
Commutative Algorithms Approximate the
LLL-distribution
Fotis Iliopoulos1

University of California Berkeley, USA
fotis.iliopoulos@berkeley.edu

https://orcid.org/0000-0002-1825-0097

Abstract
Following the groundbreaking Moser-Tardos algorithm for the Lovász Local Lemma (LLL), a
series of works have exploited a key ingredient of the original analysis, the witness tree lemma, in
order to: derive deterministic, parallel and distributed algorithms for the LLL, to estimate the
entropy of the output distribution, to partially avoid bad events, to deal with super-polynomially
many bad events, and even to devise new algorithmic frameworks. Meanwhile, a parallel line
of work has established tools for analyzing stochastic local search algorithms motivated by the
LLL that do not fall within the Moser-Tardos framework. Unfortunately, the aforementioned
results do not transfer to these more general settings. Mainly, this is because the witness tree
lemma, provably, does not longer hold. Here we prove that for commutative algorithms, a class
recently introduced by Kolmogorov and which captures the vast majority of LLL applications,
the witness tree lemma does hold. Armed with this fact, we extend the main result of Haeupler,
Saha, and Srinivasan to commutative algorithms, establishing that the output of such algorithms
well-approximates the LLL-distribution, i.e., the distribution obtained by conditioning on all bad
events being avoided, and give several new applications. For example, we show that the recent
algorithm of Molloy for list coloring number of sparse, triangle-free graphs can output exponential
many list colorings of the input graph.

2012 ACM Subject Classification Mathematics of computing → Probabilistic algorithms

Keywords and phrases Lovasz Local Lemma, Local Search, Commutativity, LLL-distribution,
Coloring Triangle-free Graphs

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2018.44

Related Version A full version of the paper is available at https://arxiv.org/abs/1704.
02796.

Acknowledgements The author is grateful to Dimitris Achlioptas and Alistair Sinclair for de-
tailed comments and feedback, as well as to anonymous reviewers for comments and remarks.

1 Introduction

Many problems in combinatorics and computer science can be phrased as finding an object
that lacks certain bad properties, or “flaws”. In this paper we study algorithms that take
as input a flawed object and try to remove all flaws by transforming the object through
repeated probabilistic action.

Concretely, let Ω be a set of objects and let F = {f1, f2, . . . , fm} be a collection of subsets
of Ω. We will refer to each fi ∈ F as a flaw to express that its elements share some negative

1 Research supported by NSF grant CCF-1514434 and the Onassis Foundation

© Fotis Iliopoulos;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2018).
Editors: Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer; Article No. 44; pp. 44:1–44:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fotis.iliopoulos@berkeley.edu
https://orcid.org/0000-0002-1825-0097
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.44
https://arxiv.org/abs/1704.02796
https://arxiv.org/abs/1704.02796
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

44:2 Commutative Algorithms Approximate the LLL-distribution

feature. For example, if a CNF formula F on n variables has clauses c1, c2, . . . , cm, we can
define for each clause ci the flaw (subcube) fi ⊆ {0, 1}n whose elements violate ci. Following
linguistic rather than mathematical convention we say that f is present in σ if f 3 σ and
that σ ∈ Ω is flawless (perfect) if no flaw is present in σ.

To prove the existence of flawless objects we can often use the Probabilistic Method.
As a matter of fact, in many interesting cases, this is the only way we know how to do
so. To employ the Probabilistic Method, we introduce a probability measure µ over Ω and
consider the collection of “bad” events corresponding to flaws. If we are able to show that
the probability to avoid all bad events is strictly positive, then this implies the existence of a
flawless object. A trivial example is the case where all the bad events are independent of
one another and none of them has probability one. One of the most powerful tools of the
Probabilistic Method is the Lovász Local Lemma [13] which weakens the latter restrictive
condition of independence to a condition of limited dependence.

Making the LLL constructive was the study of intensive research for over two decades [5,
4, 27, 12, 33]. The breakthrough was made by Moser [28] who gave a very simple algorithm
that finds a satisfying assignment of a k-CNF formula, under conditions that nearly match
the LLL condition for satisfiability. Very shortly afterwards, Moser and Tardos [29] made
the general LLL constructive for any product probability measure over explicitly presented
variables. Specifically, they proved that whenever the general LLL conditon holds, the
Resample algorithm, which repeatedly selects any occurring bad event and resamples all its
variables according to the measure, i.e., independently, quickly converges to a flawless object.

The first result that made the LLL constructive in a non-product probability space was
due to Harris and Srinivasan in [19], who considered the space of permutations endowed with
the uniform measure. Subsequent works by Achlioptas and Iliopoulos [2, 1] introducing the
flaws/actions framework, and of Harvey and Vondrák [21] introducing the resampling oracles
framework, made the LLL constructive in more general settings. These frameworks [2, 21, 1]
provide tools for analyzing focused stochastic search algorithms [30], i.e., algorithms which,
like Resample, search by repeatedly selecting a flaw of the current state and moving to a
random nearby state that avoids it, in the hope that, more often than not, more flaws are
removed than introduced, so that a flawless object is eventually reached. At this point, all
LLL applications we are aware of have efficient algorithms analyzable in these frameworks.

Besides conditions for existence and fast convergence to perfect objects, one could ask
further questions regarding properties of focused search algorithms. For instance, “are they
parallelizable ?”, “how many solutions can they output?”, “what is the expected “weight”
of a solution?”, etc. These questions and more have been answered for the Moser-Tardos
algorithm in a long series of work [29, 15, 20, 22, 8, 11, 14, 17]. As a prominent example,
the result of Haeupler, Saha and Srinivasan [15], as well as follow-up works of Harris and
Srinivasan [20, 16], allow one to argue about the dynamics of the MT process, resulting in
several new applications such as estimating the entropy of the output distribution, partially
avoiding bad events, dealing with super-polynomially many bad events, and even new
frameworks [18, 9].

Unfortunately, most of these follow-up results that further enhance, or exploit, our
understanding of the MT process are not transferable to the general settings of [2, 21, 1].
Mainly, this is because a key and elegant technical result of the original analysis of Moser and
Tardos, the witness tree lemma, does not longer hold under the most general assumptions [21].
Roughly, it states that any tree of bad events growing backwards in time from a certain
root bad event Ai, with the children of each node Aj being bad events that are adjacent
to Aj in the dependency graph, has probability of being consistent with the trajectory of

F. Iliopoulos 44:3

the algorithm that is bounded by the product of the probabilities of all events in this tree.
The witness tree lemma and its variations [22, 14] has been used for several other purposes
besides those already mentioned, such as designing deterministic, parallel and distributed
algorithms for the LLL [29, 8, 11, 14, 17].

On the other hand, Harris and Srinivasan [19] do manage to prove the witness tree lemma
for their algorithm for the LLL on the space of permutations, via an analysis that is tailored
specifically to this setting. Although their proof does not seem to be easily generalizable
to general spaces, their success makes it natural to ask if we can impose mild assumptions
in the general settings of [2, 21, 1] under which the witness tree lemma (and most of its
byproducts) can be established.

The main contribution of this paper is to answer this question positively by showing
that it is possible to prove the witness tree lemma in the commutative setting. The latter
was introduced by Kolmogorov [24], who showed that under its assumptions one can obtain
parallel algorithms, as well as the flexibility of having arbitrary flaw choice strategy in the
frameworks of [2, 21, 1]. We note that the commutative setting captures the vast majority
of LLL applications, including but not limited to both the variable and the permutation
settings.

Subsequently to the present work, Achlioptas, Iliopoulos and Sinclair [3] gave a simpler
proof of the witness tree lemma under a more general notion of commutativity (essentially
matrix commutativity) at the mild cost of slightly restricting the family of flaw choice
strategies (as we will see, in this paper the flaw choice strategy can be arbitrary).

Armed with the witness tree lemma, we are able to study properties of algorithms in the
commutative setting and give several applications.

Distributional Properties

As already mentioned, one of the most important applications of the witness tree lemma
is given in the paper of Haeupler, Saha and Srinivasan [15], who study properties of the
MT-distribution, the output distribution of the MT algorithm. Their main result is that the
MT-distribution well-approximates the LLL-distribution, i.e., the distribution obtained by
conditioning on all bad events being avoided. As an example, an immediate consequence of
this fact is that one can argue about the expected weight of the output of the MT algorithm,
given a weighting function over the space Ω. Furthermore, as shown in the same paper [15]
and follow-up papers by Harris and Srinivasan [20, 16], one can lower bound the entropy of
the MT distribution, go beyond the LLL conditions (if one is willing to only partially avoid
bad events), and deal with applications with super-polynomially many number of bad events.

Here we extend the result of [15] to the commutative setting: Given a commutative
algorithm that is perfectly compatible with the underlying probability measure, its output
well-approximates the LLL distribution in the same sense the MT-distribution does in the
variable setting. For arbitrary commutative algorithms, the quality of the approximation
additionally depends on the compatibility of the algorithm with the measure on the event(s)
of interest. A simplified, and imprecise, version of our main theorem, which assumes that the
initial state of the algorithm is sampled according to the underlying probability distribution
µ, is as follows. The formal statement of our main theorem can be found in Section 3.

I Theorem 1 (Informal and Imprecise Statement). If algorithm A is commutative and the
algorithmic LLL conditions hold then, for each E ⊆ Ω,

Pr [E] ≤ γ(E)
(

1 + 1
d

)DE
,

APPROX/RANDOM 2018

44:4 Commutative Algorithms Approximate the LLL-distribution

where E is independent of all but at most DE flaws, d is the maximum degree of the
dependency graph, γ(E) ≥ µ(E) is a measure of the “compatibility” between A and the
underlying probability distribution µ at E, and Pr[E] is the probability that A ever reaches E
during its execution.

Moreover, we quantitatively improve the bounds of [15] under the weaker assumptions of
Shearer’s condition [32], i.e., the most general LLL criterion under the assumption that
the dependency graph is undirected. This allows us to study distributional properties of
commutative algorithms using criteria that lie between the General LLL and Shearer’s
condition such as the Clique LLL [23].

Algorithmic LLL Without a Slack and Arbitrary Flaw Choice Strategy

The works of Achlioptas, Iliopoulos and Kolmogorov [2, 1, 24] require a multiplicative slack
in the generalized LLL conditions in order to establish fast convergence to a perfect object.
On the other hand, Harvey and Vondrák [21] dispense with this requirement in the important
case of algorithms that are perfectly compatible with the underlying measure under the mild
assumption that the dependency graph is undirected.

Using the witness lemma, we are able to dispense with the multiplicative slack requirement
for arbitrary algorithms in the commutative setting and also have the flexibility of arbitrary
flaw choice strategy, as in the result of Kolmogorov [24].

Improved Running Time Bounds

We are able to improve the running time bounds of Harvey and Vondrák [21] for commutative
algorithms, matching those of Kolipaka and Szegedy [22] for the MT algorithm. Whether
this could be done was left as an open question in [21]. We note that while the results of
Achlioptas, Iliopoulos and Kolmogorov [2, 1, 24] also manage to give improved running time
bounds they require a multiplicative-slack in the LLL conditions.

Concrete Applications

In the full version of the paper we give concrete applications of commutative algorithms
showing new results for the problems of rainbow matchings, list-coloring and acyclic edge
coloring. Each application is chosen so that it demonstrates specific features of our results.
Perhaps the most interesting one, which we include in the present version, is to show that
the algorithm of Molloy [26] for finding list-colorings in triangle-free graphs with maximum
degree ∆ using (1 + ε) ∆

ln ∆ colors, can actually output exponentially many such colorings
with positive probability. First, we show that Molloy’s algorithm can be analyzed in the
general frameworks of the algorithmic LLL and that it is commutative, a fact that gives us
access to properties of its output distribution. Then, we apply results regarding the entropy
of the output of commutative algorithms. We show the following theorem.

I Theorem 2. For every ε > 0 there exists ∆ε such that every triangle-free graph G with
maximum degree ∆ ≥ ∆ε has list chromatic number χ`(G) ≤ (1 + ε) ∆

ln ∆ . Moreover, there
exists an algorithm A that takes G as input and list-colors it in expected polynomial time. In
addition, A is able to output ecn distinct list colorings with positive probability, where c > 0
is a constant that depends on ε and ∆.

We emphasize that the algorithm of Molloy is a sophisticated stochastic local search algorithm
whose analysis is far from any standard LLL setting. The fact that our results allow us to
state non-trivial facts about its distributional properties almost in a black-box fashion is
testament to their flexibility.

F. Iliopoulos 44:5

2 Background and Preliminaries

In this section we present the necessary background and definitions to describe our setting. In
Subsection 2.1 we describe the Lovász Local Lemma. In Subsections 2.2 and 2.3 we formally
outline the algorithmic assumptions of [2, 21, 1, 24]. In Subsection 2.4 we describe improved
Lovász Local Lemma criteria formulated in our setting.

2.1 The Lovász Local Lemma
To prove the existence of flawless objects we can often use the Probabilistic Method. To do
so, we introduce a probability measure µ over Ω and consider the collection of “bad” events
corresponding to flaws. If we are able to show that the probability to avoid all bad events is
strictly positive, then this implies the existence of a flawless object. One of the most powerful
tools to establish the latter is the Lovász Local Lemma [13].

I General LLL. Let (Ω, µ) be a probability space and A = {A1, A2, . . . , Am} be a set of m
(bad) events. For each i ∈ [m], let D(i) ⊆ [m] \ {i} be such that µ(Ai | ∩j∈SAj) = µ(Ai) for
every S ⊆ [m] \ (D(i) ∪ {i}). If there exist positive real numbers {ψi}mi=1 such that for all
i ∈ [m],

µ(Ai)
ψi

∑
S⊆D(i)∪{i}

∏
j∈S

ψj ≤ 1 , (1)

then the probability that none of the events in A occurs is at least
∏m
i=1 1/(1 + ψi) > 0.

I Remark. Condition (1) above is equivalent to the more well-known form µ(Ai) ≤
xi
∏
j∈D(i)(1 − xj), where xi = ψi/(1 + ψi). As we will see, formulation (1) facilitates

refinements.

Let G be the digraph over the vertex set [m] with an edge from each i ∈ [m] to each
element of D(i) ∪ {i}. We call such a graph a dependency graph. Therefore, at a high level,
the LLL states that if there exists a sparse dependency graph and each bad event is not too
likely, then perfect objects exist.

2.2 Algorithmic Framework
Here we describe the class of algorithms we will consider as well as the algorithmic LLL
criteria for fast convergence to a perfect object. Since we will be interested in algorithms
that search for perfect objects, we sometimes refer to Ω as a state space and to its elements
as states.

For a state σ, we denote by U(σ) = {j ∈ [m] s.t. fj 3 σ} the set of indices of flaws that
are present at σ. We consider algorithms which at each flawed state σ choose an element of
U(σ) and randomly move to a nearby state in an effort to address the corresponding flaw.
Concretely, we will assume that for every flaw fi and every state σ ∈ fi there is a probability
distribution ρi(σ, ·) with a non-empty support A(i, σ) ⊆ Ω such that addressing flaw fi at
state σ amounts to selecting the next state σ′ from A(i, σ) with probability ρi(σ, σ′). We call
A(i, σ) the set of actions for addressing flaw fi at σ and note that potentially A(i, σ)∩fi 6= ∅,
i.e., addressing a flaw does not necessarily imply removing it. The actions for flaw fi form
a digraph Di on Ω having an arc σ i−→ σ′ for each pair (σ, σ′) ∈ fi × A(i, σ). Let D be the
multi-digraph on Ω that is the union of all Di.

APPROX/RANDOM 2018

44:6 Commutative Algorithms Approximate the LLL-distribution

We consider algorithms that start from a state σ ∈ Ω picked from an initial distribution
θ, and then repeatedly pick a flaw that is present in the current state and address it. The
algorithm always terminates when it encounters a flawless state.

To state the algorithmic LLL criteria for fast convergence of such algorithms we need to
introduce two key ingredients. The first one is a notion of causality among flaws that will be
used to induce a graph over [m], which will play a role similar to the one of the dependency
graph in the existential Local Lemma formulation. We note that there is a formal connection
between causality graphs and dependency graphs (for more details see [21]).

I Causality. For an arc σ i−→ σ′ in Di and a flaw fj present in σ′ we say that fi causes fj
if fi = fj or fj 63 σ. If Di contains any arc in which fi causes fj we say that fi potentially
causes fj.

I Causality Digraph. Any digraph C = C(Ω, F,D) on [m] where i→ j exists whenever fi
potentially causes fj is called a causality digraph. The neighborhood of a flaw fi in C is
Γ(i) = {j : i→ j exists in C}.

The second ingredient is a measure of compatibility between the actions of the algorithm for
addressing each flaw fi (that is, digraph Di) and the probability measure µ over Ω which we
will use for the analysis. As was shown in [21, 1, 24] one can capture compatibility by letting

di = max
σ∈Ω

νi(σ)
µ(σ) ≥ 1 , (2)

where νi(σ) is the probability of ending up at state σ at the end of the following experiment:
sample ω ∈ fi according to µ and address flaw fi at ω. An algorithm achieving perfect
compatibility for flaw fi, i.e., di = 1, is a resampling oracle for flaw fi (observe that the
Moser-Tardos algorithm is trivially a resampling oracle for every flaw). More generally,
ascribing to each flaw fi the charge

γ(fi) = di · µ(fi) = max
σ′∈Ω

1
µ(σ′)

∑
σ∈fi

µ(σ)ρi(σ, σ′) ,

yields the following algorithmization condition. If for every flaw fi ∈ F ,

γ(fi)
ψi

∑
S⊆Γ(i)

∏
j∈S

ψj < 1 (3)

then there exists a flaw choice strategy under which the algorithm will reach a perfect
object fast. (In most applications, that is in O

(
log |Ω|+m log2

(
1+ψmax
ψmin

))
steps with high

probability.)
Throughout the paper we assume that we are given an undirected causality graph C (and

thus the relation Γ(·) is symmetric) and we will sometimes write i ∼ j if j ∈ Γ(i)↔ j ∈ Γ(j).
Furthermore, for a set S ⊆ [m] we define Γ(S) =

⋃
i∈S Γ(i). Finally, we denote by Ind(S) =

IndC(S) the set of independent subsets of S with respect to C.

2.3 Commutativity

We will say that σ i−→ σ′ is a valid trajectory if it is possible to get from state σ to state σ′
by addressing flaw fi as described in the algorithm, i.e., if two conditions hold: i ∈ U(σ) and
σ′ ∈ A(i, σ). Kolmogorov [24] described the following commutativity condition. We call the
setting in which Definition 3 holds the commutative setting.

F. Iliopoulos 44:7

I Definition 3 (Commutativity [24]). A tuple (F,∼, ρ) is called commutative if there exists
a mapping Swap that sends any trajectory Σ = σ1

i−→ σ2
j−→ σ3 with i � j to another valid

trajectory Swap(Σ) = σ1
j−→ σ′2

i−→ σ3, and:
1. Swap is injective,
2. ρi(σ1, σ2)ρj(σ2, σ3) = ρj(σ1, σ

′
2)ρi(σ′2, σ3) .

It is straightforward to check that the Moser Tardos algorithm satisfies the commutativity
condition. Furthermore, Kolmogorov showed that the same is true for resampling oracles in the
permutation [19] and perfect matchings [21] settings, and Harris [17] designed commutative
resampling oracles for hamiltonian cycles.

Finally, as already mentioned, Kolmogorov showed that in the commutativity setting one
may choose an arbitrary flaw choice strategy which is a function of the entire past execution
history. The same will be true for our results, so we make the convention that given a tuple
(F,∼, ρ) we always fix some arbitrary flaw choice strategy to get a well-defined, commutative
algorithm A = (F,∼, ρ).

2.4 Improved LLL Criteria
Besides the general form of the LLL (1) there exist improved criteria that apply in the full
generality of the LLL setting. The most well-known are the cluster expansion condition [7]
and the Shearer’s condition [32]. Both of these criteria apply when the dependency graph
is undirected and have been made constructive [22, 31, 2, 21, 1, 24] in the most general
algorithmic LLL settings.

Cluster Expansion Condition

The cluster expansion criterion strictly improves upon the General LLL criterion (1) by
taking advantage of the local density of the dependency graph.

I Definition 4. Given a sequence of positive real numbers {ψi}mi=1, we say that the cluster
expansion condition is satisfied if for each i ∈ [m]:

γ(fi)
ψi

∑
S∈Ind(Γ(i))

∏
j∈S

ψj ≤ 1 . (4)

Shearer’s Condition

Let γ ∈ Rm be the real vector such that γi = γ(fi). Furthermore, for S ⊆ [m] define
γS =

∏
j∈S γj and the polynomial qS :

qS = qS(γ) =
∑

I∈Ind([m])
S⊆I

(−1)|I|−|S|γI .

I Definition 5. We say that the Shearer’s condition is satisfied if qS(γ) ≥ 0 for all S ⊆ [m],
and q∅(γ) > 0.

3 Statement of Results

Assuming that the LLL conditions (1) hold, the LLL-distribution, which we denote by µLLL,
is defined as the distribution induced by the measure µ conditional on no bad event occurring.
The following proposition relates the LLL distribution to measure µ making it a powerful

APPROX/RANDOM 2018

44:8 Commutative Algorithms Approximate the LLL-distribution

tool that can be used to argue about properties of flawless objects. The idea is that if an (not
necessarily bad) event E is independent from most bad events, then its probability under the
LLL distribution is not much larger than its probability under the probability measure µ.

I Proposition 6 ([15]). If the LLL conditions (1) hold, then for any event E:

µLLL(E) ≤ µ(E)
∑

S⊆D(E)

∏
j∈S

ψj , (5)

where D(E) ⊆ [m] is such that µ(E |
⋂
j∈S Aj) = µ(E) for all S ⊆ [m] \D(E).

The main result of Haeupler, Saha and Srinivasan [15] is that the Moser-Tardos algorithm
approximates well the LLL distribution, in the sense that the left-hanside of (5) bounds the
probability that it ever reaches a subspace E ⊆ Ω during its execution. Building on this
fact, [15] and followup works [20, 16] manage to show several new applications.

Here we extend the latter result to arbitrary commutative algorithms. Given an arbitrary
set E ⊆ Ω and a commutative algorithm A, consider an extension, AE , of A by defining an
extra flaw fm+1 ≡ E with its own set of probability distributions ρm+1(σ, ·), σ ∈ E. If A
is commutative with respect to ∼, we will say that AE is a commutative extension of A if
AE = (F ∪ {m+ 1},∼, ρ) is also commutative.

Commutative extensions should be interpreted as a tool to bound the probability that A
ever reaches a subset E of the state space. That is, they are defined only for the purposes of
the analysis and, typically in applications, they are a natural extension of the algorithm. For
example, in the case of the Moser-Tardos algorithm applied to k-SAT, if one would like to
bound the probability that the algorithm ever reaches a state such that variables x1, x2 of the
formula are both set to true, then one could define fm+1 = {σ ∈ Ω s.t. σ(x1) = σ(x2) = 1}
along with the corresponding commutative extension of the Moser-Tardos algorithm that
addresses fm+1 by resampling variables x1, x2 according to the product measure over the
variables of the formula that the Moser-Tardos algorithm uses whenever it needs to resample
a violated clause. Indeed, commutative extensions of this form are implicitly defined in the
analysis of [15] for the Moser-Tardos algorithm.

We will use the notation Pr[·] = PrA[·] to refer to the probability of events in the
probability space induced by the execution of algorithm A. For example, the probability that
A ever reaches a set E ⊆ Ω of the state space during its execution will be denoted by Pr[E].

I Theorem 7. If A = (F,∼, ρ) is commutative and the cluster expansion condition is satisfied
then:
1. for each i ∈ [m]: E[Ni] ≤ λinitψi ;
2. for each E ⊆ Ω: Pr [E] ≤ λinitγ(E)

∑
S∈Ind(Γ(E))

∏
j∈S ψj ;

where Ni is the number of times flaw fi is addressed during the execution of A, λinit =
maxσ∈Ω

θ(σ)
µ(σ) , and Γ(E) and γ(E) are defined with respect to a fixed commutative extension

AE.

I Corollary 8. Algorithm A terminates after O(λinit
∑
i∈[m]

ψi) steps in expectation.

I Remark. If the Shearer’s condition is satisfied, then one can replace ψi in Theorem 7 with
q{i}(γ)
q∅(γ) .

We note that the first part of Theorem 7 allows us to guarantee fast convergence of
A to a perfect object without having to assume a “slack” in the cluster expansion and
Shearer’s conditions (unlike the works of [1, 24]) and, moreover, improves upon the (roughly
quadratically worse) running bound of [21], matching the one of [22]. Whether the latter
could be done was left as an open question in [21].

F. Iliopoulos 44:9

3.1 Entropy of the Output Distribution
Here we present one of the main byproducts of Theorem 7. The reader is referred to the full
version of the paper for applications of Theorem 7 in partially avoiding flaws and dealing
with settings with super-polynomially many flaws.

An elegant application of the known bounds for the Moser-Tardos distribution is estimating
its randomness. In particular, Harris and Srinivasan [20] show that one can give lower bounds
on the Rényi entropy of the output of the Moser-Tardos algorithm.

I Definition 9 ([10]). Let ν be a probability measure over a finite set S. The Rényi entropy
with parameter ρ of ν is defined to be

Hρ[ν] = 1
1− ρ ln

∑
s∈S

ν(s)ρ .

The min-entropy H∞ is a special case defined as H∞[ν] = limρ→∞Hρ[ν] = − ln maxv∈S ν(σ).

Using the results of Section 3 we can show the analogous result in our setting.

I Theorem 10. Assume that A = (F,∼, ρ) is commutative, the cluster expansion condition
is satisfied. Let ν be the output distribution of A. Then, for ρ > 1,

Hρ[ν] ≥ Hρ[µ]− ρ

ρ− 1 ln

 ∑
S∈Ind([m])

∏
j∈S

ψj

− ρ

ρ− 1 lnλinit .

Given Theorem 7, the proof is akin to the analogous result in [20] and can be found in
the full version of the paper.
I Remark. Using Shearer’s condition we can replace ψi with

q{i}(γ)
q∅(γ) , i ∈ [m].

A straightforward application of having a lower bound on Hρ[ν] (for any ρ), where ν
is the output distribution of the algorithm, is that there exist at least exp(Hρ[ν]) flawless
objects. Before [20], the authors in [25] also used the (existential) LLL for enumeration of
combinatorial structures by exploiting the fact that it guarantees a small probability p of
avoiding all flaws when sampling from the uniform measure (and, thus, their number is at
least p|Ω|).

4 List-Coloring of Triangle-Free Graphs

In the problem of list coloring one is given a graph G = G(V,E) over n vertices V =
{v1, v2, . . . , vn} and, for each v ∈ V , a list of colors Lv. The goal is to find a list coloring
σ ∈ Lv1 × . . .× Lvn of G such that σ(v) 6= σ(u) for any pair of adjacent vertices.

The list chromatic number χ`(G) of a graph G is the minimum number of colors for which
such a coloring is attainable. A celebrated result of Johansson shows that there exist a large
constant C > 0 such that every triangle-free graph with maximum degree ∆ ≥ ∆0 can be
properly list-colored using C∆/ ln ∆ colors. Very recently, Molloy [26] improved Johansson’s
result showing that C can be replaced by (1 + ε) for any ε > 0 assuming that ∆ ≥ ∆ε.(We
note that, soon after, Bernshteyn [6] established the same bound for the list chromatic
number using the LLL. However, his result is not constructive as it uses a sophisticated
probability measure for which it is not clear how one could design “efficient” resampling
oracles.)

Here we show how that the algorithm of Molloy is amenable to our analysis and, in
particular, we prove that it can output exponentially many proper colorings with positive
probability.

APPROX/RANDOM 2018

44:10 Commutative Algorithms Approximate the LLL-distribution

4.1 The Algorithm
The algorithm of [26] works in two stages. First, it finds a partial list-coloring which has the
property that (i) each vertex v ∈ V has “many”’ available colors; (ii) there is not “too much
competition” for the available colors of v, i.e., they do not appear in the list of available colors
of its neighbors. Then, it completes the coloring via a fairly straightforward application of
the Moser-Tardos algorithm.

To describe the algorithm formally, we will need some further notation. First, it will be
convenient to treat Blank as a color that is in the list of every vertex. For each vertex v and
partial list-coloring σ let

Nv denote the set of vertices adjacent to v;
Lv(σ) ⊆ Lv to be the set of available colors for v at state σ, i.e., the set of colors that
we can assign to v in σ without making any edge monochromatic. Notice that Blank is
always an available color;
Tv,c(σ) to be the set of vertices u ∈ Nv such that σ(u) = Blank and c ∈ Lu(σ).

Let Ω =
∏
v∈V Lv and define L = ∆ ε

2 . Given a partial list-coloring, we define the following
flaws for any vertex v:

Bv = {σ ∈ Ω : |Lv(σ)| < L} ;

Zv =

σ ∈ Ω :
∑

c∈Lv(σ)\Blank

|Tv,c(σ)| > 1
10L · |Lv(σ)|

 .

I Lemma 11 (The Second Phase). Given a flawless partial list coloring, a complete list-
coloring of G can be found in expected polynomial time.

Lemma 11 was proved in [26] via a fairly straightforward application of the Lovász Local
Lemma, and can be made constructive via the Moser-Tardos algorithm. What is left is to
describe the first phase of the algorithm.

The initial distribution θ, which is important in this case, is chosen to be the following:
Fix an independent set S of G of size at least n/(∆ + 1). (This is trivial to find efficiently
via a greedy algorithm). Choose one color from Lu \ Blank, u ∈ S, uniformly at random,
and assign it to u;
to address a flaw f ∈ {Bv, Zv} at state σ, for each u ∈ Nv, choose uniformly at random
a color from Lu(σ) and assign it to u;
as a flaw choice strategy, the algorithm first fixes any ordering π over flaws. At every
step, it chooses the lowest occurring flaw according to π and addresses it.

4.2 Proving Termination
Let A1, A2 denote the first and second phase of our algorithm, respectively. Here we prove
that A1 terminates in expected polynomial time. To do so, we will use the convergence
result corresponding to equation (3). (Although, as we will see, A1 is commutative for an
appropriate choice of a causality graph, we won’t use Theorem 7 to prove its convergence.
This is because λinit is exponentially large in this case).

The measure µ we use for the analysis is the the uniform measure over proper list-colorings.
We will use the following lemma whose proof can be found in Section B of the Appendix.

I Lemma 12. For each vertex v and flaw f ∈ {Bv, Zv} we have that

γ(f) ≤ 2∆−4 .

F. Iliopoulos 44:11

Consider the causality graph such that fv ∼ fu, if dist(u, v) ≤ 3, where fv, fu are
either B-flaws or Z-flaws. Notice that it has maximum degree at most 2(∆3 + 1). Setting
ψf = ψ = 1

2(∆3+1) for any flaw f and applying (3), we get that the algorithm converges in
expected polynomial time since

γ(f)
∑

S⊆Γ(f)

∏
g∈S

ψg ≤
2

∆4 · 2(∆3 + 1) · e < 4e
(

1
∆ + 1

∆4

)
< 1 ,

for large enough ∆ for any flaw f ∈ {Bv, Zv} and log2 |Ω| + m log2

(
1+ψ
ψ

)
= O(n logn +

m log2 n).

4.3 A Lower Bound on the Number of Possible Outputs
The bound regarding the number of list colorings the algorithm can output with positive
probability follows almost immediately from the two following lemmata.

I Lemma 13. Algorithm A1 can output at least exp
(
n
(

ln q
∆+1 −

1
∆3

))
flawless partial list-

colorings with positive probability.

Proof. It is not hard to verify that A1 = (F,∼, ρ) is commutative. Applying Theorem 10
we get that A1 can output at least

exp

ln |Ω|
λinit

−
∑
f∈F

ψf

 > exp
(
n

(
ln q

∆ + 1 −
1

∆3

))
, (6)

flawless partial colorings. J

I Lemma 14. Suppose A1 can output N flawless partial list-colorings with positive probability.
Suppose further that among these partial list-colorings, the ones with the lowest number of
colored vertices have exactly αn vertices colored, α ∈ (0, 1). Then, A2 can output at least
max

(
N2−(1−α)n,

(8L
11
)(1−α)n

)
list-colorings with positive probability.

The proof of Lemma 14 can be found in the full version of the paper.

Proof of Theorem 2. Combining Lemmata 13, 14 we get that our algorithm outputs at
least

exp
(
nmin

α
max

(
f(∆)− (1− α) ln 2, (1− α) ln

(
8L
11

)))
= ecn ,

list-colorings with positive probability, where f(∆) = ln q
∆+1 −

1
∆3 and c = f(∆) ln 8L

11
ln 16L

11
,

concluding the proof. J

References
1 Dimitris Achlioptas and Fotis Iliopoulos. Focused stochastic local search and the Lovász

local lemma. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 2024–
2038, 2016. doi:10.1137/1.9781611974331.ch141.

APPROX/RANDOM 2018

http://dx.doi.org/10.1137/1.9781611974331.ch141

44:12 Commutative Algorithms Approximate the LLL-distribution

2 Dimitris Achlioptas and Fotis Iliopoulos. Random walks that find perfect objects and the
Lovász local lemma. J. ACM, 63(3):22:1–22:29, 2016. doi:10.1145/2818352.

3 Dimitris Achlioptas, Fotis Iliopoulos, and Alistair Sinclair. A new perspective on stochastic
local search and the lovasz local lemma. CoRR, abs/1805.02026, 2018. arXiv:1805.02026.

4 Noga Alon. A parallel algorithmic version of the local lemma. Random Struct. Algorithms,
2(4):367–378, 1991. doi:10.1002/rsa.3240020403.

5 József Beck. An algorithmic approach to the Lovász local lemma. I. Random Structures
Algorithms, 2(4):343–365, 1991. doi:10.1002/rsa.3240020402.

6 Anton Bernshteyn. The johansson–molloy theorem for dp-coloring. arXiv preprint
arXiv:1708.03843, 2017.

7 Rodrigo Bissacot, Roberto Fernández, Aldo Procacci, and Benedetto Scoppola. An im-
provement of the Lovász local lemma via cluster expansion. Combinatorics, Probability &
Computing, 20(5):709–719, 2011. doi:10.1017/S0963548311000253.

8 Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. Deterministic al-
gorithms for the Lovász local lemma. SIAM J. Comput., 42(6):2132–2155, 2013. doi:
10.1137/100799642.

9 Antares Chen, David G. Harris, and Aravind Srinivasan. Partial resampling to approx-
imate covering integer programs. In Robert Krauthgamer, editor, Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Ar-
lington, VA, USA, January 10-12, 2016, pages 1984–2003. SIAM, 2016. doi:10.1137/1.
9781611974331.ch139.

10 Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988. doi:
10.1137/0217015.

11 Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the Lovász local
lemma and graph coloring. In Magnús M. Halldórsson and Shlomi Dolev, editors, ACM
Symposium on Principles of Distributed Computing, PODC ’14, Paris, France, July 15-18,
2014, pages 134–143. ACM, 2014. doi:10.1145/2611462.2611465.

12 Artur Czumaj and Christian Scheideler. Coloring non-uniform hypergraphs: a new algo-
rithmic approach to the general Lovász local lemma. In Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 2000), pages 30–39,
2000.

13 Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and
some related questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P.
Erdős on his 60th birthday), Vol. II, pages 609–627. Colloq. Math. Soc. János Bolyai, Vol.
10. North-Holland, Amsterdam, 1975.

14 Bernhard Haeupler and David G Harris. Parallel algorithms and concentration bounds for
the Lovász local lemma via witness-DAGs. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1170–1187. SIAM, 2017.

15 Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of the
Lovász local lemma. J. ACM, 58(6):Art. 28, 28, 2011. doi:10.1145/2049697.2049702.

16 David G. Harris. New bounds for the Moser-Tardos distribution: Beyond the Lovasz local
lemma. CoRR, abs/1610.09653, 2016. arXiv:1610.09653.

17 David G. Harris. Oblivious resampling oracles and parallel algorithms for the lopsided
Lovász local lemma. CoRR, abs/1702.02547, 2017. arXiv:1702.02547.

18 David G. Harris and Aravind Srinivasan. The Moser-Tardos framework with partial re-
sampling. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 469–478. IEEE Computer Society,
2013. doi:10.1109/FOCS.2013.57.

http://dx.doi.org/10.1145/2818352
http://arxiv.org/abs/1805.02026
http://dx.doi.org/10.1002/rsa.3240020403
http://dx.doi.org/10.1002/rsa.3240020402
http://dx.doi.org/10.1017/S0963548311000253
http://dx.doi.org/10.1137/100799642
http://dx.doi.org/10.1137/100799642
http://dx.doi.org/10.1137/1.9781611974331.ch139
http://dx.doi.org/10.1137/1.9781611974331.ch139
http://dx.doi.org/10.1137/0217015
http://dx.doi.org/10.1137/0217015
http://dx.doi.org/10.1145/2611462.2611465
http://dx.doi.org/10.1145/2049697.2049702
http://arxiv.org/abs/1610.09653
http://arxiv.org/abs/1702.02547
http://dx.doi.org/10.1109/FOCS.2013.57

F. Iliopoulos 44:13

19 David G. Harris and Aravind Srinivasan. A constructive algorithm for the Lovász local
lemma on permutations. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pages 907–925. SIAM, 2014. doi:10.1137/1.9781611973402.68.

20 David G. Harris and Aravind Srinivasan. Algorithmic and enumerative aspects of the Moser-
Tardos distribution. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages
2004–2023, 2016. doi:10.1137/1.9781611974331.ch140.

21 Nicholas J. A. Harvey and Jan Vondrák. An algorithmic proof of the Lovász local lemma
via resampling oracles. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015, pages 1327–1346. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.85.

22 Kashyap Babu Rao Kolipaka and Mario Szegedy. Moser and Tardos meet Lovász. In
STOC, pages 235–244. ACM, 2011. doi:10.1145/1993636.1993669.

23 Kashyap Babu Rao Kolipaka, Mario Szegedy, and Yixin Xu. A sharper local lemma with
improved applications. In Anupam Gupta, Klaus Jansen, José D. P. Rolim, and Rocco A.
Servedio, editors, Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques - 15th International Workshop, APPROX 2012, and 16th Interna-
tional Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Proceed-
ings, volume 7408 of Lecture Notes in Computer Science, pages 603–614. Springer, 2012.
doi:10.1007/978-3-642-32512-0_51.

24 Vladimir Kolmogorov. Commutativity in the algorithmic Lovász local lemma. In Irit Dinur,
editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-
11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 780–787. IEEE
Computer Society, 2016. doi:10.1109/FOCS.2016.88.

25 Linyuan Lu and Laszlo A Szekely. A new asymptotic enumeration technique: the Lovász
local lemma. arXiv preprint arXiv:0905.3983, 2009.

26 Michael Molloy. The list chromatic number of graphs with small clique number. arXiv
preprint arXiv:1701.09133, 2017.

27 Michael Molloy and Bruce Reed. Further algorithmic aspects of the local lemma. In STOC
’98 (Dallas, TX), pages 524–529. ACM, New York, 1999.

28 Robin A. Moser. A constructive proof of the Lovász local lemma. In STOC’09—Proceedings
of the 2009 ACM International Symposium on Theory of Computing, pages 343–350. ACM,
New York, 2009.

29 Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász local lemma.
J. ACM, 57(2):Art. 11, 15, 2010. doi:10.1145/1667053.1667060.

30 Christos H. Papadimitriou. On selecting a satisfying truth assignment. In FOCS, pages
163–169. IEEE Computer Society, 1991. doi:10.1109/SFCS.1991.185365.

31 Wesley Pegden. An extension of the Moser-Tardos algorithmic local lemma. SIAM J.
Discrete Math., 28(2):911–917, 2014. doi:10.1137/110828290.

32 J.B. Shearer. On a problem of Spencer. Combinatorica, 5(3):241–245, 1985. doi:10.1007/
BF02579368.

33 Aravind Srinivasan. Improved algorithmic versions of the Lovász local lemma. In Shang-Hua
Teng, editor, SODA, pages 611–620. SIAM, 2008. URL: http://dl.acm.org/citation.
cfm?id=1347082.1347150.

APPROX/RANDOM 2018

http://dx.doi.org/10.1137/1.9781611973402.68
http://dx.doi.org/10.1137/1.9781611974331.ch140
http://dx.doi.org/10.1109/FOCS.2015.85
http://dx.doi.org/10.1145/1993636.1993669
http://dx.doi.org/10.1007/978-3-642-32512-0_51
http://dx.doi.org/10.1109/FOCS.2016.88
http://dx.doi.org/10.1145/1667053.1667060
http://dx.doi.org/10.1109/SFCS.1991.185365
http://dx.doi.org/10.1137/110828290
http://dx.doi.org/10.1007/BF02579368
http://dx.doi.org/10.1007/BF02579368
http://dl.acm.org/citation.cfm?id=1347082.1347150
http://dl.acm.org/citation.cfm?id=1347082.1347150

44:14 Commutative Algorithms Approximate the LLL-distribution

A Proof of Main Results

In this section we state and prove the witness tree lemma for our setting. We then use it to
prove Theorem 7. Some of the proofs are omitted for the sake of brevity, but all of them can
be found in the full version of the paper.

A.1 The Witness Tree Lemma
Given a trajectory Σ = σ1

w1−−→ . . . σt
wt−→ σt+1 we denote by W (Σ) = (w1, . . . , wt) the witness

sequence of Σ. (Recall that according to our notation, wi denotes the index of the flaw that
was addressed at the i-th step).

To state the witness tree lemma, we will first need to recall the definition of witness
trees from [29], slightly reformulated to fit our setting. A witness tree τ = (T, `T) is a finite
rooted, unordered, tree T along with a labelling `T : V (T)→ [m] of its vertices with indices
of flaws such that the children of a vertex v ∈ V (T) receives labels from Γ(`(v)). To lighten
the notation, we will sometimes write [v] to denote `(v) and V (τ) instead of V (T). Given a
witness sequence W = (w1, w2, . . . , wt) we associate with each i ∈ [t] a witness tree τW (i)
that is constructed as follows: Let τ (i)

W (i) be an isolated vertex labelled by wi. Then, going
backwards for each j = i− 1, i− 2, . . . , 1: if there is a vertex v ∈ τ j+1

W (i) such that [v] ∼ wj
then we choose among those vertices the one having the maximum distance (breaking ties
arbitrarily) from the root and attach a new child vertex u to v that we label wj to get τ (j)

W (i).
If there is no such vertex v then τ (j+1)

W (i) = τ
(j)
W (i). Finally, let τW (i) = τ

(1)
W (i).

We will say that a witness tree τ occurs in a trajectory Σ if W (Σ) = (w1, w2, . . . , wt) and
there is k ∈ [t] such that τW (k) = τ .

I Theorem 15 (The witness tree lemma). Assume that A = (F,∼, ρ) is commutative. Then,
for every witness tree τ we have that:

Pr[τ] ≤ λinit
∏

v∈V (τ)

γ(f[v]) .

We show the proof of Theorem 15 in Section A.4.

A.2 Witness Trees and Stable Witness Sequences
Here we show some properties of witness trees (which are induced by witness sequences of
the algorithm) that will be useful to us later. We also draw a connection between witness
trees and stable witness sequences, which we will need in the proof of Theorem 7. Stable
witness sequences were first introduced in [22] to make the Shearer’s criterion constructive in
the variable setting.

A.2.1 Properties of Witness Trees
The following propositions capture the main properties of witness trees we will need.

I Proposition 16. For a witness tree τ = (T, `T) let Li = Li(τ) denote the set of labels of
the nodes at distance i from the root. For each i ≥ 0, Li ∈ Ind([m]).

I Proposition 17. For a witness sequence W of length t and any two distinct i, j ∈ [t] we
have that τW (i) 6= τW (j).

F. Iliopoulos 44:15

A.2.2 Stable Witness Sequences
We will now recall the definition of stable sequences. Variations of this notion have also been
used by [21, 24] to make the Shearer’s criterion constructive in the more general settings of
the algorithmic Local Lemma. Here we will use the following definition:

I Definition 18. A sequence of subsets (I1, . . . , Ik) of [m] with k ≥ 1 is called stable if
1. Ir ∈ Ind([m]) \ {∅} for each r ∈ [k]
2. Ir+1 ⊆ Γ(Ir) for each r ∈ [k − 1].

I Definition 19. A witness sequenceW = (w1, . . . , wt) is called stable if it can be partitioned
into non-empty sequences as W = (W1, . . . ,Wk) such that the elements of each sequence Wr

are distinct, and the sequence φW := (I1, . . . , Ik) is stable, where Ir is the set of indices of
flaws in Wr (for r ∈ [k]).

For any arbitrary ordering π among indices of flaws, if in addition each sequence Wr =
(wi, . . . , wj) satisfies wi ≺π . . . ≺π wj then W is called π- stable.

I Proposition 20. ([24]) For a stable witness sequence the partitioning in Definition 19 is
unique.

For a witness sequence W = (w1, . . . , wt) let Rev[W] = (wt, . . . , w1) denote the reverse
sequence. Let also RW denote the first set (the “root”) of the stable sequence φW :=
(I1, . . . , Ik), i.e., RW = I1. Finally, let Rπi be the set of witness sequences W such that
Rev[W] is π-stable and RRev[W] = {i}.

There is a connection between stable sequences and witness trees that we will need for
the proofs of Theorem 7 and which we will describe below.

Let Wi denote the set of witness trees with root labelled by i. For each τ ∈ Wi, let χπ(τ)
be the ordered witness tree that is induced by ordering the children of each node in τ from
left to right, increasingly according to π. Define Wπ

i := χπ(Wi) and observe that χπ is a
bijection. Finally, recall that for a witness tree τ we denote by Lj(τ) the set of labels of the
nodes at distance j from the root.

I Lemma 21. There is a bijection χπi mapping Rπi to Wπ
i with the following property: Let

W ∈ Rπi and let (I1 = {i}, I2, . . . , Ik) be the unique partitioning of Rev[W] guaranteed by
Proposition 20. Then, Ij = Lj−1 (χπi (W)) for each j ∈ [k] .

A.2.3 Counting Witness Trees
In our proofs we will need to bound the sum over all trees τ ∈ Wi of the product of charges
of the (labels of) the nodes of each tree τ . Fortunately, the method for doing that is well
trodden by now (see for example [29, 31]). Recall that Wi denotes the set of all possible
witness trees with root that is labelled by i.

I Lemma 22. If the Cluster Expansion condition is satisfied then:∑
τ∈Wi

∏
v∈V (τ)

γ
(
f[v]
)
≤ ψi .

We also show the following lemma that can be used whenever the Shearer’s condition
applies.

I Lemma 23. If the Shearer’s condition is satisfied then:∑
τ∈Wi

∏
v∈V (τ)

γ
(
f[v]
)
≤
q{i}(γ)
q∅(γ) .

APPROX/RANDOM 2018

44:16 Commutative Algorithms Approximate the LLL-distribution

I Remark. We note that if we have assumed a stronger “cluster expansion condition” (namely,
in (4) we have Γ(i) ∪ {i}) instead of Γ(i) then Corollary 22 could have also been shown as
an immediate application of Lemma 23, since it is known ([7, 21, 24]) that, in this case, for
every i ∈ [m] we have that q{i}(γ)

q∅(γ) ≤ ψi.

A.3 Proof of Theorem 7
We first prove Theorem 7. The first part follows by Theorem 15, Lemma 22 and Proposition 17
that suggest:

E[Ni] ≤ λinit
∑
τ∈Wi

∏
v∈V (τ)

γ(f[v]) ≤ λinitψi .

To see the second part of Theorem 7, consider the new set of flaws F ′ = F ∪ {fm+1}, where
fm+1 = E, as well as a “truncated” commutative extension A′ of A with the following
properties:
(i) For each state σ /∈ fm+1 algorithm A′ invokes A to choose the next state.
(ii) γ(E) := γA′(fm+1).
(iii) fm+1 is always of the highest priority: when at a state σ ∈ fm+1, A′ chooses to address

fm+1.
(iv) A′ stops after it addresses fm+1 for the first time.
By coupling A and A′ we see that PrA[E] = PrA′ [fm+1]. Let WE be the set of witness trees
that might occur in an execution of A′ and whose root is labelled by m + 1. Notice that
due to property (iv) of A′ every tree τ ∈ WE contains exactly one node (the root) labelled
by m + 1, while every other node is labelled by elements in [m]. Furthermore, the set of
labels of the children of the root of τ is an element of Ind(Γ(E)). Finally, if v is a node that
corresponds to a child of the root in τ , then the subtree τv that is rooted at v is an element
of W[v]. Using Theorem 15 and the fact that A′ is commutative we can bound PrA[E] as

∑
τ∈WE

Pr
A′

[τ] ≤ λinitγ(E)
∑

S∈Ind(Γ(E))

∏
j∈S

∑
τ∈Wj

∏
v∈τ

γ([v])

 ≤ λinitγ(E)
∑

S∈Ind(Γ(E))

∏
j∈S

ψj ,

where the last equality follows from Corollary 22. The proof of Theorem 7 in the Shearer’s
condition regime is identical, where instead of Lemma 22 we use Lemma 23.

A.4 Proof of Lemma 15
Throughout the proof, we will use ideas and definitions from [24]. We also note that we will
assume w.l.o.g. that algorithm A follows a deterministic flaw choice strategy. This is because
randomized flaw choice strategies can equivalently be interpreted as convex combination of
deterministic ones (and therefore, randomized strategies can be seen as taking expectation
over deterministic ones).

For a trajectory Σ of length t we define

p(Σ) = λinit

t∏
i=1

ρwi(σi, σi+1)

and notice that Pr[Σ] ≤ p(Σ). Furthermore, we say that a trajectory Σ′ is a proper prefix of
Σ if Σ′ is a prefix of Σ and Σ 6= Σ′.

F. Iliopoulos 44:17

I Definition 24 ([24]). A set X of trajectories of the algorithm will be called valid if (i) all
trajectories in X follow the same deterministic flaw choice strategy (not necessarily the same
used by A), and (ii) for any Σ,Σ′ ∈ X trajectory Σ is not a proper prefix of Σ′.

I Lemma 25 ([24]). Consider a witness sequence W = (w1, . . . , wt) and a valid set of
trajectories X such that W is a prefix of W (Σ) for every Σ ∈ X . Then:

∑
Σ∈X

p(Σ) ≤ λinit

t∏
i=1

γ(fwi) ,

A swap is the operation of transforming a trajectory Σ = . . . σ1
i−→ σ2

j−→ σ3 . . ., with i � j,
to a trajectory Σ′ = . . . σ1

j−→ σ′2
i−→ σ3 . . ., where σ1

j−→ σ′2
i−→ σ3 = Swap(σ1

i−→ σ2
j−→ σ3).

A mapping Φ on a set of trajectories will be called a swapping mapping if it operates by
applying a sequence of swaps.

The main idea now will be to construct a swapping mapping whose goal will be to
transform trajectories of the algorithm to a form that satisfies certain properties by applying
swaps .

For a trajectory Σ in which a tree τ ∈ Wi occurs, we denote by W τ
Σ the prefix of W (Σ)

up to the step that corresponds to the root of τ (observe that Proposition 17 mandates that
there exists a unique such step). Notice that, since τ ∈ Wi, the algorithm addresses flaw fi
at this step, and thus the final element of W τ

Σ is {i}. Finally, recall the definitions of Rπi , χπ
and χπi .

I Lemma 26. Fix a witness tree τ ∈ Wi and let X τ be a valid set of trajectories in which
τ occurs. If A = (F,∼, ρ) is commutative then there exists a set of trajectories X τπ and a
swapping mapping Φτ : X τ → X τπ which is a bijection such that
(a) for any Σ ∈ X τπ we have that W τ

Σ is the unique witness sequence in Rπi such that
χπi (W τ

Σ) = χπ(τ);
(b) for any witness sequence W the set {Σ ∈ X τπ | Rev[W τ

Σ] = W} is valid.

We prove Lemma 26 in Section A.5. To see Theorem 15, consider a witness tree τ ∈ Wi, and
let Yτ be the set of all trajectories that A may follow in which τ occurs. Now remove from
Yτ any trajectory Σ for which there exists a trajectory Σ′ such that Σ is a proper prefix of
Σ′ to get X τ . Clearly, this is a valid set and so recalling that χπ is a bijection and applying
Lemma 26 we have that:

Pr[τ] =
∑

Σ∈X τ
Pr[Σ] ≤

∑
Σ∈X τ

p(Σ) =
∑

Σ∈X τπ

p(Σ) , (7)

where to get the second equality we use the second requirement of Definition 3. Lemma 26
further implies that for every trajectory Σ ∈ X τπ we have that W τ

Σ is the (unique) witness
sequence in Rπi such that χπi (W τ

Σ) = χπ(τ), i.e., W τ
Σ = (χπi)−1 (χπ(τ)) . This means that

the witnesses of the trajectories in X τπ have W := (χπi)−1 (χπ(τ)) as a common prefix. Since
part (b) of Lemma 26 implies that X τπ is valid, applying Lemma 25 we get:∑

Σ∈X τπ

p(Σ) ≤ λinit
∏
w∈W

γ(fw) = λinit
∏

v∈V (τ)

γ(f[v]) , (8)

where the second inequality follows from the fact that χπi (W) = χπ(τ) and V (τ) = V (χπ(τ)),
concluding the proof.

APPROX/RANDOM 2018

44:18 Commutative Algorithms Approximate the LLL-distribution

A.5 Proof of Lemma 26
Our proof builds on the proof of Theorem 19 in [24]. We will be denoting witness sequences
W = (w1, w2, . . . , wt) as a sequence of named indices of flaws W = (w1, . . . ,wt) where
wj = (wj , nj) and nj = |{k ∈ [j] | wk = wj}| ≥ 1 is the number of occurrences of wj in the
length-j prefix of W . Note that a named index w cannot appear twice in a sequence W .
Finally, if w is a named index of flaw we denote by w (that is, without bold font) the flaw
index that is associated with it.

For a trajectory Σ such that W (Σ) = (w1, . . . ,wt) we define a directed acyclic graph
G(Σ) = (V(Σ),E(Σ)) where V(Σ) = {w1, . . . ,wt} and E(Σ) = {(wj ,wk) s.t. wj ∼
wk and j < k }. This means that we have an edge from a named flaw wi to another
flaw wj whenever their corresponding flaw indices are related according to ∼ and wj occurs
in Σ before wk.

By Proposition 17, for any trajectory Σ in which τ occurs there is a unique step t∗ = t∗(Σ)
such that τW (Σ)(t∗) = τ . For such a trajectory Σ, let Q(Σ) ⊆ V(Σ) be the set of flaws
from which the node wt∗ can be reached in G(Σ), where wt∗ is the named flaw index that
corresponds to the step t∗. Notice that wt∗ = i (since τ ∈ Wi). For w ∈ Q(Σ) let d(w) be
the length of the longest path from w to wt∗ in G(Σ) plus one. For example, d(wt∗) = 1.

Let Q(Σ) denote the sequence consisting of the named flaws in Q(Σ) listed in the order
they appear in Σ. The idea is to repeatedly apply the operation Swap to Σ so that we reach
a trajectory Σ′ that has a permutation Qπ(Σ) of Q(Σ) as a prefix. In particular, we will
show that Qπ(Σ) ∈ Rπi and χπi (Qπ(Σ)) = χπ(τ).

To that end, for an integer r ≥ 1 define Ir = {w ∈ Q(Σ) | d(w) = r}, and let Qr be the
sequence consisting of the named flaw indices in Ir sorted in decreasing order with respect
to π. Then, we define Qπ(Σ) = (Qs, . . . , Q1) where s = max{d(w) | w ∈ Q(Σ)}.

I Lemma 27. Qπ(Σ) ∈ Rπi and χπi (Qπ(Σ)) = χπ(τ).

Proof. Let Y = Y (Σ) = Rev[Qπ(Σ)] = (Q1, Q2, . . . , Qs) be the reverse sequence of Σ. By
definition, RY = Q1 = {i}. To show that Q ∈ Rπi it suffices to show that Qi+1 ⊆ Γ(Qi) for
each i ∈ [s − 1]. To see this, recall the definitions of Ir+1 and Qr+1 and observe that, for
each ir+1 ∈ Qr+1, there must be a path of r indices of flaws ir, ir−1, . . . , i1 such that for
every j ∈ [r − 1] we have that ij ∈ Qj and ij ∼ ij+1.

Let k be the number of elements in witness sequence Q(Σ). Recall that χiπ(Qπ(Σ)) :=
χπ(τQπ(Σ)(k)) (proof of Lemma 21). The proof is concluded by also recalling the algorithm
for constructing witness trees and observing that τQπ(Σ)(k) = τW (Σ)(t∗) = τ . J

Note that applying Swap to Σ does not affect graph G(Σ) and set Q(Σ) and, thus, neither
the sequence Qπ(Σ). With that in mind, we show next how we could apply Swap repeatedly
to Σ ∈ X τ to reach a Σ′ such Qπ(Σ) is a prefix of its witness sequence (that is, W (Σ′) =
(Qπ(Σ), U)). We will do this by applying swaps to swappable pairs in Σ.

I Definition 28. Consider a trajectory Σ ∈ X τ . A pair (w,y) of named indices of flaws is
called a swappable pair in Σ if it can be swapped in Σ (i.e., W (Σ) = (. . .w,y . . .) and w � y)
and either
1. (w,y) ∈ (V(Σ) \Q(Σ))×Q(Σ), or
2. (w,y) ∈ Q(Σ)×Q(Σ) and their order in Qπ(Σ) is different: Qπ(Σ) = (. . . ,y,w, . . .)

The position of the rightmost swappable pair in Σ will be denoted as k(Σ) , where the
position of (w,y) in Σ is the number of named indices of flaws that precede y in W (Σ). If Σ
does not contain a swappable pair then k(Σ) = 0. Thus, k(Σ) ∈ [0, |Σ| − 1].

F. Iliopoulos 44:19

We can only apply finite many swaps to swappable pairs in Σ. This is because swapping
pairs of the first form moves a named index in Q(Σ) to the left, while swapping pairs of the
second one decrease the number of pairs whose relative order in Q(Σ) is not consistent with
the one in Qπ(Σ). Clearly, both of these actions can be performed only a finite number of
times.

The following lemma shows how we can obtain a mapping Φτ such that X τπ := Φτ (X τ)
satisfies the first condition of Lemma 26. The proof is identical (up to minor changes) to the
one of Lemma 27 of [24].

I Lemma 29. Consider a trajectory Σ ∈ X τ such that W (Σ) = (A,U) where A and U

are some sequences of indices of flaws, and there are no swappable pairs inside U . Then
U = (B,C) where sequence B is a subsequence of Qπ(Σ) and C does not contain named
indices of flaws from Q(Σ).

In particular, if |A| = 0 and W (Σ) = U does not contain a swappable pair then W (Σ) =
(Qπ(Σ), C).

It remains to show that Φτ can be constructed so that is also a bijection and that it
satisfies the second condition of Lemma 26. To do so, consider the following algorithm.

Let X0 = X τ .
While k = maxΣ∈Xp k(Σ) 6= 0

For each Σ ∈ Xp: if k(Σ) = k then swap the pair (w,y) at position k in Σ, otherwise
leave Σ unchanged.
Let Xp+1 the new set of trajectories.

For a witnesses sequence W define Xp[W] = {Σ ∈ Xp | Qπ(Σ) = W} for an index p ≥ 0.
Now the following lemma concludes the proof since X0[W] ⊆ X τ is valid. Its proof is identical
(up to minor changes) to the proof of Lemma 28 in [24].

I Lemma 30. If set Xp[W] is valid then so is Xp+1[W], and the mapping from Xp[W] to
Xp+1[W] defined by the algorithm above is injective.

B Proof of Lemma 12

For the sake of brevity, we extend the notion of “addressing a flaw” to an arbitrary state
σ ∈ Ω, meaning that we recolor the vertices associated with the operation of addressing a
flaw in the same way we would do it if the constraint corresponding to the flaw was indeed
violated. Consider the following random experiments.

Address Bv at an arbitrary state σ ∈ Ω to get a state σ′. Let Prσ[Bv] denote the
probability that σ′ ∈ Bv.
Address Zv at an arbitrary state σ ∈ Ω to get a state σ′. Let Prσ[Zv] denote the
probability that σ′ ∈ Zv.

Our claim now is that

γ(Bv) ≤ max
σ′∈Ω

Pr
σ′

[Bv] ; (9)

γ(Zv) ≤ max
σ′∈Ω

Pr
σ′

[Zv] . (10)

To see this, let fv ∈ {Bv, Zv} and observe that

γ(fv) = max
σ′∈Ω

∑
σ∈fv

µ(σ)
µ(σ′)ρv(σ, σ

′) = max
σ′∈Ω

∑
σ∈Infv (σ′)

1
|Λ(σ)| ,

APPROX/RANDOM 2018

44:20 Commutative Algorithms Approximate the LLL-distribution

where Λ(σ) :=
∏
u∈Nv Lu(σ) is the cartesian product of the lists of available colors of each

vertex u ∈ Nv at state σ and Infv (σ′) is the set of states σ ∈ fv such that σ′ ∈ A(fv, σ).
The key observation now is that Λ(σ′) = Λ(σ) for each state σ ∈ Infv (σ). This is because

any transition of the form σ
fv−→ σ′ does not alter the lists of available colors of vertices

u ∈ Nv, since the graph is triangle-free. Thus,

γ(fv) = max
σ′∈Ω

|Infv (σ′)|
Λ(σ′) = max

σ′∈Ω
Pr
σ′

[fv] ,

where the second equality follows from the fact that there is a bijection between Infv(σ′)
and the set of color assignments from Λ(σ′) to the vertices of Nv that violate the constraint
related to flaw fv.

The following lemma concludes the proof.

I Lemma 31 ([26]). For every state σ ∈ Ω it holds that
(a) Prσ[Bv] < ∆−4;
(b) Prσ[Zv] < ∆−4.

	Introduction
	Background and Preliminaries
	The Lovász Local Lemma
	Algorithmic Framework
	Commutativity
	Improved LLL Criteria

	Statement of Results
	Entropy of the Output Distribution

	List-Coloring of Triangle-Free Graphs
	The Algorithm
	Proving Termination
	A Lower Bound on the Number of Possible Outputs

	Proof of Main Results
	The Witness Tree Lemma
	Witness Trees and Stable Witness Sequences
	Properties of Witness Trees
	Stable Witness Sequences
	Counting Witness Trees

	Proof of Theorem 7
	Proof of Lemma 15
	Proof of Lemma 26

	Proof of Lemma 12

