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Abstract
Threshold automata, and the counter systems they define, were introduced as a framework for
parameterized model checking of fault-tolerant distributed algorithms. This application domain
suggested natural constraints on the automata structure, and a specific form of acceleration,
called single-rule acceleration: consecutive occurrences of the same automaton rule are executed
as a single transition in the counter system. These accelerated systems have bounded diameter,
and can be verified in a complete manner with bounded model checking.

We go beyond the original domain, and investigate extensions of threshold automata: non-
linear guards, increments and decrements of shared variables, increments of shared variables
within loops, etc., and show that the bounded diameter property holds for several extensions.
Finally, we put single-rule acceleration in the scope of flat counter automata: although increments
in loops may break the bounded diameter property, the corresponding counter automaton is
flattable, and reachability can be verified using more permissive forms of acceleration.
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1 Introduction

Threshold automata were introduced as a framework for modeling and verification [23, 25, 24,
22] and recently for synthesis [29] of fault-tolerant distributed algorithms. These algorithms
typically wait for a quorum of messages, e.g., in replication services, the primary replica may
block until it received acknowledgments from a majority of the back-up replicas [28, 33, 14, 34].
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19:2 All Flavors of Threshold Automata

`1

`3

`2 `4 `5

r1 : n− f
≤ x

r3 : true

r2 : y++ r4 : x++ r5 : t ≤ y
r6 : true

Figure 1 A threshold automaton.

Moreover, these algorithms are parameterized by design, i.e., the number of processes n is
a parameter, and consequently, the primary in our example contains a guard that waits
for more than n/2 messages, a so-called threshold guard. As a result, the local transition
relation is parameterized, and therefore these systems are out of reach of classic work in
parameterized model checking [15, 7].

We recall the necessary notions of threshold automata by the example in Figure 1. It
operates on parameters n, t, and f , and shared variables x and y. The vertices are called
locations, and the edges are called rules, which can be guarded, and can increase a shared
variable. For instance, the threshold guard in rule r1 compares the value of variable x to a
linear expression over parameters n− f . The semantics of threshold automata is defined via
counter systems, where a configuration contains the values of shared variables, and a counter
value κi for each location `i. The transition relation then is defined by operations on the
counters and shared variables. For instance, for some c, if κ2 ≥ c, then there is a transition
defined by rule r4 that increases κ4 by c, decreases κ2 by c and increases x by c.

By allowing arbitrary values of factor c, one obtains a transition relation with a specific
form of acceleration (single-rule acceleration), built-in by construction. Then, the transition
system is a graph with vertices being configurations, and edges being transitions. By
defining paths in this graph, and distances between vertices, one can define the diameter
of a transition system. If the diameter d is bounded, then every state is reachable in d

steps, and bounded model checking of executions of lengths up to d is a complete verification
method for reachability [6]. It was shown [25] that the diameter of transition systems defined
by threshold automata is bounded, and in particular, it does not depend on the values of
the parameters such as n, t, and f . However, several restrictions on threshold automata
were used in [25] to bound the diameter. While these restrictions are well-justified for the
original domain of fault-tolerant algorithms, two questions remain open: (i) which of these
restrictions were actually necessary to prove the results under single-rule acceleration, and
(ii) which restrictions could be avoided by allowing a more permissive form of acceleration?

The purpose of this paper is to explore various extensions of threshold automata, and
understand which of them maintain a bounded diameter. We study extensions of the following
properties of threshold automata as defined in [25]:
Increments in loops. Canonical threshold automata defined in [25] do not allow updates of

shared variables within loops.
Guards. In [25], threshold guards compare shared variables to a threshold, that is, a linear

combination of parameters. Since parameter values are fixed in a run, thresholds are
effectively constant. As shared variables can only increase in [25], the guards are monotonic;
for instance, once the shared variable is greater than the threshold it stays greater, and
the evaluation of the guards stays unchanged after that. We consider more general guards:
we replace the shared variables (e.g., x) by a function over shared variables, and consider
the special case of a difference (x− y), as well as piecewise monotone functions.
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Table 1 Summary of results. “p.m. f(x)” means a piecewise monotone function of x.

Level Reversals Canonical Bounded diameter? Flattable?
Decidable

reachability?
Class name

x 0 3 [25, Thm. 8] 3 3 3 TA
p.m. f(x) 0 3 Cor. 18 3 3 3 PMTA

x ≤ k 3 [27, Thm. 4] 3 3 3 rbTA
x 0 7 Thm. 9 7 Thm. 24 3 3 NCTA

x− y 0 3 7 7 Thm. 11 7 BDTA
x ∞ 3 7 7 Thm. 10 7 rTA

Reversibility. In [25], only increments on shared variables are considered because increments
are sufficient to model sending a message. As a result, threshold guards were monotone.
In this paper, we also consider decrements, which produce schedules that have alternating
periods of increasing a variable and decreasing it.

For these extensions, we show that under certain conditions these automata entail bounded
diameter results as well. Thus, the diameter result of [25] can be seen as a special case of
the results of this paper.

Finally, we consider threshold automata in the scope of counter automata, a modeling
framework for infinite-state systems [10, 30, 4]. We consider the concepts of (i) a flat counter
automaton, whose control graph does not contain nested loops, and (ii) a flattable counter
automaton, for which a flat counter automaton with the same reachability relation exists.
For these automata, there are procedures and tools (FAST) for reachability analysis [30, 4].
We will discuss that the results of [25, 21] imply that canonical threshold automata (no
increments in loops) entail flattable counter automata – which explains why FAST verified
some benchmarks in the experiments of [25]. Moreover, we show that we can get rid of the
canonicity restriction and still prove that the resulting counter automaton is flattable. That
is, while non-canonical threshold automata do not fall into the fragment that can be verified
with the methods from [25, 21], one can still analyze these automata with more permissive
forms of acceleration as implemented in FAST.

An overview of our results is in Table 1, where the simpler classes are at the top; these
classes are defined in Section 2.3. The bounded diameter property implies flattability, as
we show in Proposition 21, which can be seen in the first three lines. For completeness, in
line 3, we mention results on reversal-bounded threshold automata rbTA, which consider the
structure of runs rather than threshold automata [27]. Note that flattability of a counter
automaton implies that reachability for this automaton is decidable [30].

2 System model

This section generalizes the definitions of [25]. We use the following sets: integers Z and
their extension Z∞ = Z∪ {−∞,+∞}, non-negative integers N0, reals R. We denote a vector
of integers by ~x. When the vector dimension is clear, we write ~1k to denote the unit vector
that has 1 at position k and 0 everywhere else, and ~0 is the vector filled with zeroes.

2.1 Unrestricted threshold automata
An unrestricted threshold automaton (UTA) is a tuple (L, I,Γ,Π,R) where L is a finite set of
local states (locations), I ⊆ L is a set of initial local states, Γ is a finite set of shared variables,
Π is a finite set of parameter variables, and R is a finite set of rules, which are defined below.

CONCUR 2018
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`1

`2 `3

`4

n ≤ x
2 + ln y, y++

x++

true, z++
x--, z--

et > 2z 3− xyz

y--

y++,
z++,
x--t+ 1 ≤ min{x2 + y2 + z2, x− z}, y++

Figure 2 An unrestricted threshold automaton.

Guards. A nonlinear guard of a UTA is a formula: thd(~p) ./ lvl(~x), where ~p = [p1, . . . , p|Π|],
~x = [x1, . . . , x|Γ|], lvl : Z|Γ| → R is the level function, thd : Z|Π| → R is the threshold function,
and ./ is one of {<,≤, >,≥}. When ./ is either < or ≤, the guard is called a lower guard,
otherwise it is an upper guard. For x ∈ Γ and a0, a1, . . . , a|Π| ∈ Z, a guard of the following
form is called affine: a0 +

∑|Π|
i=1 aipi ./ x. (Affine guards have only one shared variable.)

Rules. A rule is a tuple (from, to, Φ, ~u) where to, from ∈ L are two local states, Φ is a set
of nonlinear guards and ~u ∈ Z|Γ| is an update vector.

I Example 1. Consider the automaton in Figure 2, demonstrating the nonlinear guards and
rules that are not considered in [25]. /

2.2 Semantics of UTA: counter systems
Configurations. For a UTA A = (L, I,Γ,Π,R), a triple of vectors (~κ,~g, ~p) ∈ N|L|0 × Z|Γ| ×
N|Π|0 is called a configuration. The vectors have the following meaning: vector ~κ ∈ N|L|0 stores
the values of the location counters, vector ~g ∈ Z|Γ| stores the values of the shared variables,
and vector N|Π|0 stores the parameters.

Transitions. Given a UTA A = (L, I,Γ,Π,R), a transition is a pair (rule, factor) where
rule ∈ R and factor ∈ N0. Note that the single-rule acceleration is built into to the definition
of a transition, by allowing factor > 1. We use the notation t.rule and t.factor to refer to
the tuple elements of the same name. Additionally, for any tuple field e of t.rule we shorten
t.rule.e to t.e for brevity (e.g., t.rule.from becomes t.from).

Given a configuration σ and a formula ϕ over the shared variables Γ and parameters Π,
we will use the notation (σ.~g, σ.~p) |= ϕ, or just σ |= ϕ, to mean that the formula ϕ holds true
when the shared variables and the parameters are substituted with their respective values
from σ.~g and σ.~p.

We say that a rule r is unlocked in a configuration σ if (σ.~g, σ.~p) |=
∧
ϕ∈r.Φ ϕ. Further,

a transition t = (r, a) is unlocked in a configuration σ if r remains unlocked after at
least a − 1 updates imposed by r.~u, that is, for each k ∈ {0, 1, . . . , a − 1}, it holds that
(σ.~g + k · r.~u, σ.~p) |=

∧
ϕ∈r.Φ ϕ.

I Definition 2. A transition t = (r, a) is applicable to a configuration σ if t is unlocked in σ
and σ.~κ[r.from] ≥ a. When t is applicable to σ, we call σ′ the result of applying t to σ –
denoted as t(σ) – if the requirements 1–3 are met:
1. the location counters are changed by a, that is, σ′.~κ = σ.~κ+ a · (~1r.to −~1r.from),
2. the update vector is added a times to the shared variables: σ′.~g = σ.~g + a · r.~u,
3. the parameters do not change: σ′.~p = σ.~p.

Definition 2 explicitly allows successive applications of the same rule to be compressed
into a single transition. This kind of acceleration was introduced in [25], and we call it
single-rule acceleration.
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I Example 3. Consider the automaton in Figure 1. The following table shows a configura-
tion σ0, and configurations σ1 and σ2 after applying one and two transitions, respectively, to
the configuration σ0:

configuration counters ~κ shared variables ~g parameters ~p

σ0 (4, 0, 0, 0, 0) (0, 0) (4, 1, 1)
σ1 (2,2, 0, 0, 0) (0, 0) (4, 1, 1)
σ2 (2,1, 0,1, 0) (1, 0) (4, 1, 1)

First, the parameters are initialized to n = 4, t = f = 1, and the counter of location `1
equals to n (configuration σ0). Then, transition (r3, 2) is applied to σ0, resulting in the
counter of `2 increasing by 2 and the counter of `1 decreasing by 2 in configuration σ1.
Finally, rule r4 is executed once, incrementing x to obtain σ2. /

Number of instances. As in [25], we assume that a threshold automaton is equipped with
a function N : N|Π|0 → N0. Intuitively, every configuration σ captures a state of N(σ.~p)
instances of the threshold automaton. The authors of [25] did not restrict function N , as
they were concerned only with the length of the shortest sequences of transitions connecting
any two configurations. In this paper, we assume that the relation {(~p,N(~p)) : ~p ∈ N|Π|0 } can
be defined with a formula in Presburger arithmetic. In Example 3, we define N with the
following formula over the parameters n, t, and f as well as the outcome of the function N :
(n > 3t→ N = n− f ∧ f ≥ 0 ∧ t ≥ 0) ∧ (n ≤ 3t→ N = 0).

In our example, the number N is positive only if n > 3t, and equals to zero otherwise.
This allows us to prune “irrelevant” parameter values. (In distributed computing, this is
achieved by writing a so-called resilience condition.)

Counter systems. Having defined the configurations and transitions, we define a counter
system of a threshold automaton:

I Definition 4. Given a UTA A = (L, I,Γ,Π, R), we define its counter system CS(A) as a
transition system (Σ, I, R), where:

Σ is the set of all possible configurations.
I ⊆ Σ is the set of initial configurations; their counter values in the initial locations sum
up to N(~p). Formally, a configuration σ0 ∈ Σ belongs to I if and only if the following
conditions hold: σ0.~κ[`] = 0 for ` ∈ L\I and N(σ0.~p) =

∑
`∈I σ0.~κ[`], as well as, σ0.~g = ~0.

R ⊆ Σ× Σ is the transition relation. A pair of configurations (σ, σ′) belongs to R if and
only if there is a transition t that is applicable to σ, and σ′ = t(σ).

A schedule is a finite sequence of transitions. A schedule τ = t1, . . . , tm is applicable to a
configuration σ0 if there exists a sequence of configurations σ1, . . . , σm where σi = ti(σi−1)
for all 0 < i ≤ m. We define τ(σ0) to be σm. We denote the concatenation of schedules τ
and τ ′ by τ · τ ′ and the length of a schedule τ = t1, . . . , tm as |τ | = m. By ε, we refer to the
empty schedule, which has length 0 and satisfies ε(σ) = σ for all σ in Σ.

For a schedule τ = t1, . . . , tn and two indices i, j ∈ Z, we define the subschedule τ[i,j] as
follows (τ[i,j), τ(i,j], and τ(i,j) are obtained by choosing the intervals accordingly):

τ[i,j] =
{
tmax(1,i), . . . , tmin(n,j), when i ≤ j,
ε, when i > j

We say that a configuration σ′ is reachable from a configuration σ, if there is a schedule τ
with the following properties: (1) τ is applicable to σ, and (2) τ(σ) = σ′.

CONCUR 2018
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Bounded diameters. The central result of [25] is that for counter systems of threshold
automata one can check, whether one configuration is reachable from another. It is sufficient
to inspect the schedules of length within a precomputed bound on the diameter:

I Definition 5. Given a UTA A and its counter system CS(A) = (Σ, I, R), a number d ∈
N0 ∪ {∞} is the diameter of CS(A) if d is the smallest number with the following property:

For every pair of configurations σ, σ′ ∈ Σ, if σ′ is reachable from σ, then there is a
schedule τ such that: (a) τ is applicable to σ, (b) τ ′(σ) = σ′, and (c) |τ ′| ≤ d.

One of our contributions is in finding fragments of unrestricted threshold automata whose
counter systems have a bounded diameter. In Section 4, we give examples of UTA whose
counter systems have unbounded diameters. Moreover, we show that there are classes of UTA,
for which the following problem– which generalizes the problem from [21] – is undecidable:

Parameterized reachability. Given a UTA A = (L, I,Γ,Π, R), a state property B is a
Boolean combination of formulas that have the form ~κ[`] = 0, for some ` ∈ L. The
parameterized reachability problem is to decide whether there are parameter values ~p ∈ N|Π|0 ,
an initial configuration σ0 ∈ I, with σ0.~p = ~p, and a schedule τ , such that τ is applicable
to σ0, and property B holds in the final state: τ(σ0) |= B.

2.3 Fragments of unrestricted threshold automata
In order to prove the bounded diameter property, we consider various restrictions on the
guards, updates, the transition relation, and other aspects of UTA. The first restriction
prohibits modifications of shared variables in loops [25]:

I Definition 6. A rule r lies on a cycle, if there is a sequence of rules r0, . . . , rk, where
r = r0 and ri.to = rj .from for 0 ≤ i ≤ k and j = i+ 1 mod (k + 1).
A UTA is canonical if r.~u = ~0 for every rule r ∈ R that lies on a cycle.

Canonical Threshold Automata (TA). This class contains UTAs with the following prop-
erties: (1) they are canonical, (2) all guards are affine, and (3) the update vectors in all rules
are non-negative. This is the class of automata considered in [25, 24], which is known to
have a bounded diameter:

I Theorem 7 ([25]). For every TA A, there exists a constant C, such that the diameter of the
associated counter system is less than or equal to d(CS(A)) = (C + 1) · |R|+ C (independently
of the parameters).

Piecewise Monotone Threshold Automata (PMTA). This class contains UTAs with the
following properties: (1) they are canonical, (2) all level functions in the guards are piecewise
monotone1, and (3) the update vectors in all rules are non-negative.

Bounded Difference Threshold Automata (BDTA). This class contains UTAs with the
following properties: (1) they are canonical, (2) all level functions in the guards are of the
form xi or xi−xj for some xi, xj ∈ Γ, and (3) the update vectors in all rules are non-negative.

1 The domain of a piecewise monotone function can be decomposed into finitely many intervals where the
function is monotone.
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`1 `2

r2 : n ≤ x
r1 : x++

Figure 3 A simple NCTA.

`1 `2r2 : 1 ≤ x− y, y++

r1 : 1 > x− y, x++

Figure 4 A BDTA with unbounded diameter.

Non-canonical generalizations of TA, PMTA, and BDTA. For the mentioned classes, we
omit the requirement of the automaton being canonical, and denote these classes as: NCTA,
NCPMTA, and NCBDTA.

Reversible of TA, PMTA, and BDTA. For the mentioned classes, we allow shared variables
to be both increased and decreased, and denote these classes as: rTA, rPMTA, and rBDTA.

Reversal-bounded extensions of TA, PMTA, and BDTA. To introduce reversal-bounded
automata, we need the following definition.

I Definition 8. A schedule t1 · τ · t2 is an x-reversal if: (a) one of the transitions t1 or t2
increases x and the other decreases x, that is, t1.~u[x] · t2.~u[x] < 0, and (b) every transition t
in τ does not update x, that is, t.~u[x] = 0. If for every shared variable x, the number of
x-reversals in a schedule is at most N , the schedule is called N -reversible.

Similar to reversal-bounded counter machines [20], we define the classes rbTA, rbPMTA,
and rbBDTA by restricting the counter systems of the respective reversible automata to
N -reversible schedules (where N is fixed).

3 Negative results: unbounded diameters and undecidability

We give examples of NCTA and BDTA whose counter systems have unbounded diameters.
Then, we show that reachability is undecidable for counter systems of BDTA and rTA.

3.1 Unbounded diameters of non-canonical threshold automata
When we permit shared variables to be updated within loops, the diameter of the counter
system becomes unbounded:

I Theorem 9. There is an NCTA whose counter system has unbounded diameter.

Proof. Figure 3 shows such an NCTA, where x is the only shared variable, and n the only
parameter. To prove the theorem, take the configuration σ with σ.~κ = (1, 0), σ.~g = (0),
and σ.~p = (n) for n > 0. We show that the following configuration σ′ can be reached from σ

in no less than n+ 1 transitions: σ′.~κ = (0, 1), σ′.~g = (n), and σ′.~p = (n). In σ, rule r2 is
locked, and rule r1 is not, so r1 must be used at least n times to unlock r2. Since the sum
of the values of location counters initially is 1 and is invariant, we can only use transitions
with a factor of at most 1. Thus, to reach σ′ from σ, we have to execute n copies of the
transition (r1, 1) and then the transition (r2, 1). Hence, the diameter must be at least n+ 1,
and thus grows with the unbounded parameter n. J

The automaton in Figure 3 encodes the simple loop “while (n <= x) x++;” One can
argue that this automaton can be accelerated by compressing self-loops into one transition;
which requires another form of acceleration. Figure 5 shows an example that cannot be easily
fixed by this. This example can be treated with more general acceleration techniques, as
demonstrated in Section 6.

CONCUR 2018



19:8 All Flavors of Threshold Automata

`1 `2 `3`4
r5 : 42n ≤ x

r1 : 1 > x, x++

r3 : true

r2 : x++

r4 : 42n ≤ x

Figure 5 A non-canonical automaton with unbounded diameter.

3.2 Undecidability for reversible and bounded-difference automata
We show even stronger results for rTA and BDTA: reachability is undecidable and thus
counter systems of such automata cannot be analyzed with any form of acceleration.

I Theorem 10. Parameterized reachability for counter systems of loop-free rTA is undecidable.

Proof. We use rTA to encode two-counter machines 2CM, for which the halting problem is
undecidable [32]. A command of a 2CM is a triple (from, cmd, to) where from and to are
labels from the set {1, . . . ,m} for some m, and cmd is one of the operations: inc x, dec x,
inc y, dec y, zero? x, zero? y. The label m designates the halting command. For the two
counters we use two shared variables x and y. For each label i we also add a shared variable
ati, that we use as a Boolean flag to indicate whether the 2CM currently is at label i. There
is also a shared variable init, which is used for initialization.

It remains to encode the control structure of a 2CM (which may contain loops) in a
threshold automaton without loops. Our rTA has three locations `0, `1, `2, where `0 is the
initial one. First, we introduce a special initialization rule from `0 to `1 that is guarded
with init < 1 and increments init. Second, for each command we introduce a rule from `0
to `1. For command (i, cmd, j), the rule is guarded with ati > 0 ∧ init ≥ 1 ∧ init < 2, and
e.g., 0 ≥ x ∧ 0 ≤ x, if the test for zero is needed. The update of the rule contains ati-- and
atj++ (goto label j from label i), and the required increment/decrement of a counter as e.g.,
x++ or y--. Third, the last rule detects that the 2CM halted: it goes from `0 to `2 and is
guarded with atm ≥ 1.

The number of instances is N(n) = n + 2 for the only parameter n. Thus, n steps of
the 2CM are modeled by n+ 1 transitions of the constructed counter system; the (n+ 2)th
transition may move at least one automaton to the location `2. Hence, the counter system
simulates arbitrarily many steps of the 2CM. We ask the parameterized reachability question
of whether the counter system reaches a configuration σ with σ.~κ[`2] 6= 0 (for some value
of n). A positive answer is given if and only if the 2CM halts; undecidability follows. J

Now we consider BDTA. Figure 4 shows an example of a BDTA whose counter system has
unbounded diameter: Every schedule allowed by this threshold automaton is an alternating
sequence of the transitions (r1, 1) and (r2, 1). Thus to increase the counter κ2 to n, we
require a schedule of length n, which is an unbounded parameter. This shows that sinlge-rule
acceleration does not help us to analyze BDTA. In fact, no form of acceleration helps:

I Theorem 11. Parameterized reachability for counter systems of loop-free BDTA is unde-
cidable.

The proof goes along the same lines as the proof of Theorem 10. The only complication
is to encode a decrement of a shared variable by using increments and bounded differences.
To this end, for each variable x, we introduce two shared variables x1 and x2. The difference
x1 − x2 simulates a counter x. Whenever x has to be decremented, we increment x2, and
when x has to be incremented, we increment x1. A test x = 0 is simulated as a conjunction
0 ≥ x1 − x2 ∧ 0 ≤ x1 − x2.
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4 Positive results: bounding the diameter

We extend the framework and the proofs of [25] to prove the bounded diameter property
for certain fragments of UTAs. A key observation in [25] is that if shared variables are only
increased, then the evaluation of every (affine) threshold guard changes at most once in a
schedule. This argument obviously applies even if increments occur in loops:

I Proposition 12 (Monotonicity of affine guards). For an NCTA configuration σ, if a transi-
tion t is applicable to σ, then the following holds:
1. For a lower affine guard ϕ:

(a) If σ |= ϕ, then t(σ) |= ϕ, and (b) if t(σ) 6|= ϕ, then σ 6|= ϕ.
2. For an upper affine guard ϕ:

(c) If σ 6|= ϕ then t(σ) 6|= ϕ, and (d) if t(σ) |= ϕ, then σ |= ϕ.

4.1 A sufficient condition for diameter boundedness
Proposition 12 does not apply to unrestricted threshold automata for two reasons: First,
NCTA only allow shared variables to be incremented, whereas UTA allow both increments
and decrements. Obviously, an affine threshold guard such as n ≤ x can change its evaluation
arbitrary many times, if increments and decrements of x are alternated (as parameter n is
constant in a schedule). Second, even if we restrict updates of shared variables to non-negative
vectors, guards such as 0 ≤ x− y can change their evaluations arbitrarily often in a single
schedule (cf. Theorem 11).

Proposition 12 implies that for every (affine) guard ϕ, when a schedule τ is applied to a
configuration σ, schedule τ can be split into two intervals: τ[1,k) and τ[k,|τ |] with the following
property: τ[1,i)(σ) |= ϕ iff σ |= ϕ for 1 ≤ i ≤ k, and τ[1,j](σ) 6|= ϕ iff τ(σ) 6|= ϕ for k ≤ j ≤ |τ |.
In other words, the evaluation of ϕ may only change in the transition from τ[1,k−1](σ) to
τ[1,k](σ). We extend this idea to non-linear guards by requiring the guards to preserve their
evaluations in a bounded number of intervals. In face of Theorem 11, we thus impose two
restrictions on UTA: (1) we allow only non-negative updates of shared variables, and (2) we
allow level functions to change evaluation of the guards a bounded number of times.

Consider a guard ϕ, a configuration σ, and a schedule τ applicable to σ. We say that τ
is steady with respect to (ϕ, σ), if it has the following property: τ[1,i](σ) |= ϕ if and only if
σ |= ϕ for 1 ≤ i ≤ |τ |.

I Definition 13 (Bounded steadiness). We say that a guard ϕ of a UTA A is bounded-steady
w.r.t A, if there exists a number N ≥ 0, called the flip bound of ϕ, with the following
property:

For every configuration σ of the counter system of A and every schedule τ = t1, . . . , tn
applicable to σ, there is a sequence of indices 0 = i0 ≤ i1 ≤ · · · ≤ iN ≤ iN+1 = n+ 1 such
that τ(ij ,ij+1) is steady with respect to ϕ and τ[1,ij ](σ) for 0 ≤ j ≤ N .

Bounded-steadiness is central in proving the bounded diameter property:

I Theorem 14 (Bounded diameter criterion). Every canonical UTA A with non-negative
updates of shared variables satisfies the following:

If every guard is bounded-steady w.r.t. A, then the diameter of the counter system CS(A)
is bounded by a constant.

In the context of TA, constructions are introduced in [25] to remove cycles and reorder
transitions (to apply acceleration), in order to shorten subschedules in which evaluations of
guards do not change, i.e., steady subschedules. The results of [25] can be summarized in
the following lemma.
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I Lemma 15. There exists an total order of rules ≺ such that for every schedule τ , there
exists a unique schedule, short(τ), with the following properties:
1. If transition (r, a) appears in short(τ), then τ contains a transition (r, a′) for some a′.
2. If transition (r, a) appears before (r′, a′) in short(τ), then r ≺ r′.
3. If for a configuration σ, an applicable schedule τ is steady with respect to all guards and σ,

then short(τ) is applicable to σ and τ(σ) = short(τ)(σ).

One can prove the above lemma independently of the shape of the guards. For the proof
one only uses that in a steady schedule the evaluation of guards does not change. As a
result, one can directly apply the proofs from [25] to generalize Lemma 15 to UTA. This
allows us to replace a steady schedule τ by short(τ), which reaches the same state and whose
length is bounded by Lemma 15(2), because threshold automata have a fixed number of rules
and ≺ is a total order. What remains to be proven for Theorem 14 is that every schedule
of a threshold automaton with bounded-steady guards can be decomposed into a bounded
number of steady subschedules.

Proof of Theorem 14. Let ϕ1, . . . , ϕm be the bounded-steady guards. Let σ be a configura-
tion and τ = t1, . . . , tn a schedule applicable to it. Since each ϕj is bounded-steady it has
a flip bound Nj , for which there exist ij1, . . . , i

j
Nj

with the property that τ(ij
k
,ij

k+1) is steady
with respect to ϕj and τ[1,ij

k
](σ) for 0 ≤ k ≤ Nj . We denote by Sij the set of critical indices

{ij1, . . . , i
j
Nj
}.

We denote by S the set
⋃m
j=1 Sj , and by i1, . . . , il its elements. Additionally, denote

i0 = 0 and il+1 = n+ 1. The set S partitions τ into finer subschedules than each Sj , that is,
for every 0 ≤ k ≤ l and for every 1 ≤ j ≤ m there is an index ijp ∈ Sj such that the schedule
τ(ik,ik+1) is a subschedule of the steady schedule τ(ijp,ijp+1). Because a subschedule of a steady
schedule is also steady by definition (w.r.t. its initial configuration and the same guard),
we can conclude that the schedules τ(ik,ik+1) are steady with respect to all guards ϕj and
τ[1,ik](σ).

We can therefore apply Lemma 15 to each τ(ik,ik+1) and replace it with a shortened
schedule. By property (2) of Lemma 15 and because ≺ is a total order, the length of the
shortened schedules is at most |R|. After replacing every τ(ik,ik+1) with short(τ(ik,ik+1)),
we obtain a schedule τ ′, which is applicable to σ, has the property that τ ′(σ) = τ(σ) and
|τ ′| ≤ (|S|+1)·|R|+|S|. By the definition of S, it holds that |S| ≤

∑m
j=1 |Sj | ≤

∑m
j=1Nj . J

4.2 Two fragments with bounded-steady guards
Theorem 14 gives us a sufficient condition for a function to be used in a guard so that
the resulting counter system has a bounded diameter. The condition applies to threshold
automata with non-negative updates to shared variables. Thus, we can characterize bounded-
steady guards by the shape of their level functions.

I Proposition 16. Every canonical UTA A with non-negative updates of shared variables has
the following property: If a threshold guard ϕ has the shape thd(~p) ./ F (y) for a shared variable
y ∈ Γ, a comparison ./ ∈ {<,≤, >,≥}, and a piecewise-monotone function F : Z→ R, then
the guard ϕ is bounded-steady w.r.t. A.

I Example 17. Consider piecewise-monotone functions f1(x), f2(x) and reals an, . . . a0, b ∈ R
with b > 0. Then, an · xn + · · ·+ a1 · x+ a0, bx, ln x, and min{f1(x), f2(x)} are piecewise-
monotone functions of x ∈ Z. Each of them can be used as F (x) in Proposition 16, and thus
they produce bounded-steady guards. /
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As a corollary of Proposition 16 and Theorem 14, the threshold automata with piecewise-
monotone functions in the guards have the bounded diameter property:

I Corollary 18. For every PMTA, the diameter of its counter system is bounded.

Note that the affine threshold guards of [25] have the shape required in Proposition 16,
and thus are just a special case.

We generalize Proposition 16 to guards over multiple shared variables. Recall that an m-
dimensional integer box is a product of m intervals, that is, B = Zm ∩ [a1, b1]×· · ·× [am, bm]
for some boundaries a1, b1, . . . , am, bm ∈ Z∞.

I Proposition 19. Consider a UTA with non-negative updates of shared variables. A non-
linear guard thd(~p) ./ lvl(~x), for ./ ∈ {<,≤, >,≥}, is bounded-steady, if:
For every level C ∈ R, the function domain Z|Γ| of the level function can be partitioned
into a finite set of disjoint |Γ|-dimensional boxes B1, . . . , Bk that satisfy {~x ∈ Bi | C ./

lvl(~x)} is equal to either Bi or ∅ for 1 ≤ i ≤ k.

As a result, the following two-variable functions give us bounded-steady guards:

x+ y, x · y, min(f1(x), f2(y)) or max(f1(x), f2(y)) for piecewise-monotone f1 and f2

5 Relation to flattable counter automata

Counter automata model infinite-state systems and have acceleration procedures and tools
for reachability analysis [10, 30, 4]. Threshold automata give rise to accelerated counter
systems. In this section, we establish a link between these two frameworks. In particular,
from a threshold automaton A, we construct two kinds of counter automata: CA0(A) is
a counter automaton that executes a single UTA rule without any built-in acceleration,
and CA1(A) is a counter automaton that executes one UTA rule several times in one step.
The automaton CA1(A) corresponds to our counter system CS(A) in Section 2.2. In our
analysis, single-rule acceleration plays a central role in finding diameter bounds, whereas the
procedures for counter automata employ more general forms of acceleration. In fact, CA0(A)
and CA1(A) have the same reachability relation, and any of them can in principle be used as
the input to the techniques for counter automata.

We recall the definitions of counter automata from [30], operating on m counters.

I Definition 20. An m-dimensional counter automaton CA is defined as a tuple
(Q,T, src, tgt, {Gt}t∈T ) with the following properties:

Q and T are finite, non-empty sets of CA-locations and CA-transitions respectively,
src : T → Q and tgt : T → Q are the source and target mappings respectively, and
{Gt}t∈T is a finite family of binary relations on Nm called flow guards.

The semantics of the counter automaton CA is defined as a transition system (CCA,→CA)
with the following properties:
1. The set CCA = Q× Nm0 captures CA-configurations, and
2. the relation →CA⊆ CCA × CCA captures CA-steps. CA makes a step from a configuration

(q, ~x) ∈ CCA to a configuration (q′, ~x′) ∈ CCA via a transition t ∈ T – formally written as
(q, ~x)→CA (q′, ~x′) – if the following holds:

q = src(t) and q′ = tgt(t) and (~x, ~x′) ∈ Gt
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q0
n− f ≤ x,
`′

3 = `3 + 1, `′
1 = `1 − 1

y′ = y + 1,
`′

2 = `2 + 1, `′
3 = `3 − 1

`′
2 = `2 + 1,
`′

1 = `1 − 1

x′ = x+ 1,
`′

4 = `4 + 1, `′
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t ≥ y,
`′

5 = `5 + 1, `′
4 = `4 − 1

Figure 6 A counter automaton for the threshold automaton in Figure 1.

A sequence (q1, ~x1), . . . , (qk, ~xk) of CA-configurations is called a CA-path, if (qi, ~xi)→CA
(qi+1, ~xi+1) for 1 ≤ i < k. Then, the reachability relation →∗CA⊆ N|m|0 × N|m|0 contains all the
pairs of vectors that are connected with a path for some control locations, that is, ~x→∗CA ~x

′

if and only if there is a CA-path (q1, ~x1), . . . , (qk, ~xk) with ~x = ~x1 and ~x′ = ~xk.

A counter automaton without acceleration. Fix an unrestricted threshold automaton
A = (L, I,Γ,Π,R), and let P be the set of variables L∪Γ∪Π. To represent the configurations
of the UTA counter system, we use vectors ~x = (x1, . . . , x|P |) ∈ N|P |0 , where each element xi
stores the value of a variable from the set P (there is a bijection). For a vector ~x ∈ N|P |0 and
a set U ⊆ P , with x|U , we denote the projection of ~x on the variables from U .

A |P |-dimensional counter automaton CA0(A) = (Q,T, src, tgt, {Gt}t∈T ) is constructed
as follows:

The automaton has only one CA-location, that is, Q = {q0} for some q0,
The CA-transitions are identical to the UTA rules, that is, T = R,
Every transition t ∈ T originates from the location q0 and ends in q0; formally, src(t) =
tgt(t) = q0,
For every rule r ∈ R, the flow relation Gr ⊆ N|P |0 ×N|P |0 is the intersection of two relations
Guardr and Updater that are defined as:

(~x, ~x′) ∈ Guardr if and only if (~x|Γ, ~x|Π) |=
∧

ϕ∈r.Φ
ϕ

(~x, ~x′) ∈ Updater if and only if ~x′|Π = ~x|Π, (1)
~x′|Γ = ~x|Γ + r.~u, and ~x′|L = ~x|L +~1r.to −~1r.from (2)

Given the threshold automaton in Figure 1, we construct the respective counter automaton
in Figure 6. Apart from the shared variables and parameters, the counter automaton explicitly
maintains a counter for each location of UTA, whereas in threshold automata these counters
are implicit.

A counter automaton with single-rule acceleration. Given a UTA A, we define its counter
automaton with single-rule acceleration CA1(A). This automaton is structurally the same as
CA0(A), except that the flow relation Gr for r ∈ R accounts for a non-negative acceleration
factor a:

(~x, ~x′) ∈ Gr if and only if ∃a ≥ 0. ∀k : 0 ≤ k < a. (~x+ k · r.~u, ~x′) ∈ Guardr,
~x′|Π = ~x|Π, ~x′|Γ = ~x|Γ + a · r.~u, and ~x′|L = ~x|L + a · (~1r.to − ~1r.from)
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Discussions. If we ignore the location q0, the counter automaton CA1(A) has the same
transition relation as the counter system of A; as defined in Section 2.2 or in [25], that
is, with built-in single-rule acceleration. General acceleration procedures for reachability
analysis were developed for counter automata [30, 4]. These techniques terminate on flat
and flattable counter automata. A counter automaton is flat, if its control graph – built of
locations and transitions – does not contain nested loops [10]. A counter automaton A is
flattable, if there is a flat counter automaton F with the same reachability relation, that is,
→∗F = →∗A. The counter automata CA0(A) and CA1(A) are obviously not flat, as can be
seen from Figure 6, the question is whether they are flattable.

As can be seen from the definition of CA1(A), single-rule acceleration has a special
form: it merges successive occurrences of a rule of CA0(A) into one transition, provided
that the counter values are sufficiently large. The motivation behind this acceleration is to
perform transitions of many processes in a distributed system in parallel [25], in contrast to
compressing sequential steps.

The bounded diameter property for a threshold automaton A implies flattability of the
counter automaton CA0(A). It is sufficient to unroll CA0(A) up to the diameter bound and
add self-loops to model single-rule acceleration:

I Proposition 21. For every unrestricted threshold automaton A, if the diameter of the
counter system CS(A) is bounded, then the counter automaton CA0(A) is flattable.

6 Flattability for non-canonical threshold automata

It is easy to see that the counter systems of non-canonical threshold automata do not have
bounded diameter, when applying single-rule acceleration. Interestingly, we show that the
respective counter automata for NCTA are flattable. Hence, they can be thus analyzed with
general acceleration tools such as FAST [4].

Additional definitions. To prove flattability, we adapt a few definitions from [24]. Let G =⋃
r∈R r.Φ. Then, ΦR = {g ∈ G | g is an upper guard} and ΦF = {g ∈ G | g is a lower guard}.

A context is a pair (ΩR,ΩF), where ΩR ⊆ ΦR and ΩF ⊆ ΦF. The set ΩR keeps track of
unlocked guards from ΦR, and the set ΩF keeps track of locked guards from ΦF. We usually
denote a context with Ω, and refer to its first and second component by writing ΩR and ΩF

respectively. For contexts Ω1 and Ω2, we say that Ω1 v Ω2 if and only if ΩR
1 ∪ ΩF

1 ⊆ ΩR
2 ∪ ΩF

2 .
Finally, for a context Ω, we define a formula form(Ω) that summarizes the constraints

of the guards that are locked/unlocked in the context:
∧
ψ∈Ψ+ ψ ∧

∧
ψ∈Ψ− ¬ψ for Ψ+ =

ΩR ∪ (ΦF \ΩF) and Ψ− = (ΦR \ΩR) ∪ ΩF. We write Jform(Ω)K to denote the set of vectors
that satisfy form(Ω), that is, ~x ∈ Jform(Ω)K if and only if (~x|Γ, ~x|Π) |= form(Ω) holds true.

I Definition 22. For a NCTA A = (L, I,Γ,Π,R) and a context Ω, we define the slice of A
with context Ω as a threshold automaton A|Ω = (L, I,Γ,Π,R|Ω), where a rule r ∈ R belongs
to R|Ω if and only if form(Ω)→

∧
ϕ∈r.Φ ϕ.

Overview of the proof. We start with an NCTA. The relation @ is a partial order on the
contexts. We construct a flat counter automaton as a composition of flat counter automata,
one per context, that are then connected according to the partial order @. Figure 7 sketches
the construction. In more detail, for each context Ω of A we construct the slice. We show
that when one removes the threshold guards from the slice, its counter automaton becomes
structurally a BPP-net [16, 18], which are known to be flattable [30]. Thus, there is a
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Figure 7 An example of the flattened threshold automaton from Figure 1. The edges connecting
the gray blocks connect all the states inside the blocks.

flattened counter automaton F (Ω) for Ω. However, as F (Ω) does not have threshold guards,
it allows transitions to leave the context Ω earlier than in the original counter system. Thus,
we add additional constraints to F (Ω) to keep the transitions in the context, and form a “flat
slice”. Then, we combine flat slices for each context according to the partial order between
the contexts, and obtain a flat counter automaton whose reachability relation is the same as
of CA0(A).

I Proposition 23. For every non-canonical threshold automaton A and context Ω, there is
a flat counter automaton Flat(A|Ω) that has the same reachability relation when restricted
to the CA-configurations that match the context, that is, →∗Flat(A|Ω) ∩ Jform(Ω)K2 equals to
→∗CA0(A) ∩ Jform(Ω)K2.

Assembling the flat counter automata for the slices. Fix a non-canonical threshold
automaton A = (L, I,Γ,Π,R). Proposition 23 allows us to flatten a single slice. To
flatten CA0(A), we flatten slices and connect them with context changing transitions.

As a first step, we enumerate all contexts Ω1, . . . ,ΩK , where K = |ΦR × ΦF|. For each
context i ∈ {1, . . . ,K}, we apply Proposition 23, to construct a flat counter automaton
Flat(i) = (Qi, Ti, srci, tgti, {Gi

t}t∈Ti). We assume that the sets Q1, . . . , QK and T1, . . . , TK
are all disjoint. We use Flat(1), . . . ,Flat(K) to construct two sets of counter automata:
1. An automaton FlatSlice(i) produces paths of CA0(A) in the context Ωi. Formally,

FlatSlice(i) = (Qi, Ti, srci, tgti, {Gi
t ∩ Jform(Ω)K2}t∈Ti

).
2. An automaton Branch(i, j), for 1 ≤ i, j ≤ K such that Ωi v Ωj and i 6= j, produces the

context-changing transitions from FlatSlice(i) to FlatSlice(j). Formally,

Branch(i, j) = (Qi ∪Qj , Ti,j , srci,j , tgti,j , {G
i,j
t }t∈Ti,j

),

where the components of Branch(i, j) are defined as follows for t ∈ Ti:
There is a transition for each ith slice transition and jth slice state: Ti,j = Ti ×Qj ,
The mappings are srci,j((t, q)) = srci(t) and tgti,j((t, q)) = q for q ∈ Qj , and
We restrict the guards to the two contexts: Gi,j

t = Gi
t ∩ (Jform(Ωi)K× Jform(Ωj)K).

A flat version of CA0(A) is the union of all flat slices and branches:

Flattened(A) =
⋃

1≤i≤K
FlatSlice(i)∪

⋃
(i,j)∈E

Branch(i, j) for E = {(i, j) | Ωi v Ωj , i 6= j} (3)
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Figure 8 An unrestricted TA (left) and an equivalent threshold automaton (right).

We define the union A ∪B as usual: The states, transitions, and flows of A ∪B are the
unions of the A’s and B’s states, transitions, and flows respectively. The source and target
mappings are identical to the A’s and B’s mappings on their domains.

I Theorem 24. For every non-canonical threshold automaton A, its flattened version has
the same reachability relation: →∗Flattened(A) = →∗CA0(A).

7 Conclusions

Verification of infinite-state systems and parameterized concurrent systems is a lively research
area, e.g., see some recent results [19, 13, 1, 11, 17, 12, 31, 8, 2]. There are many different
modeling frameworks, and it is not easy to understand relations between them. However,
this understanding is of paramount importance for reusing existing tools. In this paper, on
the one hand, we give reachability results for new classes of systems, and on the other hand,
establish the relation of the model in [25, 21] to counter automata [10, 30]. We clarify the
relation between the single rule acceleration introduced in [25] to acceleration in (flattable)
counter automata [4, 30]. The single-rule acceleration in [25] is very simple compared to
the general acceleration techniques [30, 4]. Still, it was demonstrated to be effective in
parameterized verification of fault-tolerant distributed algorithms [22, 21].

The benefits of our extended framework are two-fold. On one hand, we can use our
results to optimize threshold automata. Figure 8 shows an unrestricted threshold automaton
that uses minimum and maximum. This UTA can be expressed as an equivalent threshold
automaton by introducing more rules and guards (see Figure 8), which makes it harder to
reason about. On the other hand, our framework permits some new guards, which have no
corresponding encoding in threshold automata. For instance, a threshold x <

√
n/ logn in [3]

gives us such an example (though they are using the synchronous model of computation).
Some open questions still remain. Regarding application to distributed algorithms, we

observe that in the pseudo code of several distributed consensus algorithms, processes pick
the “most often received value” from a set of received values [5, 9]. A shared variable
encoding – such as the one in [26] – maintains the number of messages with value 0 in a
shared variable x0, and the number of messages with value 1 in a shared variable x1. The
pseudo code statement about the “most often received value” needs a bounded difference
guard “x1− x0 > 0”, which leads to undecidability as we show. This calls for further insights
on modeling of such algorithms.

While we focused on reachability in this paper, as future work, we plan to lift the results
of this paper to safety and liveness, following the ideas of [22].
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