an FPT algorithm (with parameter p). So we change our
notion of “easy” from “solvable in FPT” to “arbitrarily approximable in FPT”: we show
(1 + ε)-approximation algorithms for the easy cases, and prove that there is no

( 5
4 − ε

)
-

approximation algorithm for the hard cases in f(p) · poly(n) time for any function f . We
discuss these results in Section 5.

I Theorem 6. For any constant λ > 0, there is a fully polynomial time approximation
scheme (FPTAS) for the arbitrary-length arbitrary-cost SLSNCλ problem.

I Theorem 7. There is a (1 + ε)-approximation algorithm in O(4p · poly(nε )) time for the
arbitrary-length arbitrary-cost SLSNC∗ problem.

For both upper bounds, we use basically the same algorithm as in the unit-length
arbitrary-cost case, with some changes inspired by the (1 + ε)-approximation algorithm for
the Restricted Shortest Path problem [17].

Our next theorem is analogous to Theorem 5, but since costs are allowed to be arbitrary
we can prove stronger hardness of approximation (under stronger assumptions).

I Theorem 8. Assume that (randomized) Gap-Exponential Time Hypothesis (Gap-ETH,
see [4]) holds. Let ε > 0 be a small constant, and C be a recursively enumerable class where
C * Cλ ∪ C∗ for any constant λ. Then, there is no

( 5
4 − ε

)
-approximation algorithm in

f(p) · nO(1) time for SLSNC for any function f , even in the unit-length and polynomial-cost
case.

Note that this theorem uses a much stronger assumption (Gap-ETH rather than W[1]
6= FPT), which assumes that there is no (possibly randomized) algorithm running in 2o(n)

time that can distinguish whether a 3SAT formula is satisfiable or at most a (1− ε)-fraction
of its clauses can be satisfied. This enables us to utilize the hardness result for a generalized
version of the MCC problem from [7], which will allow us to modify our reduction from
Theorem 5 to get hardness of approximation.

2.1 Relationship to [11]
As mentioned, our results and techniques are strongly motivated and influenced by the work of
Feldmann and Marx [11], who proved similar results in the directed setting. Informally, they
showed that Directed Steiner Network is in FPT if the demand graph is transitively
equivalent to an “almost-caterpillar”, and otherwise it is W[1]-hard. Since “transitively
equivalent to an almost-caterpillar” is a complex and subtle class, this showed that the
tractability of DSN exhibits interesting behavior. Our results, on the other hand, show that
SLSN is extraordinarily hard: there simply are not any algorithms possible for demand graphs
that are even a little bit complex, despite the folklore relationships between directed settings
and length-bounded settings. Thus our hardness proof is significantly more complicated than
the reduction in [11], despite sharing some ideas.

The main case of the hardness reduction of [11] (which, like our reduction, is from MCC)
is when the demand graph is a 2-by-k complete bipartite graph (i.e., two stars with the same
leaf set). For this case, their reduction from MCC uses one star to control the choice of
edges in the clique and another star to control the choice of vertices in the clique. They set
this up so that if there is a clique of the right size then the “edge demands” and the “vertex
demands” can be satisfied with low cost by making choices corresponding to the clique, while
if no such clique exists then any way of satisfying the two types of demands simultaneously
must have larger cost.

FSTTCS 2018



33:6 Characterizing Demand Graphs for Shallow-Light Steiner Network

The 2-by-k complete bipartite graph is also a hard demand graph in our setting, and the
same reduction from [11] can be straightforwardly modified to prove this (this appears as one
of our cases). However, we prove that far simpler demand graphs are also hard. Most notably,
the “main” case of our proof is when the demand graph is a single star together with one
extra edge. Since we have only a single star in our demand graph, we cannot have two “types”
of demands (vertex demands and edge demands) in our reduction. So we instead use the star
to correspond to “edge demands” and use the single extra edge to simultaneously simulate
all of the “vertex demands”. This makes our reduction significantly more complicated.

With respect to upper bounds, the algorithm of [11] is quite complex in part due to the
complexity of the demand graphs that it must solve. Our hardness results for SLSN imply
that we need only concern ourselves with demand graphs that are star or have constant size.
The star setting is relatively simple due to a reduction to DST, but it is not obvious how
to use any adaptation of [11] (or the earlier [10]) to handle a constant number of demands
for SLSN. Our algorithm ends up being relatively simple, but requires a structural lemma
which was not necessary in the DSN setting.

3 Algorithms for Unit-Length Arbitrary-Cost SLSN

In this section we discuss the “easy” cases of SLSN. We first present an XP algorithm for
SLSN in Section 3.1. In Section 3.2, we describe a reduction from SLSN with star demand
graphs to DST, which gives an FPT algorithm.

3.1 The XP algorithm
The XP algorithm for Theorem 3 relies on the following structural lemma, which allows us
to limit the structure of the optimal solution and finally find it out. Note that this lemma
works not only for the unit-length case, but also for the arbitrary-length case.

I Lemma 9. In any feasible solution S ⊆ E of the SLSN problem, there exists a way to
assign a path Pi between si and ti in S for each demand {si, ti} ∈ H such that:

For each i ∈ [p], the total length of Pi is at most L and there is no cycle in Pi.
For each i, j ∈ [p] and u, v ∈ Pi ∩ Pj, the paths between u and v in Pi and Pj are the
same.

Proof. We give a constructive proof. Let m = |S| and S = {e1, . . . , em}. We first want to
modify the lengths to ensure that there is always a unique shortest path. Let ∆ denote the
minimum length difference between any two subsets of S with different total length, i.e.,

∆ = min
A,B⊆S,

∑
e∈A

l(e) 6=
∑

e∈B
l(e)

∣∣∣∣∣∑
e∈A

l(e)−
∑
e∈B

l(e)

∣∣∣∣∣ .
We create a new length function g where g(ei) = l(ei) + ∆ · 2−i. Note that ∆ is always
non-zero for any S which has at least 2 edges, and the problem is trivial when |S| = 1.

We now show that any two paths have different lengths under g. Consider any two
different paths Px and Py. If

∑
e∈Px l(e) 6=

∑
e∈Py l(e), then without loss of generality we

assume
∑
e∈Px l(e) <

∑
e∈Py l(e). Then

∑
e∈Px

g(e) ≤
∑
e∈Px

l(e) +
m∑
i=1

∆ · 2−i <
∑
e∈Px

l(e) + ∆ ≤
∑
e∈Py

l(e) <
∑
e∈Py

g(e). (1)



A. Babay, M. Dinitz, and Z. Zhang 33:7

Algorithm 1 Unit-length arbitrary-cost SLSN.
Let M ←

∑
e∈E c(e) and S ← E

for Q ⊆ V where |Q| ≤ p(p− 1) do
Q′ ← Q ∪ (

⋃p
i=1{si, ti})

for E′ ⊆ {{u, v} | u, v ∈ Q′, u 6= v} and l′ : E′ → [L] do
T ← ∅
for {u, v} ∈ E′ do

T ← T ∪ {the lowest cost path between u and v with length at most l′({u, v})}
// if such path does not exist, T remains the same

end for
if T is a feasible solution and

∑
e∈T l

′(e) < M then
M ←

∑
e∈T c(e) and S ← T

end if
end for

end for
return S

Otherwise, if
∑
e∈Px l(e) =

∑
e∈Py l(e), then∑

e∈Px

g(e)−
∑
e∈Py

g(e) =
∑

i:ei∈Px

∆ · 2−i −
∑

i:ei∈Py

∆ · 2−i 6= 0.

Therefore in both cases Px and Py have different lengths under g.
For each demand {si, ti} ∈ H, we let Pi be the shortest path between si and ti in S

under the new length function g. Because any two paths under g have different length, the
shortest path between each {si, ti} ∈ H is unique. In addition, because these are shortest
paths and edge lengths are positive, they do not contain any cycles.

For each i ∈ [p], we can see that Pi is also one of the shortest paths between si and ti
under original length function l. This is because in equation (1) we proved that a shorter
path under length function l is still a shorter path under length function g. Since S is a
feasible solution, the shortest path between si and ti in S must have length at most L. Thus
for each i ∈ [p], we have

∑
e∈Pi l(e) ≤ L.

For any two different paths Pi and Pj , let u, v ∈ Pi ∩ Pj . If the subpath of Pi between u
and v is different from the subpath of Pj between u and v, then by the uniqueness of shortest
paths under g we know that either Pi or Pj is not a shortest path (since one of them could
be improved by changing the subpath between u and v). This contradicts our definition of
Pi and Pj , and hence they must use the same subpath between u and v. J

Lemma 9 implies that any two paths Pi, Pj in the optimal solution are either disjoint, or
share exactly one (maximal) subpath. Since there are only p demands, the total number
of shared subpaths is at most

(
p
2
)
. Therefore we can solve the unit-length arbitrary-cost

SLSNCλ by guessing these subpaths.
Informally, we guess the set of endpoints of all the “maximal overlapping subpaths” (Q),

guess how these endpoints are paired up to create the distinct subpaths (E′), guess the length
of each subpath, and then find the lowest cost path that connects the endpoints of each
guessed subpath and is within the guessed length. The full algorithm is given as Algorithm 1.

I Claim 10. The running time of Algorithm 1 is nO(p4).

FSTTCS 2018



33:8 Characterizing Demand Graphs for Shallow-Light Steiner Network

Proof. Clearly there are at most np(p−1) possibilities for Q, and for each Q there are
at most 2(p(p−1)+2p)2 possible sets E′ and at most L(p(p−1)+2p)2 possible l′. Since we
assume unit edge lengths, we can use the Bellman-Ford algorithm to find the lowest cost
path within a given length bound in polynomial time. Checking feasibility also takes
polynomial time using standard shortest path algorithms. Thus, the running time is at most
np(p−1) · 2(p(p+1))2 · n(p(p+1))2 · poly(n). J

Proof of Theorem 3

By Claim 10, the running time of Algorithm 1 is nO(p4). Now we will prove correctness. The
algorithm always returns a feasible solution, because we replace S by T only if T is feasible,
and thus S is always a feasible solution. Therefore, we only need to show that this algorithm
returns a solution with cost at most the cost of the optimal solution.

Let the optimal solution be S∗. We assign P ∗i for all i ∈ [p] as in Lemma 9. Recall that
path P ∗i and P ∗j can share at most one (maximal) subpath for each i, j ∈ [p] where i 6= j.
Let Q∗ be the endpoint set of the (maximal) subpaths which are shared by some P ∗i and P ∗j ,
and let Q′∗ = Q∗ ∪

⋃p
i=1{si, ti}.

We can see that the optimal solution S∗ can be partitioned to a collection of paths by
Q∗. We use E′∗ to represent whether two vertices in Q′∗ are “adjacent” on some path P ∗i :
for any u, v ∈ Q′∗ where u 6= v, the set E′∗ contains {u, v} if and only if there exists i ∈ [p]
such that u, v ∈ P ∗i , and there is no vertex w ∈ Q′∗ \ {u, v} which is in the subpath between
u and v in P ∗i . For each {u, v} ∈ E′∗, let P ∗{u,v} be the subpath between u and v on path
P ∗i . This is well defined because by Lemma 9 the subpath is unique. We define l′∗({u, v}) as
the length of P ∗{u,v} for each {u, v} ∈ E′∗

Note that for any {u, v} 6= {u′, v′} ∈ E′∗, we also know that P ∗{u,v} and P ∗{u′,v′} are
edge-disjoint. To see this, assume that they do share an edge, and let u′′ and v′′ be the
endpoints of the (maximal) shared subpath between P ∗{u,v} and P ∗{u′,v′}. Then u′′ and v′′ are
both in Q′∗, and at least one of them is in Q′∗ \ {u, v} or in Q′∗ \ {u′, v′}, which contradicts
our definition of E′∗.

Since the algorithm iterates over all possibilities for Q, E′ and l′, there is some iteration
in which Q = Q′∗, E′ = E′∗, and l′ ≡ l′∗. We will show that the algorithm also must find an
optimal feasible solution in this iteration.

For each i ∈ [p], the path P ∗i is partitioned to edge-disjoint subpaths by Q′∗. Let qi
be the number of subpaths, and let the endpoints be si = vi,0, vi,1, . . . , vi,qi−1, vi,qi = ti.
We further let these subpaths be P ∗{si,vi,1}, P

∗
{vi,1,vi,2}, . . . , P

∗
{vi,qi−1,ti}. By the definition of

l′∗, for each j ∈ [qi], there must be a path between vi,j−1 and vi,j with length at most
l′∗({vi,j−1, vi,j}) in graph G. Thus after the algorithm visited {vi,j−1, vi,j} ∈ E′∗, the edge
set T must contains a path between u and v with length at most l′∗({vi,j−1, vi,j}). Therefore
we know that the edge set T in this iteration contains a path between si and ti with length∑qi

j=1 l
′∗({vi,j−1, vi,j}) ≤ L, and thus it is a feasible solution.

Let MinCost(u, v, d) be the lowest cost for a path between u and v with distance at most
d in graph G, then the total cost of this solution is

∑
{u,v}∈E′∗MinCost(u, v, l′∗({u, v})).

Moreover, for each {u, v} ∈ E′∗ and {u′, v′} ∈ E′∗ with {u, v} 6= {u′, v′}, the paths P ∗{u,v}
and P ∗{u′,v′} are edge-disjoint, and each P ∗{u,v} has cost at least MinCost(u, v, l′∗({u, v})).
Thus the cost of the optimal solution is at least

∑
{u,v}∈E′∗MinCost(u, v, l′∗({u, v})), and

so the algorithm outputs an optimal solution and it runs in polynomial time. J

I Corollary 11. The arbitrary-length unit-cost SLSN problem with parameter p is in XP.



A. Babay, M. Dinitz, and Z. Zhang 33:9

Proof. We can use the same technique, but instead of guessing the length l′ we guess the
cost c′, and then find shortest path under cost bound c′. We can also use Bellman-Ford
algorithm in this step. J

3.2 Star Demand Graphs (SLSNC∗)

We prove Theorem 4 by reducing SLSNC∗ to DST, which has a known FPT algorithm [10].
This reduction is essentially folklore, but is included in Section 3.2 of the full paper [2]
for completeness. This reduction transforms a unit-length arbitrary-cost SLSNC∗ instance
(G, c, l ≡ 1, {{s1, t1}, . . . , {sp, tp}}, L) into a DST instance by creating a layered graph G′
with L+ 1 layers. Each layer includes |V | vertices (one for each vertex in G). Letting v(i)

represent vertex v in layer i, each vertex v(i−1) (for i ∈ [1, L]) is connected to vertex v(i) with
a 0-cost edge (v(i−1), v(i)). Each such v(i−1) is also connected to each vertex u(i) such that
(v, u) ∈ E(G) by an edge (v(i−1), u(i)) with cost c(u, v). For the demands of the DST instance,
we require the demand-source s = s1, . . . sp of the SLSNC∗ instance in layer 0 (i.e., s(0)) to be
connected to layer-L endpoints t(L)

1 , . . . t
(L)
p , giving us an instance (G′, c′, s(0), t

(L)
1 , . . . , t

(L)
p )

of DST. We solve this DST instance using the algorithm of [10] and construct a solution
to the SLSNC∗ by including each edge (v, u) such that edge (v(i−1), u(i)) for some layer i
appears in the DST solution.

4 W[1]-Hardness for Unit-Length Unit-Cost SLSN

In this section we prove our main hardness result, Theorem 5. We begin with some
preliminaries, then give our reduction and proof.

4.1 Preliminaries

We prove Theorem 5 by constructing an FPT reduction from the Multi-Colored Clique
(MCC) problem to the unit-length unit-cost SLSNC problem for any C * Cλ ∪C∗. We begin
with the MCC problem.

I Definition 12 (Multi-Colored Clique). Given a graph G = (V,E), a number k ∈ N
and a coloring function c : V → [k]. The objective of the MCC problem is to determine
whether there is a clique T ⊆ V in G with |T | = k where c(x) 6= c(y) for all x, y ∈ T .

For each i ∈ [k], we define Ci = {v ∈ V : c(v) = i} to be the vertices of color i. We can
assume that the graph does not contain edges where both endpoints have the same color,
since those edges do not affect the existence of a multi-colored clique. It has been proven
that the MCC problem is W[1]-complete.

I Theorem 13 ([12]). The MCC problem is W[1]-complete with parameter k.

We first define a few important classes of graphs. These are the major classes that fall
outside of C∗ ∪ Cλ, so we will need to be able to reduce MCC to SLSN where the demand
graphs are in these classes, and then this will allow us to prove the hardness for general
C * C∗ ∪ Cλ. For every k ∈ N, we define the following graph classes. Each of the first four
classes is just one graph up to isomorphism, but classes 5 and 6 are sets of graphs, so we use
the notation H instead of H for these classes. Note that each of the first three classes is just
a star with an additional edge, so we use ∗ to make this clear.

FSTTCS 2018



33:10 Characterizing Demand Graphs for Shallow-Light Steiner Network

1. H∗k,0: a star with k(k − 1) leaves and an edge with both endpoints not in the star.
2. H∗k,1: a star with (k(k − 1) + 1) leaves and an edge {u, v} where u is a leaf of the star

and v is not in the star.
3. H∗k,2: a star with (k(k − 1) + 2) leaves, and an edge {u, v} where both u and v are leaves

of the star.
4. Hk,k: k(k − 1) + 1 edges where all endpoints are different (i.e., a matching of size

k(k − 1) + 1).
5. H2,k: the class of graphs that have exactly k(k − 1) + 2 vertices, and contain a 2 by

k(k − 1) complete bipartite subgraph (not necessarily an induced subgraph).
6. Hk: the class of graphs that contain at least one of the graphs in previous five classes as

an induced subgraph.

We first prove the following lemma.

I Lemma 14. For any k ≥ 2, if a graph H is not a star and H has at least 8k10 edges,
then H ∈ Hk, and we can find an induced subgraph which is isomorphic to a graph in
{H∗k,0, H∗k,1, H∗k,2, Hk,k} ∪ H2,k ∪Hk in poly(|H|) time.

Proof. We give a constructive proof. We first claim that either there is a vertex in H which
has degree at least 2k4 or there is an induced matching in H of size k2. Suppose that all
vertices have degree less than 2k4. Then we can create an induced matching by adding an
arbitrary edge {u, v} ∈ H to a edge set M , removing all vertices that are adjacent to either
u or v from H, and repeating until there are no more edges in H. In each iteration we reduce
the total number of edges by at most 2 · 2k4 · 2k4, thus |M | ≥ 8k10

8k8 = k2. Since when we add
an edge {u, v} we also remove all vertices adjacent to u or v, every future edge we add to M
will have endpoints which are not adjacent to u or v, and thus M is an induced matching of
H with size k2.

If H has an induced matching of size k2, then H ∈ Hk because it contains Hk,k as an
induced subgraph, and thus we are done.

Otherwise, H has a vertex s with degree at least 2k4. Let S be the neighbors of s. If
there is any vertex other than s that is adjacent to at least k(k − 1) vertices in S, then H
contains a 2 by k(k − 1) complete bipartite subgraph, so it contains an induced subgraph
H ′ ∈ H2,k and thus is in Hk.

So suppose that there is no vertex other than s that is adjacent to at least k(k − 1)
vertices in S. Consider the case that there is no edge between any pair of vertices in S; then,
because H is not a star, there must be an edge {u, v} ∈ H with at least one of u, v not in
S ∪ {s}. Since both u and v are adjacent to at most k(k− 1) vertices in S, there are at least
k4 − 2 · k(k − 1) ≥ k(k − 1) vertices in S that are not adjacent to either u or v. Let the set
of these vertices be T . Then the induced subgraph on vertex set T ∪ {s, u, v} is either H∗k,0
or H∗k,1, depending on whether {u, v} ∩ T is an empty set.

Now the only remaining case is that there is at least one edge in H with both endpoints
in S. In this case, we can find H∗k,2 as an induced subgraph as follows: We first let S0 = S.
Then, in each iteration t we let vt be a vertex in St−1 that is adjacent to the fewest number of
other vertices in St−1. We add vt to the vertex set T , and then delete vt and all the vertices
in St−1 that are adjacent to vt to get St. This process repeats until we have |T | = k(k − 1).

We can use induction to show that, after each iteration t ≤ k(k − 1), there is always at
least one edge in H where both endpoints are in St. The base case is t = 0, where such
an edge clearly exists. Assume the claim holds for iteration t − 1, consider the iteration
t ≤ k(k − 1). If vt is not adjacent to any other vertex in St−1, then removing vt does not
affect the fact that there is at least one edge left, and thus the claim still holds. Otherwise,



A. Babay, M. Dinitz, and Z. Zhang 33:11

vt is adjacent to at least one vertex in St−1. Thus, each vertex in St−1 must be adjacent
to at least one vertex in St−1. Since there is no vertex other than s which is adjacent to at
least k(k − 1) vertices in S, we know that at most k2 vertices are deleted in each iteration,
and thus there are still at least 2k4 − k2 · k(k − 1) ≥ k4 vertices in St−1. Because removing
vt and its neighbors can only affect the degree of at most k2(k − 1)2 vertices in St−1, there
must still be an edge left between the vertices in St.

Let {u, v} be one of the edges in H where both endpoints are in St, then the induced
subgraph on vertex set T ∪ {s, u, v} is H∗k,2. Thus H ∈ Hk.

It is easy to see that all the previous steps directly find an induced subgraph which is
isomorphic to a graph in {H∗k,0, H∗k,1, H∗k,2, Hk,k} ∪ H2,k ∪ Hk and takes polynomial time,
thus the lemma is proved. J

4.2 Reduction
In this subsection, we will prove the following reduction theorem.

I Theorem 15. Let (G = (V,E), c) be an MCC instance with parameter k, and let H ∈ Hk
be a demand graph. Then a unit-length unit-cost SLSN instance (G′, L) with demand graph
H can be constructed in poly(|V ||H|) time, and there exists a function g (computable in time
poly(|H|)) such that the MCC instance has a clique with size k if and only if the SLSN
instance has a solution with cost g(H).

In order to prove this theorem, we first introduce a construction for any demand graph
H ∈ {H∗k,0, H∗k,1, H∗k,2, Hk,k} ∪H2,k, and then use the instances constructed in these cases to
construct the instance for general H ∈ Hk.

The construction for H ∈ H2,k is similar to [11], which proves the W[1]-hardness of the
DSN problem. We change all the directed edges in their construction to undirected, and add
some edges and dummy vertices. This construction is presented in Appendix A.3. To handle
H∗k,0, H∗k,1, H∗k,2, and Hk,k, we need to change this basic construction due to the simplicity
of the demand graphs. Because the constructions for these four graphs are quite similar, we
first introduce the construction for H∗k,0 in Section 4.2.1, and then show how to modify it for
H∗k,1, H∗k,2, and Hk,k in Appendix A.2.

4.2.1 Case 1: H∗
k,0

Given an MCC instance (G = (V,E), c) with parameter k, we create a unit-length and
unit-cost SLSN instance (G′, L) with demand graph H∗k,0 as follows.

We first create a graph G∗k with integer edge lengths (we will later replace all non-unit
length edges by paths). See Figure 1 for an overview of this graph. The vertex set V ∗k
contains 6 layers of vertices and another group of vertices. The first layer V1 is just a root
r. The second layer V2 contains a vertex z{i,j} for each 1 ≤ i < j ≤ k, so there are

(
k
2
)

vertices. The third layer V3 contains a vertex ze for each e ∈ E, so there are |E| vertices.
The fourth layer V4 contains a vertex xv,j for each v ∈ V and j ∈ [k] with j 6= c(v), so there
are |V | · (k − 1) vertices. The fifth layer V5 again contains a vertex x′v,j for each v ∈ V and
j ∈ [k] with j 6= c(v). The sixth layer V6 contains a vertex li,j for each i, j ∈ [k] where i 6= j,
so there are k(k − 1) vertices. Finally, we have a vertex yi for i = 0, . . . , k, so there are k + 1
vertices in the set Vy.

Let fi : N→ N be the function defined by fi(j) = j + 1 if j + 1 6= i and fi(j) = j + 2 if
j+1 = i. This function gives the next integer after j, but skips i. Let f ti (j) = fi(fi(. . . fi(j)))

FSTTCS 2018



33:12 Characterizing Demand Graphs for Shallow-Light Steiner Network

𝑟𝑟

𝑧𝑧 1,2 𝑧𝑧 1,3 𝑧𝑧 1,𝑘𝑘 𝑧𝑧 2,3 𝑧𝑧 𝑘𝑘−1,𝑘𝑘⋯ ⋯

𝑧𝑧 𝑢𝑢,𝑣𝑣

𝑦𝑦0 𝑦𝑦1

𝑥𝑥𝑢𝑢,3 𝑥𝑥𝑣𝑣,2𝑥𝑥𝑢𝑢,1 𝑥𝑥𝑢𝑢,4 𝑥𝑥𝑢𝑢,𝑘𝑘

𝑥𝑥𝑢𝑢,1
′ 𝑥𝑥𝑢𝑢,3

′ 𝑥𝑥𝑢𝑢,4
′ 𝑥𝑥𝑢𝑢,𝑘𝑘

′ 𝑦𝑦2
⋯

𝑦𝑦3 𝑦𝑦𝑘𝑘
⋯

𝑥𝑥𝑣𝑣,2
′ ⋯ ⋯

⋯⋯

𝑙𝑙1,2 𝑙𝑙1,3 𝑙𝑙1,𝑘𝑘 𝑙𝑙2,1 𝑙𝑙2,3⋯ 𝑙𝑙2,𝑘𝑘⋯ ⋯⋯ 𝑙𝑙𝑘𝑘,𝑘𝑘−1

Color 1
Vertices

Edges between
Color 2 and 3

Color 2
Vertices

Color 3
Vertices

Figure 1 G∗
k.

denote this function repeated t times. Recall that Ci = {v ∈ V : c(v) = i}. The edge set E∗k
contains following edges, with lengths as indicated:

E1 = {{r, z{i,j}} | 1 ≤ i < j ≤ k}, each edge in E1 has length 2.
E2 = {{z{c(u),c(v)}, ze} | e = {u, v} ∈ E}, each edge in E2 has length 1.
E3 = {{ze, xu,c(v)} | e = {u, v} ∈ E}, each edge in E3 has length 2k2 − 2. Note that if
{ze, xu,c(v)} ∈ E3, then {ze, xv,c(u)} ∈ E3
E4 = {{xv,j , x′v,j} | v ∈ V, j 6= c(v)}, each edge in E4 has length 1.
E5 = {{x′v,j , lc(v),j} | v ∈ V, j 6= c(v)}, each edge in E5 has length 2k2 − 2.
Eyx = {{yi−1, xv,fi(0)} | i ∈ [k], v ∈ Ci}, each edge in Eyx has length 4.
Exx = {{x′v,j , xv,fc(v)(j)} | v ∈ V, j ∈ [k] \ {c(v), fk−1

c(v) (0)}}, each edge in Exx has length 3.
Exy = {{x′

v,fk−1
i

(0), yi} | i ∈ [k], v ∈ Ci}, each edge in Exy has length 3.

Let G′ be the graph obtained from G∗k by replacing each edge e ∈ E∗k by a length(e)-hop
path. We create an instance of SLSN on G′ by setting the demands to be {r, li,j} for all
i, j ∈ [k] where i 6= j, as well as {y0, yk}. Note that these demands form a star with k(k − 1)
leaves and an edge with both endpoints not in the star, so it is isomorphic to H∗k,0. We set
the distance bound L to be 4k2.

This construction clearly takes poly(|V ||H∗k,0|) time. Let g(H∗k,0) = 4k4− 4k3 + 3
2k

2 + 5
2k,

which is clearly computable in poly(H∗k,0) time. We will first prove the easy direction in the
correctness of the construction.

I Lemma 16. If there is a multi-colored clique of size k in G, then there is a solution S for
the SLSN instance (G′, L) with demand graph H∗k,0, and the total cost of S is g(H∗k,0).

Proof. Let v1, . . . , vk be a multi-colored clique of size k in G, where vi ∈ Ci for all i ∈ [k].
We create a feasible solution S to our SLSN instance, which contains following paths in G′
(i.e., edges in G∗k):
{r, z{i,j}} for each 1 ≤ i < j ≤ k. The total cost of these edges is 2 ·

(
k
2
)

= k2 − k.
{z{i,j}, z{vi,vj}} for each 1 ≤ i < j ≤ k. The total cost of these edges is

(
k
2
)

= k2−k
2 .

{z{vi,vj}, xvi,j} and {z{vi,vj}, xvj ,i} for each 1 ≤ i < j ≤ k. The total cost of these edges
is 2 · (2k2 − 2) ·

(
k
2
)

= 2k4 − 2k3 − 2k2 + 2k.
{xvi,j , x′vi,j} for each i, j ∈ [k] where i 6= j. The total cost of these edges is 2 ·

(
k
2
)

= k2−k.
{x′vi,j , li,j} for each i, j ∈ [k] where i 6= j. The total cost of these edges is 2·(2k2−2)·

(
k
2
)

=
2k4 − 2k3 − 2k2 + 2k.



A. Babay, M. Dinitz, and Z. Zhang 33:13

{yi−1, xvi,fi(0)} for each i ∈ [k]. The total cost of these edges is 4k.
{x′vi,j , xvi,fi(j)} for each i ∈ [k] and j ∈ [k] \ {i, fk−1

i (0)}. The total cost of these edges is
3 · k(k − 2) = 3k2 − 6k.
{x′

vi,f
k−1
i

(0), yi} for each i ∈ [k]. The total cost of these edges is 3k.

Therefore, the total cost is k2 − k + k2−k
2 + 2k4 − 2k3 − 2k2 + 2k + k2 − k + 2k4 − 2k3 −

2k2 + 2k + 4k + 3k2 − 6k + 3k = 4k4 − 4k3 + 3
2k

2 + 5
2k = g(H∗k,0).

Now we show the feasibility of this solution. For each i, j ∈ [k] where i 6= j, the path
between r and li,j is r – z{i,j} – z{vi,vj} – xvi,j – x′vi,j – li,j . The length of this path is
2 + 1 + 2k2 − 2 + 1 + 2k2 − 2 = 4k2, thus it is a feasible path.

The path between y0 and yk is y0 – xv1,2 – x′v1,2 – xv1,3 – x′v1,3 – . . . – xv1,k – x′v1,k
– y1 –

xv2,1 – x′v2,1 – xv2,3 – x′v2,3 – . . . – y2 – . . . – yk. The length of this path is (4 + 1 · (k − 1) +
3 · (k − 2) + 3) · k = 4k2, thus it is a feasible path. J

For the other direction, we begin the proof with a few claims. We first show that the only
feasible way to connect r and li,j is to pick one edge between every two adjacent layers. We
can also see in Figure 1 that for each i ∈ [k], there are |Ci| disjoint “zig-zag” paths between
yi−1 and yi, and each path corresponds to a vertex with color i. We will also show that the
only feasible way to connect y0 and yk is to pick one zig-zag path between each yi−1 and yi.
The proof of these claims are in Appendix A.1. From these claims we can then prove that, if
the cost of the optimal solution is at most g(H∗k,0), then there is a multi-colored clique in G.

I Claim 17. For all i, j ∈ [k] where i 6= j, any path Pi,j between r and li,j with length at
most 4k2 must be of the form r – z{i,j} – z{u,v} – xu,j – x′u,j – li,j, where u ∈ Ci, v ∈ Cj
and {u, v} ∈ E.

I Claim 18. Any path Py between y0 and yk with length at most 4k2 can be divided to k
subpaths as follows. For each i ∈ [k], there is a subpath Pvi between yi−1 and yi with length 4k,
of the form yi−1−xvi,fi(0)−x′vi,fi(0)−xvi,f2

i
(0)−x′vi,f2

i
(0)−· · ·−xvi,fk−1

i
(0)−x

′
vi,f

k−1
i

(0)−yi,
where vi ∈ Ci.

Now, we can prove the other direction in the correctness of the construction.

I Lemma 19. Let S be an optimal solution for the SLSN instance (G′, L) with demand
graph H∗k,0. If S has cost at most g(H∗k,0) = 4k4−4k3 + 3

2k
2 + 5

2k, then there is a multi-colored
clique of size k in G.

Proof. For each i, j ∈ [k] with i 6= j, let Pi,j be a (arbitrarily chosen) path in S which
connects r and li,j with length at most L = 4k2. Let P = {Pi,j | i, j ∈ [k], i 6= j} be the
set of all these paths. We also let Py be a (arbitrary) path in S of length at most L which
connects y0 and yk.

From Claim 18, Py can be divided to k subpaths, each of which corresponds to a vertex
vi. We will show that v1, . . . , vk form a clique in G (i.e., for each 1 ≤ i < j ≤ k, we have
{vi, vj} ∈ E).

We first prove that these paths must share certain edges due to the cost bound of the
optimal solution. From Claim 17, we know that each Pi,j costs exactly 2 + 1 + 2k2 − 2 +
1 + 2k2 − 2 = 4k2. In addition, from the form of Pi,j we can also see that these paths are
almost disjoint, except that Pi,j and Pj,i may share a length 2 edge {r, z{i,j}} ∈ E1 and
a length 1 edge {z{i,j}, ze} ∈ E2. Therefore, in order to satisfy the demands between r

and all of the li,j ’s, the total cost of the edges in S ∩ (E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5) is at least

FSTTCS 2018



33:14 Characterizing Demand Graphs for Shallow-Light Steiner Network

4k2 · k(k− 1)−
(
k
2
)
· (2 + 1) = 4k4− 4k3− 3

2k
2 + 3

2k, even if every Pi,j and Pj,i do share edge
{r, z{i,j}} and edge {z{i,j}, ze}.

We now calculate the cost of the edges in S∩ (Eyx∪Exx∪Exy). From Claim 18, the total
cost of edges in Py∩(Eyx∪Exx∪Exy) is at least (4+3·(k−1)+3)·k = 3k2+k. Thus, the total
cost is already at least

(
4k4 − 4k3 − 3

2k
2 + 3

2k
)

+(3k2 +k) = 4k4−4k3 + 3
2k

2 + 5
2k = g(H∗k,0),

so S cannot contain any edge which has not been counted yet.
Therefore, every edge in Py ∩ E4 must appear in some path in P . In fact, by the form of

the paths in P , we can see that for each i, j ∈ [k] where i 6= j, the edge {xvi,j , x′vi,j} ∈ Py∩E4
can only appear in path Pi,j , rather than any other Pi′,j′ . Thus xvi,j is in path Pi,j , and
similarly xvj ,i is in path Pj,i. Recall that Pi,j and Pj,i must share an edge {z{i,j}, ze} for
some e ∈ E because of the cost bound, and z{vi,vj} is the only vertex which adjacent to both
xvi,j and xvj ,i, we can see that e can only be {vi, vj}. Therefore {vi, vj} ∈ E, which proves
the lemma. J

4.2.2 Cases 2: H∗
k,1, 3: H∗

k,2, 4: Hk,k, and 5: H2,k

For Cases 2, 3, and 4, we can use essentially the same reduction as in Case 1. For Case 2, we
just need to add a new demand {r, y0}, and do some extra analysis to show that adding this
demand does not change anything. For Case 3, we similarly add another demand {r, yk}.
Case 4 requires only adding another layer of vertices and edges before the root r. The details
are in Appendix A.2. Case 5 is a variant of the reduction in [11], and we prove this case in
Appendix A.3.

4.2.3 Case 6: Hk

We now want to construct an SLSN instance for a demand graph H ∈ Hk from an MCC
instance (G = (V,E), c) with parameter k; since all other cases have been handled, this will
complete the proof of Theorem 15. By the definition of Hk, for some t ∈ [5] there is a graph
H(t) of Case t that is an induced subgraph of H. We use Lemma 14 to find the graph H(t).
Let (G(t), L) be the SLSN instance obtained by applying our reduction for Case t to the
MCC instance (G, c), and let the corresponding function be g(t).

We now want to transform the SLSN instance (G(t), L) with demand graph H(t) into
a new SLSN instance (G′, L) with demand graph H, so that instance (G(t), L,H(t)) has
a solution with cost g(t)(H(t)) if and only if instance (G′, L,H) has a solution with cost
g(H) = g(t)(H(t))+L · (|H|− |H(t)|). If there is such a construction which runs in polynomial
time, then there is a multi-colored clique of size k in G if and only if instance (G′, L,H) has
a solution with cost g(H). This will then imply Theorem 15.

The graph G′ is basically just G(t) with some additional vertices and edges from H \H(t).
For each vertex v in H but not in H(t), we add a new vertex v to G′. For each edge
{u, v} ∈ H \H(t), we add an L-hop path between u and v to G′.

The construction still takes poly(|V ||H|) time, because the construction for the previous
cases takes poly(|V ||H(t)|) time and the construction for Case 6 takes poly(|G(t)||H|) time.
Here |H(t)| ≤ |H|, and we know that |G(t)| is polynomial in |V | and |H(t)|.

I Lemma 20. SLSN instance (G(t), L,H(t)) has a solution with cost g(t)(H(t)) if and only
if instance (G′, L,H) has a solution with cost g(H) = g(t)(H(t)) + L · (|H| − |H(t)|).

Proof. If instance (G(t), L,H(t)) has a solution with cost g(t)(H(t)). Let the solution be S(t).
For each e = {u, v} ∈ H \H(t), let the new L-hop path between u and v in G′ be Pe. Then
S(t) ∪

⋃
e∈H\H(t) Pe is a solution to G′ with cost g(t)(H(t)) + L · (|H| − |H(t)|).



A. Babay, M. Dinitz, and Z. Zhang 33:15

If instance (G′, L,H) has a solution with cost g(t)(H(t))+L ·(|H|−|H(t)|), let the solution
be S. Since for each e = {u, v} ∈ H \H(t), the only path between u and v in G′ within the
length bound is the new L-hop path Pe, any valid solution must include all these Pe, which
has total cost L · (|H| − |H(t)). In addition, for each demand {u, v} which is also in H, any
path between u and v in G′ within the length bound will not include any new edge, because
otherwise it will strictly contain an L-hop path, and have length more than L. Therefore,
S \

⋃
e∈H\H(t) Pe is a solution to G(t) with cost g(t)(H(t)). J

4.3 Proof of Theorem 5
If C is a recursively enumerable class, and C * Cλ ∪ C∗ for any constant λ, then for every
k ≥ 2, let Hk be the first graph in C where Hk is not a star and has at least 2k10 edges. The
time for finding Hk is f(k) for some function f . From Lemma 14 we know that Hk ∈ Hk, so
that we can use Theorem 15 to construct the SLSNC instance with demand Hk.

The parameter p = |Hk| of the instance is a function just of k, and the construction time
is FPT from Theorem 15. Therefore this is a FPT reduction from the MCC problem to
the unit-length unit-cost SLSNC problem. Thus Theorem 13 implies that the unit-length
unit-cost SLSNC problem is W[1]-hard for parameter p. J

5 Overview of General Length and Cost Settings

As discussed in Section 2, we extended our results from the unit-length setting to the general
length setting. We defer all detailed results to Section 5 and 6 of the full paper [2], and
instead give only a brief overview of our results and techniques.

5.1 Upper bounds
Recall that we cannot have an exact FPT algorithm for SLSNC∗ and SLSNCλ since even
if there is only a single demand the problem becomes the Restricted Shortest Path
problem, which is known to be NP-hard [15]. But since Restricted Shortest Path
admits an FPTAS [15, 17], it is natural to instead try to give a (1 + ε)-approximation
algorithm for both problems. We show that with some modifications of the algorithms in the
unit-length case, we can give an FPTAS for arbitrary-length arbitrary-cost SLSNCλ , and
can give a (1 + ε)-approximation algorithm in FPT time for arbitrary-length arbitrary-cost
SLSNC∗ .

For SLSNCλ , Lemma 9 still holds, so we can still guess how the paths in the solution
intersect with each other and what the endpoints of maximum shared subpaths are. However,
we cannot guess the length of a subpath in this setting, since there are too many possibilities.
We instead guess the cost of all the subpaths. Because we are aiming to find an approximation
solution, we are allowed to have (1 + ε) error on the cost of each subpath, so this allows us
to reduce the search space. However, this is still not enough: if the space of the possible
values is too large, then log1+ε of it is still too large. So we then use an additional procedure
from [17] which gives valid upper bound U and lower bound L on the optimal solution such
that U/L ≤ n2. This sufficiently decreases the space of possible guesses so that we get a
(1 + ε)-approximation in polynomial time. The full algorithm and analysis are in Section 5.2
of the full paper [2].

For the star demand graph, we cannot do the same reduction as in Section 3.2 because
with arbitrary lengths the natural layered graph used in the reduction to DSN can have
exponential layers. However, similar to Steiner Tree and DST, one can prove that the

FSTTCS 2018



33:16 Characterizing Demand Graphs for Shallow-Light Steiner Network

optimal solution for SLSNC∗ is always a tree. Therefore we look at the original FPT
algorithm for Steiner Tree and DST and attempt to modify it to work in our setting.
Given a star demand graph where the center is s and the leaf set is T , both algorithms use
dynamic programming to solve the subproblems f(v,R), which are to find the minimum cost
tree with root v ∈ V that contains R ⊆ T , starting from |R| = 1 to |R| = |T |. The base case
when |R| = 1 is essentially a shortest path algorithm. Then we can build up larger trees
since a tree with more than two leaves can always be partitioned to two subtrees and a path
from the root.

We use a similar approach, first discretizing the possible costs to be powers of (1 + ε).
We define the subproblem d(v, j, R) to be the smallest height of a tree (with the given edge
lengths) such that the root is v, the total cost is at most j, and it contains all vertices in R.
Then, we find the smallest j for which d(s, j, T ) is at most the length bound L, and this j is
actually a good approximation to the optimal solution. The full algorithm and analysis are
in Section 5.3 of the full paper [2].

5.2 Lower bounds

For the lower bound on SLSNC with C * (Cλ∪C∗), the same reduction as in Section 4 already
shows that it is W[1]-hard to obtain a

(
1 + 1

O(p2)

)
-approximation. However, we would like

a stronger hardness of approximation, one which would rule out good approximations (like
we gave for SLSNC∗ and SLSNCλ) even for large p. With some modifications of the cost of
some edges in the instance constructed in Section 4, and a stronger assumption of Gap-ETH,
we can show that there is no ( 5

4 − ε)-approximation for SLSNC which runs in FPT time,
even for the unit-length polynomial-cost setting.

Consider the reduction in Section 4. We showed that if there is a low-cost solution to
the SLSN instance that we created, then the paths satisfying the demands must share some
specific edges with each other, and the existence of these edges implies the existence of a
clique in the given MCC instance. For the polynomial-cost setting, we reduce from a different
problem known as the Multi-Colored Densest k-Subgraph, which is a gap version of
the MCC instance. Under the assumption of Gap-ETH, a corollary of [7] shows that for
any constant 0 < ε < 1, no FPT algorithm can distinguish between the case that there is a
multi-colored k-clique and the case that every subgraph with k vertices has at most ε ·

(
k
2
)

edges. By modifying the cost of some edges and making a slightly delicate inclusion-exclusion
argument, we can show that if the cost of the SLSN solution is not too large then many
edges still need to be shared by different paths, which ensures that a subgraph with k vertices
and ε ·

(
k
2
)
edges must exist. The entire reduction and the correctness proof is in Section 6 of

the full paper [2].

References

1 Amir Abboud and Greg Bodwin. Reachability Preservers: New Extremal Bounds and
Approximation Algorithms. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2018, pages 1865–1883, 2018.

2 Amy Babay, Michael Dinitz, and Zeyu Zhang. Characterizing Demand Graphs for (Fixed-
Parameter) Shallow-Light Steiner Network. arXiv preprint arXiv:1802.10566, 2018.

3 Amy Babay, Emily Wagner, Michael Dinitz, and Yair Amir. Timely, Reliable, and Cost-
Effective Internet Transport Service Using Dissemination Graphs. In 37th IEEE Interna-
tional Conference on Distributed Computing Systems, ICDCS 2017, pages 1–12, 2017.



A. Babay, M. Dinitz, and Z. Zhang 33:17

4 Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manu-
rangsi, Danupon Nanongkai, and Luca Trevisan. From gap-ETH to FPT-inapproximability:
Clique, dominating set, and more. In Foundations of Computer Science (FOCS), 2017
IEEE 58th Annual Symposium on, pages 743–754. IEEE, 2017.

5 Moses Charikar, Chandra Chekuri, To-yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha,
and Ming Li. Approximation algorithms for directed Steiner problems. Journal of Algo-
rithms, 33(1):73–91, 1999.

6 Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set connectivity problems
in undirected graphs and the directed steiner network problem. ACM Transactions on
Algorithms (TALG), 7(2):18, 2011.

7 Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi. Parameterized
Approximation Algorithms for Directed Steiner Network Problems. arXiv preprint
arXiv:1707.06499, 2017.

8 Eden Chlamtác, Michael Dinitz, Guy Kortsarz, and Bundit Laekhanukit. Approximating
Spanners and Directed Steiner Forest: Upper and Lower Bounds. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages
534–553, 2017.

9 Stuart E Dreyfus and Robert A Wagner. The Steiner problem in graphs. Networks,
1(3):195–207, 1971.

10 Jon Feldman and Matthias Ruhl. The directed Steiner network problem is tractable for a
constant number of terminals. SIAM Journal on Computing, 36(2):543–561, 2006.

11 Andreas Emil Feldmann and Dániel Marx. The Complexity Landscape of Fixed-Parameter
Directed Steiner Network Problems. In 43rd International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2016, volume 55 of LIPIcs, pages 27:1–27:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

12 Michael R Fellows, Danny Hermelin, Frances Rosamond, and Stéphane Vialette. On the pa-
rameterized complexity of multiple-interval graph problems. Theoretical Computer Science,
410(1):53–61, 2009.

13 Longkun Guo, Kewen Liao, and Hong Shen. On the shallow-light steiner tree problem. In
Parallel and Distributed Computing, Applications and Technologies (PDCAT), 2014 15th
International Conference on, pages 56–60. IEEE, 2014.

14 Mohammad Taghi Hajiaghayi, Guy Kortsarz, and Mohammad R Salavatipour. Approxi-
mating buy-at-bulk and shallow-light k-Steiner trees. Algorithmica, 53(1):89–103, 2009.

15 Refael Hassin. Approximation schemes for the restricted shortest path problem. Mathe-
matics of Operations research, 17(1):36–42, 1992.

16 Guy Kortsarz and David Peleg. Approximating shallow-light trees. Technical report, As-
sociation for Computing Machinery, New York, NY (United States), 1997.

17 Dean H Lorenz and Danny Raz. A simple efficient approximation scheme for the restricted
shortest path problem. Operations Research Letters, 28(5):213–219, 2001.

18 Joseph Naor and Baruch Schieber. Improved approximations for shallow-light spanning
trees. In Foundations of Computer Science, 1997. Proceedings., 38th Annual Symposium
on, pages 536–541. IEEE, 1997.

19 Leonid Zosin and Samir Khuller. On directed Steiner trees. In Proceedings of the thirteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 59–63. Society for Industrial
and Applied Mathematics, 2002.

FSTTCS 2018



33:18 Characterizing Demand Graphs for Shallow-Light Steiner Network

A Proofs in Section 4

A.1 Proof of Claims in Case 1

A.1.1 Proof of Claim 17
We can see that G∗k is a 6-layer graph with a few additional paths between the fourth layer
and the fifth layer. Thus Pi,j must contain at least one edge between each two adjacent
layers. From the construction of G∗k, all the edges between two adjacent layers have the same
length. If we sum up the length from r to the fourth layer plus the length from the fifth layer
to li,j , it is already 2 + 1 + 2k2 − 2 + 2k2 − 2 = 4k2 − 1. Thus, between the fourth layer and
the fifth layer we can only choose one length 1 edge.

We know that the vertex in the fifth layer must adjacent to li,j , so it must be x′u,j for
some u ∈ Ci. Thus, the edge between the fourth layer and the fifth layer must be {xu,j , x′u,j},
because this is the only length 1 edge adjacent to x′u,j . In addition, the only way to go from
r to xu,j with one edge per layer is to pass through vertex z{i,j} and z{u,v} for some v ∈ Cj
and {u, v} ∈ E. Therefore Pi,j must correspond to an edge {u, v} ∈ E where u ∈ Ci and
v ∈ Cj , and it has form r – z{i,j} – z{u,v} – xu,j – x′u,j – li,j . J

A.1.2 Proof of Claim 18
For the path connecting y0 and yk, we first prove another claim.

I Claim 21. Any path Py between y0 and yk with length at most 4k2 does not contain any
edge in E1 ∪ E2 ∪ E3 ∪ E5.

Proof. We prove the claim by contradiction. If Py contains an edge in E1 ∪E2 ∪E3 ∪E5, it
must contain at least two edges with length 2k2− 2 (one edge to go out of the fourth and the
fifth layer, and another one to go back). Since any edge which has endpoint y0 has length 4
and any edge which has endpoint yk has length 3, the total length 2 ·(2k2−2)+4+3 = 4k2 +3
already exceeds the length bound 4k2, giving a contradiction. J

Since we have Claim 21, it suffices to consider the edge set E4 ∪ Eyx ∪ Exx ∪ Exy. We
can see that E4 ∪ Eyx ∪ Exx ∪ Exy can be partitioned to k|V | paths, where for each i ∈ [k]
and each v ∈ Ci, there is a path Pv which connects yi−1 and yi with length 4k. The path is
yi−1 – xv,fi(0) – x′v,fi(0) – xv,f2

i
(0) – x′

v,f2
i

(0) – . . . – xv,fk−1
i

(0) – x′
v,fk−1

i
(0) – y1. We can see

that these paths are vertex disjoint except for the endpoints y0, y1, . . . , yk.
Therefore, the only way to go from y0 to yk is by passing through y0, y1, . . . , yk one-by-one.

Thus, for each i ∈ [k], Py must contain a subpath Pvi where vi ∈ Ci. Because each of these
subpaths has length 4k, the total cost is already 4k · k = 4k2, which is exactly the length
bound. Therefore, Py can not contain any other edge, which proves the lemma. J

A.2 Case 2, 3, and 4
Cases 2, 3, and 4 are basically the same as Case 1, so we discuss them in the same subsection.

Case 2: H∗
k,1

We use the same G∗k, G′, and L in the construction of the SLSN instance for demand graph
H∗k,0, and also set g(H∗k,1) = 4k4 − 4k3 + 3

2k
2 + 5

2k. The only difference is the demand graph.
Besides the demand of {r, li,j} for all i, j ∈ [k] where i 6= j, and {y0, yk}, there is a new



A. Babay, M. Dinitz, and Z. Zhang 33:19

demand {r, y0}. Clearly this new demand graph is a star with (k(k − 1) + 1) leaves, and an
edge in which exactly one of the endpoints is a leaf of the star, so it is isomorphic to H∗k,1.

Assume there is a multi-colored clique of size k in G. The paths connecting previous
demands in the solution of the SLSN instance are the same as Case 1. The path between r
and y0 is r – z{1,2} – z{v1,v2} – xv1,2 – y0. All the edges in this path are already in the previous
paths, so the cost remains the same. The length of this path is 2+1+2k2−2+4 = 2k2+5 < 4k2,
which satisfies the length bound.

Assume there is a solution for the SLSN instance (G′, L,H∗k,1) with cost 4k4 − 4k3 +
3
2k

2 + 5
2k. The proof that there exists a multi-colored clique of size k in G is the same as

Case 1.

Case 3: H∗
k,2

As in Case 2, only the demand graph changes. The new demand graph is the same as in
Case 2 but again with a new demand {r, yk}. Since {r, y0} was already a demand, our new
demand graph is a star with (k(k − 1) + 2) leaves (the li,j ’s and y0 and yk), and an edge
between two of its leaves (y0 and yk), which is isomorphic to H∗k,2.

Assume there is a multi-colored clique of size k in G. The paths connecting previous
demands in the solution of the SLSN instance are the same as Case 2. The path between r
and yk is r – z{k−1,k} – z{vk−1,vk} – xvk,k−1 – yk. All the edges in this path are already in the
previous paths, so the cost stays the same. The length of this path is 2 + 1 + 2k2 − 2 + 4 =
2k2 + 5 < 4k2, which satisfies the length bound.

Assume there is a solution for the SLSN instance (G′, L,H∗k,2) with cost 4k4 − 4k3 +
3
2k

2 + 5
2k. The proof that there exists a multi-colored clique of size k in G is the same as

Case 1.

Case 4: Hk,k

In order to get Hk,k as our demand graph, we have to slightly change the construction from
Case 1. We still first make a weighted graph Gk,k = (Vk,k, Ek,k) and then transform it to
the unit-length unit-cost graph G′. For the vertex set Vk,k, we add another layer of vertices
V0 = {l′i,j | i, j ∈ [k], i 6= j} to V ∗k before the first layer V1. For the edge set Ek,k, we include
all the edges in E∗k , but change the length of edges in E1 to length 1. We also add another
edge set E0 = {{l′i,j , r} | i, j ∈ [k], i 6= j}. Each edge in E0 has length 1.

The demands are {l′i,j , li,j} for each i, j ∈ [k] where i 6= j, as well as {y0, yk}. This is a
matching of size k(k − 1) + 1, which is isomorphic to Hk,k. We still set the length bound to
be L = 4k2, and set g(Hk,k) = 4k4 − 4k3 + 2k2 + 2k.

If there is a multi-colored clique of size k in G, the construction for the solution in G′ is
similar to Case 1. For each i, j ∈ [k] where i 6= j, the path between l′i,j and li,j becomes l′i,j –
r – z{i,j} – z{vi,vj} – xvi,j – x′vi,j – li,j (i.e., one more layer before the root r). It is easy to
see that the length bound and size bound are still satisfied.

Assume there is a solution for the SLSN instance (G′, L,Hk,k) with cost 4k4−4k3+2k2+2k.
The proof that there exists a multi-colored clique of size k in G is essentially the same as
Case 1, except the path between l′i,j and li,j has one more layer.

A.3 Case 5: H2,k

In this case, we slightly modify the reduction of [11]. We first change all the edges from
directed to undirected. In addition, in [11] the demand graph is precisely a 2-by-k(k − 1)
bipartite graph, but we also handle the generalization in which there may be more demands

FSTTCS 2018



33:20 Characterizing Demand Graphs for Shallow-Light Steiner Network

𝑟𝑟1

𝑧𝑧 1,2 𝑧𝑧 1,𝑘𝑘 𝑧𝑧 2,3 𝑧𝑧 𝑘𝑘−1,𝑘𝑘⋯ ⋯

𝑧𝑧 𝑢𝑢,𝑣𝑣

𝑥𝑥𝑢𝑢,3𝑥𝑥𝑢𝑢,1 𝑥𝑥𝑢𝑢,4 𝑥𝑥𝑢𝑢,𝑘𝑘

𝑙𝑙1,2 𝑙𝑙1,𝑘𝑘 𝑙𝑙2,1 𝑙𝑙2,3⋯ 𝑙𝑙2,𝑘𝑘⋯ ⋯ 𝑙𝑙𝑘𝑘,𝑘𝑘−1

Edges between
Color 2 and 3

Color 2
Vertices

Color 3
Vertices

𝑟𝑟2

𝑦𝑦1 𝑦𝑦2 𝑦𝑦3 𝑦𝑦𝑘𝑘⋯

𝑦𝑦𝑢𝑢 𝑦𝑦𝑣𝑣

⋯ 𝑥𝑥𝑣𝑣,2𝑥𝑥𝑣𝑣,1 𝑥𝑥𝑣𝑣,4 𝑥𝑥𝑣𝑣,𝑘𝑘⋯

𝑙𝑙2,4 𝑙𝑙3,1 𝑙𝑙3,2 𝑙𝑙3,𝑘𝑘⋯𝑙𝑙3,4

⋯

⋯

⋯

Every pair is connected

𝑙𝑙1,3

Figure 2 G2,k.

between vertices on each sides (i.e., the 2-by-k(k − 1) bipartite graph is just a subgraph of
our demands). In order to do this, we add some dummy vertices and some edges.

Given an MCC instance (G = (V,E), c) with parameter k, and a demand graph H ∈ H2,k,
we create a unit-length and unit-cost SLSN instance G′ with demand isomorphic to H as
follows.

We first create a weighted graph G2,k = (V2,k, E2,k). The vertex set V2,k contains 5 layers
of vertices. The first layer V1 is just two roots r1, r2. The second layer V2 contains a vertex
z{i,j} for each 1 ≤ i < j ≤ k, and a vertex yi for each i ∈ [k]. The third layer V3 contains
a vertex ze for each e ∈ E, and a vertex yv for each v ∈ V . The fourth layer V4 contains a
vertex xv,j for each v ∈ V and j 6= c(v). The fifth layer V5 contains a vertex li,j for each
i, j ∈ [k] where i 6= j.

The edge set E2,k contains the following edges:
E11 = {{r1, z{i,j}}, 1 ≤ i < j ≤ k}, each edge in E11 has length 1.
E12 = {{z{c(u),c(v)}, ze} | e = {u, v} ∈ E}, each edge in E12 has length 1.
E13 = {{ze, xu,c(v)} | e = {u, v} ∈ E}, each edge in E13 has length 1. Note that if
{ze, xu,c(v)} ∈ E13, then {ze, xv,c(u)} ∈ E13

E21 = {{r2, yi} | i ∈ [k]}, each edge in E21 has length 1.
E22 = {{yc(v), yv} | v ∈ V }, each edge in E22 has length 1.
E23 = {{yv, xv,j} | v ∈ V, j 6= c(v)}, each edge in E23 has length 1.
Exl = {{xv,j , lc(v),j} | v ∈ V, j 6= c(v)}, each edge in Exl has length 4.
Ell = {{li,j , li′,j′} | i, j, i′, j′ ∈ [k], i 6= j, i′ 6= j′, (i, j) 6= (i′, j′)}, each edge in Ell has
length 7.

We get a unit-length graph G′ from G2,k by replacing every edge e ∈ E2,k by a length(e)-
hop path. Our SLSN instance consists of the graph G′, length bound L = 7, and the
following demands (which will be isomorphic to H). For each r ∈ {r1, r2} and i, j ∈ [k]
with i 6= j, there is a demand between r and li,j (note that these demands form a 2 by
k(k − 1) complete bipartite graph. Let this complete bipartite subgraph be B. For the rest
of the demands, we arbitrarily choose a mapping between V1 = {r1, r2} and the 2-side of
the bipartite graph in H, as well as a mapping between V5 = {li,j | i, j ∈ [k], i 6= j} and
the k(k − 1)-side. There is a demand between two vertices u, v ∈ V1 ∪ V5 if there is an edge
between u, v in H.



A. Babay, M. Dinitz, and Z. Zhang 33:21

This construction clearly takes poly(|V ||H|) time. Let g(H) = 7|H| − 7k2 + 9k − 7 ·
1{r1,r2}∈H , where 1{r1,r2}∈H is an indicator variable for {r1, r2} being a demand in H. This
function is also computable in time poly(|H|). We first prove the easy direction in the
correctness of the reduction.

I Lemma 22. If there is a multi-colored clique of size k in G, then there is a solution S

for the SLSN instance (G′, L) with demand graph H ∈ H2,k, and the total cost of S is
7|H| − 7k2 + 9k − 7 · 1{r1,r2}∈H .

Proof. Let v1, . . . , vk be a multi-colored clique of size k in G, where vi ∈ Ci for all i ∈ [k].
We create a feasible solution S to our SLSN instance, which contains following paths in G′
(i.e., edges in G2,k):
{r1, z{i,j}} for each 1 ≤ i < j ≤ k. The total cost of these edges is

(
k
2
)

= k2−k
2 .

{z{i,j}, z{vi,vj}} for each 1 ≤ i < j ≤ k. The total cost of these edges is
(
k
2
)

= k2−k
2 .

{z{vi,vj}, xvi,j} and {z{vi,vj}, xvj ,i} for each 1 ≤ i < j ≤ k. The total cost of these edges
is 2 ·

(
k
2
)

= k2 − k.
{r2, yi} for each i ∈ [k]. The total cost of these edges is k.
{yi, yvi} for each i ∈ [k]. The total cost of these edges is k.
{yvi , xvi,j} for each i, j ∈ [k] where i 6= j. The total cost of these edges is 2 ·

(
k
2
)

= k2 − k.
{xvi,j , li,j} for each i, j ∈ [k] where i 6= j. The total cost of these edges is 4 · 2 ·

(
k
2
)

=
4k2 − 4k.
{u, v} for each {u, v} ∈ H \ (B ∪ {{r1, r2}}). The total cost of these edges is 7 · (|H| − 2 ·
k(k − 1)− 1{r1,r2}∈H) = 7|H| − 14k2 + 14k − 7 · 1{r1,r2}∈H .

Therefore, the total cost is k2−k
2 + k2−k

2 + k2 − k + k + k + k2 − k + 4k2 − 4k + 7|H| −
14k2 + 14k − 7 · 1{r1,r2}∈H = 7|H| − 7k2 + 9k − 7 · 1{r1,r2}∈H .

Now we show the feasibility of this solution. For each i, j ∈ [k] where i 6= j, the path
between r1 and li,j is r1 – z{i,j} – z{vi,vj} – xvi,j – li,j , and the path between r2 and li,j is
r2 – yi – yvi – xvi,j – li,j . Both paths have length 7, which is within the length bound. For
each {u, v} ∈ H \ (B ∪ {{r1, r2}}), u and v have an edge with length 7, thus a path under
the length bound exists. Finally, if there exists a demand between r1 and r2, we can follow
the path r1 – z{1,2} – z{v1,v2} – xv1,2 – yv1 – y1 – r2, which has length 6. J

Now we prove the other direction.
Let S be an optimal solution for the SLSN instance (G′, L) with demand graph H∗k,0. If

S has cost at most 4k4 − 4k3 + 3
2k

2 + 5
2k, then there is a multi-colored clique of size k in G.

I Lemma 23. Let S be an optimal solution for the SLSN instance (G′, L) with demand
graph H ∈ H2,k. If S has cost at most 7|H| − 7k2 + 9k − 7 · 1{r1,r2}∈H , then there is a
multi-colored clique of size k in G.

Proof. For each i, j ∈ [k] where i 6= j, let P1,i,j ⊆ S be a (arbitrarily chosen) path between r1
and li,j with length at most 7, and P2,i,j ⊆ S be a (arbitrarily chosen) path between r2 and li,j
with length at most 7. Let P1 = {P1,i,j | i, j ∈ [k], i 6= j}, and P2 = {P2,i,j | i, j ∈ [k], i 6= j}.
As in lemma 19, we first show that some edges must be shared by multiple paths by calculating
the total cost.

In order to satisfy the demand for each {li,j , li′,j′} ∈ H \ (B ∪ {{r1, r2}}), the only way
is to use the edge between li,j and li′,j′ in Ell. Otherwise, suppose the path has more than
one edge, since the only edges incident on any li,j have length either 4 or 7, the cost of two
of these edges already exceeds the length bound. Thus the total cost of the edges in S ∩ Ell
is at least 7|H| − 7|B| − 7 · 1{r1,r2}∈H = 7|H| − 14k2 + 14k − 7 · 1{r1,r2}∈H .

FSTTCS 2018



33:22 Characterizing Demand Graphs for Shallow-Light Steiner Network

We can see that each of the paths in P1 ∪ P2 must have exactly one edge between every
two adjacent levels, and they cannot have any other edges because of the length bound. Thus,
each path P1,i,j ∈ P1 must have form r1 – z{i,j} – z{u,v} – xu,j – li,j for some {u, v} ∈ E
with u ∈ Ci and v ∈ Cj , and each path in P2,i,j ∈ P2 must have form r2 – yi – yv – xv,j –
li,j for some v ∈ Ci.

By looking at the form of paths in P1, we can see that these paths are almost disjoint,
except that P1,i,j and P1,j,i may share edge {r1, z{i,j}} ∈ E11 and edge {z{i,j}, ze} ∈ E12.
Since paths in P1 only contain edges in E11 ∪E12 ∪E13 ∪Exl, the cost of edges in S ∩ (E11 ∪
E12 ∪E13 ∪Exl) must be at least 7 · k(k− 1)−

(
k
2
)
−
(
k
2
)

= 6k2 − 6k, even if every P1,i,j and
P1,j,i do share edge {r1, z{i,j}} and edge {z{i,j}, ze}.

We then look at the form of paths in P2. We can see that the first 3 hops of these paths
only contain edges in E21 ∪ E22 ∪ E23. In addition, these paths are all disjoint on edges
in E23. Moreover, in order to reach all li,j from r2 within length 7, these paths should
contain all edges in E21 and at least k edges in E22. Therefore, the total cost of edges in
S ∩ (E21 ∪ E22 ∪ E23) should be at least k(k − 1) + k + k = k2 + k.

By summing up all these edges, the total cost of edges in S is already at least 7|H| −
14k2 + 14k − 7 · 1{r1,r2}∈H + 6k2 − 6k + k2 + k = 7|H| − 7k2 + 9k − 7 · 1{r1,r2}∈H = g(H),
which means S cannot contain any edge that has not been counted before.

Therefore, S must contain exactly k edges in E22, and each of these edges must have a
different yi as an endpoint. We let these edges be {y1, yv1}, . . . , {yk, yvk}, where vi ∈ Ci for
all i ∈ [k]. We claim that v1, . . . , vk forms a (multicolored) clique in G.

For each 1 ≤ i < j ≤ k, by looking at the form of paths in P2, we know that the path
P2,i,j must be r2 – yi – yvi – xvi,j – li,j . Because of the total cost limitation, the edge
{xvi,j , li,j} ∈ P2,i,j ∩Exl must also appear in some path in P1. By looking at the form of the
paths in P1, the only possible path is P1,i,j . Similarly, path P2,j,i must share edge {xvj ,i, lj,i}
with P1,j,i. Again by looking at the form of the paths in P1, the edge in {z{i,j}, ze} ∈ S∩E12
which is shared by P1,i,j and P1,j,i must have e = {vi, vj}, which means {vi, vj} ∈ E.

Therefore, v1, . . . , vk forms a clique in G. J


	Introduction
	Connection to Overlay Routing

	Our Results and Techniques
	Relationship to [Feldmann and Marx, 2016]

	Algorithms for Unit-Length Arbitrary-Cost SLSN
	The XP algorithm
	Star Demand Graphs (SLSN_{C*})

	W[1]-Hardness for Unit-Length Unit-Cost SLSN
	Preliminaries
	Reduction
	Case 1: H_{k,0}*
	Cases 2: H*_{k,1}, 3: H*_{k,2}, 4: H_{k,k}, and 5:  H_{2,k}
	Case 6: H_k

	Proof of Theorem 5

	Overview of General Length and Cost Settings
	Upper bounds
	Lower bounds

	Proofs in Section 4
	Proof of Claims in Case 1
	Proof of Claim 17
	Proof of Claim 18

	Case 2, 3, and 4
	Case 5: H_{2,k}


