
Speeding up Switch Markov Chains for Sampling
Bipartite Graphs with Given Degree Sequence

Corrie Jacobien Carstens
Korteweg-de Vries Institute for Mathematics, Amsterdam, The Netherlands
c.j.carstens@uva.nl

Pieter Kleer
Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
kleer@cwi.nl

Abstract
We consider the well-studied problem of uniformly sampling (bipartite) graphs with a given degree
sequence, or equivalently, the uniform sampling of binary matrices with fixed row and column
sums. In particular, we focus on Markov Chain Monte Carlo (MCMC) approaches, which proceed
by making small changes that preserve the degree sequence to a given graph. Such Markov chains
converge to the uniform distribution, but the challenge is to show that they do so quickly, i.e.,
that they are rapidly mixing.

The standard example of this Markov chain approach for sampling bipartite graphs is the
switch algorithm, that proceeds by locally switching two edges while preserving the degree se-
quence. The Curveball algorithm is a variation on this approach in which essentially multiple
switches (trades) are performed simultaneously, with the goal of speeding up switch-based al-
gorithms. Even though the Curveball algorithm is expected to mix faster than switch-based
algorithms for many degree sequences, nothing is currently known about its mixing time. On
the other hand, the switch algorithm has been proven to be rapidly mixing for several classes of
degree sequences.

In this work we present the first results regarding the mixing time of the Curveball algorithm.
We give a theoretical comparison between the switch and Curveball algorithms in terms of their
underlying Markov chains. As our main result, we show that the Curveball chain is rapidly mixing
whenever a switch-based chain is rapidly mixing. We do this using a novel state space graph
decomposition of the switch chain into Johnson graphs. This decomposition is of independent
interest.
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36:2 Speeding up Switch Markov Chains

1 Introduction

The problem of sampling bipartite graphs with a given degree sequence, or equivalently the
sampling of binary matrices with fixed row and column sums (marginals) has received a lot
of attention in theoretical research, in particular Markov chain Monte Carlo switch-based
approaches, see, e.g., [23, 6, 18, 20, 25, 14, 17]. Furthermore, it has many applications,
for instance in network science [26] and in the field of ecology [28, 30] where it is used
as a null-model. Hence, it is important that the sampling is unbiased and fast. In the
Markovian approach, one repeatedly applies small changes to a given binary matrix, that
represents the adjacency matrix of a bipartite graph in the natural way, with each change
preserving the marginals (the bipartite degree sequence). The idea is that after a sufficient
number of changes, i.e., transitions of the underlying Markov chain, the resulting matrix
corresponds to an approximately uniform sample from the set of all binary matrices having
the given marginals. The number of steps needed to get within a given distance of the
uniform distribution is known as the mixing time of the Markov chain, and the chain is
said to be rapidly mixing if this number can be bounded by a polynomial in the size of the
bipartitions considered (the parameters m and n as introduced in Section 4).

The best-known probabilistic procedure for making these small changes uses switches, in
which two one-entries of the matrix are ‘exchanged’ with two zero-entries of the matrix see,
e.g., [28]. The resulting Markov chain is called the switch chain. A possible implementation
for such a chain was proposed by Kannan, Tetali and Vempala [23]. One first chooses two
rows and columns uniformly at random, and, if the 2×2 submatrix formed by these rows and
columns corresponds to a checkerboard, the zero and one entries are exchanged, see Section
4.1 for details. The Curveball algorithm was introduced in [32] and rediscovered in [30].
Both articles focus on applications and are motivated by the need to speed up switch-based
algorithms. In the Curveball algorithm one again chooses two rows uniformly at random,
but then continues by randomly exchanging all one and zero entries on the chosen rows in a
way that preserves the marginals. Such an exchange is called a (binomial) trade. A detailed
description is given in Section 4.2.

The main result of this work is a theoretical comparison of the relaxation times of the
Kannan-Tetali-Vempala (KTV) switch chain, and the Curveball chain. The relaxation time
of a Markov chain essentially determines its mixing time. In particular, our result implies
that the Curveball chain is rapidly mixing whenever the KTV switch chain is rapidly mixing,
but that there is at most a quadratic improvement in relaxation time (Theorem 3). We
prove this statement in the more general setting in which there is a set of forbidden entries,
that have to be zero. This allows us to also compare the chains for the sampling of a simple
directed graph with given degree sequence also, as its adjacency matrix can be given by a
square binary matrix with zeros on the diagonal.

In order to establish our results, we introduce a general comparison framework inspired
by, and based on, the notion of a heat-bath Markov chain, using the definition by Dyer,
Greenhill and Ullrich [12]. This framework essentially compares a given Markov chain with
a locally refined version, which we will call its heat-bath variant. We introduce a novel
decomposition of the state space of the switch and Curveball chain in order to apply this
framework. In particular, this decomposition allows us to show that the transition matrix
of the KTV-switch chain only has non-negative eigenvalues. This result is of independent
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interest, as it implies that the chain does not have to be made lazy.1 Making a Markov chain
lazy is an easy way to guarantee that its transition matrix only has non-negative eigenvalues,
but the procedure has been described, e.g., as ‘unnatural’ (see the note of Greenhill [19] for
a discussion and references).

As an additional application of our framework, we show it can be used to prove that
the parallel Curveball chain [4] is rapidly mixing whenever the Curveball chain is rapidly
mixing. In the parallel Curveball chain multiple independent binomial trades are performed
in parallel.

Some proofs are omitted from the main text, but can be found in Appendix A.

1.1 Related work
We refer the reader to [17] for a nice exposition on the switch Markov chain. We give a
brief overview. Kannan, Tetali and Vempala [23] conjectured that the KTV-switch chain is
rapidly mixing for all fixed row and column sums. Miklós, Erdős and Soukup [25] proved the
conjecture for half-regular binary matrices, in which all the row sums are equal (or all column
sums), and Erdős, Kiss, Miklós and Soukup [14] extended this result to almost half-regular
marginals. The authors of [14] prove this in a slightly more general context where there
might be certain forbidden edge sets. See also [17, 15] for more results. For rapid mixing
results of the switch chain for general (un)directed graphs, see also, e.g., Cooper, Dyer and
Greenhill [6], Greenhill [18], and Greenhill and Sfragara [21]. In general, the switch chain
can be slow mixing in the presence of forbidden edges sets, which follows from the work
of Bezáková, Bhatnagar and Randall [2]. The Curveball algorithm was first described by
Verhelst [32] and a slightly different version was later independently formulated by Strona,
Nappo, Boccacci, Fattorini and San-Miguel-Ayanz [30]. The name Curveball algorithm was
introduced in [30]. The Curveball chain has also been formulated for (un)directed graphs,
see Carstens, Berger and Strona [4].

Showing rapid mixing for the switch chain has proven to be a highly non-trivial task
[6, 18, 20, 25, 14, 17, 15]. All these works rely directly or indirectly on Sinclair’s multi-
commodity flow method [29]. In this approach one defines a multi-commodity flow in the
state space graph of the switch chain that routes a common amount of flow between any two
states of the switch chain. If this can be done in such a way that no edge of the state space
graph gets congested too severely, then the switch chain is rapidly mixing. The analyses
[6, 18, 20, 25, 14] all use the fact that the transition probabilities of the switch chain are
polynomially bounded. This property does not hold for the Curveball chain, and therefore
one cannot directly use the multi-commodity flows of the switch chain analyses in order to
prove that the Curveball chain is rapidly mixing.2

Our comparison analysis is a special case of the classical comparison framework developed
largely by Diaconis and Saloff-Coste and is based on so-called Dirichlet form comparisons
of Markov chains, see, e.g., [7, 8], and also Quastel [27]. See also the expository paper by
Dyer, Goldberg, Jerrum and Martin [11]. As the stationary distributions are uniform for all
our Markov chains, we can use a more direct, but equivalent, framework based on positive
semidefiniteness. We briefly elaborate on this equivalence in Appendix B.

1 The lazy version of a reversible Markov chain with transition matrix P is the chain with transition
matrix (P + I)/2, that is guaranteed to only have non-negative eigenvalues. This is mostly done to
simplify the use of Sinclair’s method [29], one of the most well-known methods for proving rapid mixing
of a Markov chain.

2 This was also briefly mentioned in [4], where the mixing time of the Curveball chain was raised as an
open problem.
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36:4 Speeding up Switch Markov Chains

Finally, the transition matrix of the Curveball Markov chain is a special case of a heat-bath
Markov chain under the definition of Dyer, Greenhill and Ullrich [12]. Our work partially
builds on [12] in the sense that we compare a Markov chain, with a similar decomposition
property as in the definition of a heat-bath chain, to its heat-bath variant.

2 Preliminaries

Let M = (Ω, P ) be an ergodic, time-reversible Markov chain3 over state space Ω with
transition matrix P and stationary distribution π. We write P tx = P t(x, ·) for the distribution
over Ω at time step t given that the initial state is x ∈ Ω. It is well-known that the matrix P
only has real eigenvalues 1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λN−1 > −1, where N = |Ω|. Moreover,
we define λ∗ = max{λ1, |λN−1|} as the second-largest eigenvalue of P . The variation distance
at time t with initial state x is

∆x(t) = max
S⊆Ω

∣∣P t(x, S)− π(S)
∣∣ = 1

2
∑
y∈Ω

∣∣P t(x, y)− π(y)
∣∣,

and the mixing time τ(ε) is then defined as

τ(ε) = max
x∈Ω
{min{t : ∆x(t′) ≤ ε for all t′ ≥ t}} .

A Markov chain is said to be rapidly mixing if the mixing time can be upper bounded by a
function polynomial in ln(|Ω|/ε). It is well-known, e.g., following directly from Proposition 1
[29], that

1
2

λ∗
1− λ∗

ln(1/2ε) ≤ τ(ε) ≤ 1
1− λ∗

· (ln(1/π∗) + ln(1/ε)) (1)

where π∗ = minx∈Ω π(x). This roughly implies that the mixing time is determined by the
spectral gap (1−λ∗), or its inverse, the relaxation time (1−λ∗)−1. Finally, we let GΩ = (Ω, A)
be the state space graph, with an arc (a, b) ∈ A if and only if P (a, b) > 0 for a, b ∈ Ω with
a 6= b. If P is symmetric, we define HΩ = (Ω, E) as the undirected counterpart of GΩ with
{a, b} ∈ E if and only if (a, b), (b, a) ∈ A with a 6= b.

2.1 Johnson graphs
One class of graphs that are of particular interest in this work, are the so-called Johnson
graphs. For given integers 1 ≤ q ≤ p, the undirected Johnson graph J(p, q) contains as nodes
all subsets of size q of {1, . . . , p}, and two subsets u, v ⊆ {1, . . . , p} are adjacent if and only
if |u ∩ v| = q − 1. We refer the reader to [22, 3] for the following facts. The Johnson graph
J(p, q) is a q(p− q)-regular graph and the eigenvalues of its adjacency matrix are given by

(q − i)(p− q − i)− i with multiplicity
(
p

i

)
−
(

p

i− 1

)
for i = 0, . . . , q, with the convention that

(
p
−1
)

= 0. The following observation is included for
ease of reference. It will often be used to lower bound the smallest eigenvalue of a Johnson
graph.

3 For more background on Markov chains, we refer the reader to, e.g., [24].
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I Proposition 1. Let p, q ∈ N be given. The continuous function f : R→ R defined by

f(x) = [(q − x)(p− q − x)− x]− q(p− q) = x(x− (p+ 1))

is minimized for x∗ = (p+ 1)/2, with f(x∗) = −(p+ 1)2/4.

3 Comparison framework

In this section we describe the comparison framework that will be used to compare the
KTV-switch and Curveball Markov chains (Section 4), and to compare the Curveball and the
parallel Curveball chain (Section 5). In general, we consider an ergodic (irreducible) Markov
chainM = (Ω, P ) with stationary distribution π, being strictly positive for all x ∈ Ω, that
can be decomposed as4

P =
∑
a∈L

ρ(a)
∑
R∈Ra

PR (2)

which is given by a
i) finite index set L, and probability distribution ρ over L,
ii) partition Ra = ∪R`,a of Ω for a ∈ L,

and where the restriction of a matrix PR to the rows and columns of R = R`,a defines the
transition matrix of an ergodic, time-reversible Markov chain on R (and is zero elsewhere),
with stationary distribution π̃R(x) = π(x)/π(R) for x ∈ R. We use 1 = λR0 ≥ λR1 ≥ · · · ≥
λR|R|−1 to denotes its eigenvalues. Note that these are also eigenvalues of PR and that all
other eigenvalues of PR are zeros (as all rows and columns not corresponding to elements in
R only contain zeros). Note that the chainM proceeds by drawing an index a from the set
L, and then performs a transition in the Markov chain on the set R that the current state is
in.

The heat-bath variant Mheat of the chainM is given by the transition matrix

Pheat =
∑
a∈L

ρ(a)
∑
R∈Ra

1 · σR (3)

with σR is a row-vector given by σR(x) = π̃R(x) if x ∈ R and zero otherwise, and 1 the
all-ones column vector. Intuitively, the chainMheat proceeds by drawing an index a from L
and then drawing a state x in R with probability π̃R(x). It can be shown thatMheat is an
ergodic Markov chain wheneverM is ergodic, as the state space graph ofM is a subgraph
of the state space graph ofMheat. It is reversible by construction [12]. The eigenvalues of
Pheat are always non-negative as was shown in [12].

I Theorem 2. Let M = (Ω, P ) be a Markov chain as in (2) with the property that
λR0 , . . . , λ

R
|R|−1 ≥ 0 for all R ∈ Ra. Let Mheat = (Ω, Pheat) be its heat-bath variant as

in (3) and let α and β be constants with αβ > 0. If

α− β(1− λRi ) ≥ 0, (4)

for all R ∈ Ra and i ∈ (1, . . . , |R| − 1), then P only has non-negative eigenvalues and
1
α

1
1− λheat∗

≤ 1
β

1
1− λ∗

, (5)

where λ(heat)
∗ is the second largest eigenvalue of P(heat). For α = β = 1, we find (1−λheat∗ )−1 ≤

(1− λ∗)−1.

4 This description is almost the same as that of a heat-bath chain [12], and is introduced to illustrate the
conceptual idea.
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The intuition behind Theorem 2 is that in order to compare the relaxation times of a
Markov chain and its heat-bath variant, it suffices to compare them locally on the sets R.
Note that α and β can both be negative, so that this statement can be used both to upper
bound and lower bound the relaxation time of the heat-bath variant in terms of the original
relaxation time. The proof of Theorem 2 can be found in Appendix A.

4 Comparing the switch and Curveball chain

In this section we prove our main result as stated in Theorem 3 below. We first introduce
some notation and terminology. We are given n,m ∈ N, fixed row sums r = (r1, . . . , rm),
column sums c = (c1, . . . , cn), and a set of forbidden entries F ⊆ {1, . . . ,m} × {1, . . . , n}.
We define Ω = Ω(r, c,F) as the set of all binary m× n-matrices A satisfying these row and
column sums, and for which A(a, b) = 0 if (a, b) ∈ F . The set Ω is the state space of both
the switch and Curveball chain. Deciding whether or not Ω is non-empty, and computing
an element from it in case it is non-empty, can be done in time polynomial5 in m and n.
That is, in case Ω is non-empty, we can efficiently compute an initial state for the switch or
Curveball algorithm. The precise formulations of the transition matrices PC and PKTV of
the Curveball and KTV switch chain, respectively, are given later on in this section.

I Theorem 3. Let r = (r1, . . . , rn) and c = (c1, . . . , cm) be given marginals with n ≥ 3, F a
set of forbidden entries, and assume that Ω(r, c,F) 6= ∅. Let PC and PKTV be the transition
matrices of respectively the Curveball and KTV-switch Markov chains. Then

2
n(n− 1) · (1− λ

KTV
∗ )−1 ≤ (1− λC∗ )−1 ≤ min

{
1, (2rmax + 1)2

2n(n− 1)

}
· (1− λKTV∗ )−1,

where λ(KTV,C)
∗ = λ

(KTV,C)
1 is the second largest eigenvalue of P(KTV,C).

In order to prove Theorem 3, we give a novel decomposition of the state space of the
KTV-switch chain. We then show that the Curveball chain is its heat-bath variant. In
fact, we introduce a general γ-switch chain, as there are multiple switch-based chains in the
literature, and show that the Curveball chain is the heat-bath variant of this general switch
chain. The KTV-switch chain corresponds to a specific choice of γ. In the full version [5] we
compare the Curveball chain with another switch-based chain for a different value of γ.

4.1 Switch chain
For a given initial binary matrix A, in every step of the Kannan-Tetali-Vempala (KTV)
switch algorithm we choose two distinct rows and two distinct columns uniformly at random.
If the 2 × 2 submatrix corresponding to these rows and columns is a checkerboard Ci for
i = 1, 2, where,

C1 =
(

1 0
0 1

)
and C2 =

(
0 1
1 0

)
,

then the 2× 2 submatrix is replaced by Ci+1 for i modulo 2 provided the zero entries are
not forbidden. That is, if the checkerboard is C1, it is replaced by C2, and vice versa. If the

5 Deciding non-emptiness of Ω can be reduced to deciding if a certain auxiliary graph contains a perfect
matching [31]. The latter can be done using the well-known blossom shrinking algorithm [13]. This is
also mentioned in [14].
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submatrix does not correspond to a checkerboard, nothing is changed. Such an operation is
called a switch.

Matrices A,B ∈ Ω are switch-adjacent for row i and j if A = B or if A − B contains
exactly four non-zero elements that occur on rows i and j and columns k and `. Two matrices
are switch-adjacent if they are switch-adjacent for some rows i and j. In the KTV-switch
chain, the probability of transitioning between switch-adjacent matrices is the probability of
selecting rows i and j and columns k and `, and always equals

(
m
2
)−1(n

2
)−1.

We need the following additional definitions to introduce the general γ-switch chain. For
A ∈ Ω, we let Aij be the 2× n-submatrix formed by rows i and j, for 1 ≤ i < j ≤ m. We
define

Uij(A) = {k ∈ {1, . . . , n} : A(i, k) = 1, A(j, k) = 0 and (j, k) /∈ F}, (6)

with uij(A) = |Uij(A)|, and similarly

Lij(A) = {k ∈ {1, . . . , n} : A(i, k) = 0, A(j, k) = 1 and (i, k) /∈ F}, (7)

with lij(A) = |Lij(A)|. Note that Lij ∪ Uij are precisely the columns k for which Aij has
different values on its rows and for which (i, k) and (j, k) are both not forbidden. We will
often write uij and lij instead of uij(A) and lij(A) for brevity.

I Definition 4 (γ-switch chain). Let γ be such that

1− uij(A)lij(A) · γ > 0 (8)

for all A ∈ Ω = Ω(r, c,F) and 1 ≤ i < j ≤ m. The transition matrix of the γ-switch chain
on state space Ω is given by

Pγ(A,B) =


(
m
2
)−1 · γ if A 6= B are switch-adjacent,(

m
2
)−1∑

1≤i<j≤m (1− uij(A)lij(A) · γ) if A = B,

0 otherwise.

Note that the transition probability for switch-adjacent matrices is the same everywhere
in the state space, and does not depend on the matrices A and B. In particular, the
transition matrix Pγ is symmetric and hence the chain is reversible with respect to the
uniform distribution. The factor 2/(m(m− 1)) is included for notational convenience. The
γ-switch chain can roughly be interpreted as follows. We first choose two distinct rows i and
j uniformly at random, and then transition to a different matrix switch-adjacent for rows
i and j, of which there are uij lij possibilities and where every matrix has probability γ of
being chosen; with probability 1− uij lijγ we do nothing. Taking γ = 2/(n(n− 1)) we obtain
the KTV-switch chain [23].

I Remark. We always assume the γ-switch chain is irreducible for given r, c and F (it is
clearly always aperiodic, symmetric and finite). Irreducibility is for instance guaranteed in
case there are no forbidden entries [28]; or in case n = m ≥ 4, with F is the set of diagonal
entries and regular marginals ci = ri = d for some given d ≥ 1 [18]. A characterization for
irreducibility in the case where F is the set of diagonal entries is given in [1]. Note that the
condition of irreducibility is independent of the value of γ.

APPROX/RANDOM 2018
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4.2 Curveball chain
The Curveball chain proceeds as follows. In every step two rows are chosen uniformly at
random from A as in the γ-switch algorithm. Then, a so-called binomial trade is performed.
In such a trade, we first find all the columns Uij(A) and Lij(A). For example, if n = 6 and
the 2× n submatrix is given by(

1 1 0 0 0 1
1 0 0 1 1 0

)
,

then we consider the (auxiliary) submatrix(
1 0 0 1
0 1 1 0

)
given by the second, fourth, fifth and sixth column. We now uniformly at random draw a
2× (uij + lij) matrix with columns sums equal to 1, and row sums equal to uij and lij . Note
that there are

(
uij+lij
uij

)
possible choices, hence the name binomial trade. We then replace

the (auxiliary) submatrix with this new submatrix in A. Note that such a drawing can be
obtained by uniformly choosing uij out of uij + lij column indices.

Similarly as in the switch chain definition, two matrices A and B are called trade-adjacent
for rows i and j if A = B or if B can be obtained from A using one binomial trade operation
on rows i and j. Two matrices are trade-adjacent if they are trade-adjacent for some row
pair.

The Curveball chainMC then equals (Ω, PC) with Ω = Ω(r, c,F) and

PC(A,B) =


(
m
2
)−1 ·

(
uij+lij
uij

)−1 if A 6= B are trade-adjacent,(
m
2
)−1∑

1≤i<j≤m
(
uij+lij
uij

)−1 if A = B,

0 otherwise.

4.3 State space decomposition
We next explain how the switch and Curveball chain fit in the comparison framework. The
index set L = {(i, j) : 1 ≤ i < j ≤ m} is the set of all pairs of distinct rows, and ρ is the
uniform distribution over L, that is, ρ(i, j) =

(
m
2
)−1 for all (i, j) ∈ L. The partitions R(i,j)

for (i, j) ∈ L are based on the notion of a binomial neighborhood, as defined in [32].

I Definition 5 (Binomial neighborhood). For a fixed binary matrix A and row-pair (i, j),
the (i, j)-binomial neighborhood Nij(A) of A is the set of matrices that can be reached
by only applying switches on rows i and j. That is, Nij(A) contains all matrices that are
trade-adjacent to A for rows i and j.

Note that for B ∈ Nij(A) we have Uij(A) ∪ Lij(A) = Uij(B) ∪ Lij(B) and furthermore
uij(A) = uij(B) and lij(A) = lij(B).

Next we will discuss the structure and properties of these binomial neighborhoods. This
discussion will culminate into Theorem 7 describing the switch and Curveball chains as being
of the forms (2) and (3). Note that we have A ∈ Nij(A); if B ∈ Nij(A), then A ∈ Nij(B)
[32]; and, if A ∈ Nij(B), B ∈ Nij(C), then A ∈ Nij(C). That is, the relation ∼ij defined by
a ∼ij b if and only if a ∈ Nij(b), is an equivalence relation on Ω. The equivalence classes of
∼ij define the sets R(i,j).

Furthermore, two matrices A,B ∈ Ω can be part of at most one common binomial
neighborhood. This follows directly from the observation that if B ∈ Nij(A)\{A}, then A and
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(
1 0 0 1
0 1 1 0

)(
1 0 1 0
0 1 0 1

)

(
0 1 1 0
1 0 0 1

) (
1 1 0 0
0 0 1 1

)

(
0 1 0 1
1 0 1 0

)(
0 0 1 1
1 1 0 0

)

{1, 4} {1, 3}

{2, 3} {1, 2}

{2, 4} {3, 4}

Figure 1 The induced subgraph H for the switch chain on the (1, 2)-binomial neighborhood of A.
On the left we have indexed the nodes by the submatrices of the first four columns, and on the right
by label sets, indicating the positions of the 1’s on the top row (i.e., row 1).

B differ on precisely rows i and j, so switches using any other pair of rows {k, `} 6= {i, j} can
never transform A into B, see [32]. Finally, since uij(A) = uij(B) and lij(A) = lij(B) when
A and B are part of the same binomial neighborhood, these numbers are only neighborhood-
dependent, and not element-dependent within a fixed neighborhood. Observe that

|N | =
(
uij + lij
uij

)
.

A crucial observation now is that the undirected state space graph H of the γ-switch chain
induced on a binomial neighborhood Nij is isomorphic to a Johnson graph J(uij + lij , uij)
whenever uij , lij ≥ 1 (see Section 2.1 for notation and definition).6 To see this, note that
every element in the binomial neighborhood Nij(A) can be represented by the set of indices
Uij(A). The set {1, . . . , lij + uij} here is then the set of indices of Uij(A) ∪ Lij(A). Indeed,
matrices A 6= B are switch-adjacent for rows i and j if Uij(A) ∩ Uij(B) = uij − 1.

I Example 6. Consider the binary matrix

A =

0 1 1 0 1 0 1
1 0 0 1 1 0 1
0 1 0 0 0 1 1


and the 2× 7-submatrix formed by rows 1 and 2, which is

A12 =
(

0 1 1 0 1 0 1
1 0 0 1 1 0 1

)
.

For sake of simplicity, we (uniquely) describe every element of the (1, 2)-binomial neighborhood
N12(A) by the first four columns (precisely those with column sums equal to one in the
submatrix). For the switch chain, the induced subgraph of the undirected state space graph
H on the (1, 2)-binomial neighborhood of A, the Johnson graph J(4, 2) is given in Figure 1.

I Remark. A fixed binomial neighborhood is reminiscent of the Bernoulli-Laplace Diffusion
model, see, e.g., [9, 10] for an analysis of this model. In this model there are two bins

6 If either uij = 0 or lij = 0 it consists of a single binary matrix.
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with respectively k and n− k balls, and in every transition two randomly chosen balls, one
from each bin, are interchanged between the bins. Indeed, the state space graph is then a
Johnson graph [10]. The transition probabilities are different, due to the non-zero holding
probabilities in the switch algorithm, but the eigenvalues of this Markov chain are related to
the eigenvalues of the switch Markov chain on a fixed binomial neighborhood, see also [9, 10].

Informally, the Markov chain resulting from always deterministically choosing rows i and
j in the switch algorithm, is the disjoint union of smaller Markov chains each with a state
space graph isomorphic to some Johnson graph. For a binomial neighborhood N = Nij(A)
for given i < j and A ∈ Ω, the undirected graph HN = (Ω, EN ) is the graph where EN
forms the edge-set of the Johnson graph J(uij + lij , uij) on N ⊆ Ω, and where all binary
matrices B ∈ Ω \N are isolated nodes. We use M(HN ) to denote its adjacency matrix. The
discussion above leads to the following theorem, where we define IS as the identity matrix
on S, and we define JS as the all-ones matrix on S, that is JS(x, y) = 1 if x, y ∈ S and zero
elsewhere.

I Theorem 7. The transition matrix Pγ of the γ-switch chain is of the form (2) namely

Pγ =
∑

1≤i<j≤m

(
m

2

)−1 ∑
N∈R(i,j)

((1− uij lij · γ) · IN + γ ·M(HN )) . (9)

The heat-bath variant of the γ-switch chain is given by the Curveball chain, and can be
written as

PC =
∑

1≤i<j≤m

(
m

2

)−1 ∑
N∈R(i,j)

(
uij + lij
uij

)−1
JN . (10)

Proof. The decomposition in (9) follows from the discussion above, and (8) guarantees that
the matrix (1− uij lij · γ) · IN + γ ·M(HN ) indeed defines the transition matrix of a Markov
chain for every N . Moreover, remember that the γ-switch chain has uniform stationary
distribution π over Ω. Indeed, for a binomial neighborhood N = Nij(A) for given i < j and
A ∈ Ω, the vector σN as used in (3) is then given by

σN (x) = π(x)
π(N ) = 1

|Ω| ·
|Ω|
|N |

= 1
|N |

=
(
uij + lij
uij

)−1

if x ∈ N , and zero otherwise. This implies that 1 · σN =
(
uij+lij
uij

)−1
JN as desired. J

As a by-product of this decomposition, we now show that the KTV-switch chain [23] only
has non-negative eigenvalues when n ≥ 3. This is of independent interest, as discussed in the
introduction.

I Theorem 8. The transition matrix of the KTV-switch Markov chain only has non-negative
eigenvalues when n ≥ 3.

Proof. The KTV-switch chain is exactly the γ-switch chain with γ = 2/(n(n− 1)). As the
product uij(A)lij(A) can be at most n2/4 for any A ∈ Ω and 1 ≤ i < j ≤ m, we see that γ
satisfies (8) when n ≥ 3. To show that PKTV has all non-negative eigenvalues we show that
the property assumed in Theorem 2 is satisfied by showing that the matrices

YN =
[

1− uij lij ·
(
n

2

)−1
]
IN +

(
n

2

)−1
M(HN )
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have all non-negative eigenvalues. Theorem 2 then implies that PKTV also only has non-
negative eigenvalues. For any eigenvalue λ of this submatrix, we have λ = 1+(µ−uij lij)

(
n
2
)−1

where µ = µ(λ) is an eigenvalue of the Johnson graph J(uij + lij , uij) on N . In particular,
using Proposition 1 with p = uij + lij and q = uij , we get (µ− uij lij) ≥ − 1

4 (uij + lij + 1)2 ≥
− 1

4 (n + 1)2 using that 0 ≤ uij + lij ≤ n. Therefore, when n ≥ 5, we have λ ≥ 1 − (n +
1)2/(2n(n − 1)) ≥ 0. The cases n = 3, 4 can be checked with some elementary arguments.
This is left to the reader. J

We conclude this section with the proof of Theorem 3.

Proof of Theorem 3. Let N = Nij(A) for given i < j and A ∈ Ω. Note that the upper
bound (1 − λKTV∗ )−1 follows from Theorem 2 with α = β = 1 for which (5) holds as was
shown in Theorem 8. We apply Theorem 2 for two pairs (α, β) to obtain the remaining upper
and lower bound.

Case 1: α = 1 and β = (2n(n−1))/((2rmax +1)2). We show that condition (4) is satisfied.
That is, we show that

λ = 1− β
(

1−
(

1 + (µ− uij · lij)
(
n

2

)−1
))

= 1 + β(µ− uij · lij)
(
n

2

)−1
≥ 0

for any µ = µ(λ) that is an eigenvalue of the Johnson graph J(uij + lij , uij). Again, using
Proposition 1 in order to lower bound the quantity (µ− uij · lij), we find

1+β · (µ− uij · lij)
(
n

2

)−1
≥ 1− β4 (uij + lij +1)2

(
n

2

)−1
≥ 1− β4 (2rmax +1)2

(
n

2

)−1
≥ 0,

using the fact that 0 ≤ uij + lij ≤ 2rmax and the choice of β. Hence we find the second part
of the upper bound.

Case 2: α = −1 and β = −(n(n− 1))/2. We have to show that

λ =
(
n

2

)(
1−

(
1 + (µ− uij · lij)

(
n

2

)−1
))
− 1 = uij · lij − µ− 1 ≥ 0

for all µ = µ(k) = (u− k)(`− k)− k where k = 1, . . . , u. Note that the eigenvalue uij · lij
for the case k = 0 yields the largest eigenvalue 1 = λN0 of YN , and does not have to be
considered here. The maximum over k = 1, . . . , u is then attained for k = 1, and we have
uij · lij − µ− 1 ≥ uij · lij − ((uij − 1)(lij − 1)− 1)− 1 = uij + lij − 1 ≥ 0, since uij , lij ≥ 1.
This gives us the lower bound and finishes the proof. J

5 Parallelism in the Curveball chain

In this section we discuss an additional application of the comparison framework in Section
3. As a binary matrix is only adjusted on two rows at the time in the Curveball algorithm,
one might perform multiple binomial trades in parallel on distinct pairs of rows [4]. To be
precise, in every step of the so-called k-Curveball algorithm, we choose a set of k ≤ bm/2c
disjoint pairs of rows uniformly at random and perform a binomial trade on every pair (see
Section 4.2). For k = bm/2c this corresponds to the Global Curveball algorithm described in
[4]. We show that the k-Curveball chain, resulting from the k-Curveball algorithm, is the
heat-bath variant of the Curveball chain. We use the notation as given in Section 3.
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The index set L = L(k) is the collection of all sets containing k pairwise disjoint sets of
two rows, i.e.,{

{(1c, 1d), (2c, 2d), . . . , (kc, kd)} : 1c, 1d, . . . , kc, kd ∈ [m], |{1c, 1d, 2c, 2d, . . . , kc, kd}| = 2k
}

,

and ρ is the uniform distribution over L. For a fixed collection κ ∈ L(k), we define the
κ-neighborhood Nκ(A) of a binary matrix A ∈ Ω as the set of binary matrices B ∈ Ω that
can be obtained from A by binomial trade-operations only involving the row-pairs in κ.
Formally speaking, we have B ∈ Nκ(A) if and only if there exist binary matrices A` for
` = 0, . . . , k − 1, so that

A`+1 ∈ N(`+1)c,(`+1)d(A`)

where A = A0 and B = Ak. Note that the matrices A` might not all be pairwise distinct, as A
and B could already coincide on certain pairs of rows in κ. Also note that uicid(A) = uicid(B)
and licid(A) = licid(B) if B ∈ Nκ(A) for i = 1, . . . , k. It is not hard to see that such
a neighborhood is isomorphic to a Cartesian product W1 ×W2 × · · · ×Wk of finite sets7
W1, . . . ,Wk with

|Wi| =
(
uicid + licid

uicid

)
.

Moreover, the relation ∼κ defined by a ∼κ b if and only if b ∈ Nκ(a) defines an equivalence
relation, and its equivalence classes give the set Rκ. We now consider the following artificial
formulation of the original Curveball chain: we first select k pairs of distinct rows uniformly
at random, and then we choose one of those pairs uniformly at random and apply a binomial
trade on that pair. It should be clear that this generates the same Markov chain as when we
directly select a pair of distinct rows uniformly at random. For Nκ ∈ Rκ the matrix PNκ
restricted to the rows and columns in Nκ is then the transition matrix of a Markov chain
over W1 × · · · ×Wk, where in every step we choose an index i ∈ [k] uniformly at random
and make a transition in Wi based on the (uniform) transition matrix

Qi =
(
uicid + licid

uicid

)−1
J

where J is the all-ones matrix of appropriate size. More formally, the matrix PNκ restricted
to the columns and rows in Nκ is given by∑k

i=1
[
⊗i−1
j=1Ij

]
⊗Qi ⊗

[
⊗kj=i+1Ij

]
k

, (11)

forming a transition matrix on Nκ, and is zero elsewhere. Here Ij is the identity matrix with
the same size as Qj and ⊗ the usual tensor product. The eigenvalues of the matrix in (11)
are given by

λNκ =
{

1
k

k∑
i=1

λji,i : 0 ≤ ji ≤ |Wi| − 1
}

(12)

where 1 = λ0,i ≥ λ1,i ≥ · · · ≥ λ|Wi|−1,i are the eigenvalues8 of Qi for i = 1, . . . , k. It then
follows that

PC =
∑

κ∈L(k)

1
|L(k)|

∑
Nκ∈Rκ

PNκ

7 That is, the elements of Wi describe a matrix on row-pair (ic, id).
8 See, e.g., [16] for a similar argument regarding the transition matrix, and eigenvalues, of a Markov chain
of this form. These statements follow directly from elementary arguments involving tensor products.
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which is of the form (2). For k = 1, we get back the description of the previous section. Now,
its heat-bath variant is precisely the k-Curveball Markov chain

Pk,C =
∑

κ∈L(k)

1
|L(k)|

∑
Nκ∈Rκ

1
|Nκ|

JNκ ,

where

|Nκ| =
k∏
i=1

(
uicid + licid

uicid

)−1

as, roughly speaking, for a fixed neighborhood Nκ, the k-Curveball chain is precisely the
uniform sampler over such a neighborhood.

I Theorem 9. We have (1 − λC∗ )−1/k ≤ (1 − λk,C∗ )−1 ≤ (1 − λC∗ )−1 where λk,C∗ is the
second-largest eigenvalue of the k-Curveball chain, and λC∗ the second-largest eigenvalue of
the original (1-)Curveball chain.

Proof. The upper bound follows from Theorem 2, with α = β = 1, as the eigenvalues of all
the Qi are non-negative, and therefore (12) implies that the eigenvalues of the matrix in (11)
are also non-negative. For the lower bound, we take α = −1 and β = −k. That is, we have
to show that −1 + k(1 − µ) ≥ 0 with µ ∈ λNκ \ {1} as in (12). It is not hard to see that
the second-largest eigenvalue in λNκ is (k − 1)/k, as the eigenvalues of every fixed Qi are
1 = λ0,i > λ1,i = · · · = λ|Wi|−1 = 0. This implies that−1+k(1−µ) ≥ −1+k(1−(k−1)/k) = 0
for all µ ∈ λNκ \ {1}. J

In general, the upper bound is tight for certain (degenerate) cases, that is, parallelism in
the Curveball chain does not necessarily guarantee an improvement in its relaxation time.
E.g., take column marginals ci = 1 for i = 1, . . . , n, and row-marginals r1 = r2 = n/2 and
r3 = r4 = 0, and consider k = 2.

6 Discussion

We believe similar ideas as in this work can be used to prove that the Curveball chain
is rapidly mixing for the sampling of undirected graphs with given degree sequences [4],
whenever one of the switch chains is rapidly mixing for those degree sequences. We leave this
for future work, as the proof we have in mind is a bit more involved, but of a very similar
nature as the ideas described here.

It should be noted that the main conclusion of our work is not that the Curveball algorithm
is necessarily better than the switch-based approaches. In particular, the improvement in
relaxation time in Theorem 3, when the maximum row sum is small compared to n, is mostly
caused by the fact that the KTV-switch chain is a bad choice of implementation here (as the
holding probability of a state in the Markov chain is relatively large in this case). There exist
other implementations of the switch chain that are more efficient than the KTV switch chain
for certain marginals. For example, the so-called edge-switch chain [6, 20]. Here, instead of
choosing two rows and columns uniformly at random, one chooses two one-entries of a binary
matrix uniformly at random (in order to reduce the probability of staying in the same state
of the Markov chain). We give a comparison between these chains in the full version [5]. An
interesting direction for future work is to give a better comparison than that in [5]. Although
we believe the Curveball chain will outperform any switch-based chain for certain marginals,
it not obvious for which marginals this is true. For example, it is not clear to us if this is true

APPROX/RANDOM 2018



36:14 Speeding up Switch Markov Chains

in the case of sampling regular directed graphs with in- and out-degree some small constant.
However, for graphs with large regular degrees we expect the Curveball chain to be better.

Moreover, one step of the Curveball algorithm is computationally more expensive than
one step of a switch-based algorithm, so although the relaxation time of the Curveball
chain might be better than a switch-based chain, this does not automatically imply that
the overall running time of the Curveball algorithm is better than that of a switch-based
algorithm. Nevertheless, we believe that our results are a first theoretical step for speeding
up switch-based Markov chains for sampling bipartite graphs with a given degree sequence.
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A Missing proofs

Theorem 2. Let M = (Ω, P ) be a Markov chain as in (2) with the property that λR0 , . . . ,
λR|R|−1 ≥ 0 for all R ∈ Ra. LetMheat = (Ω, Pheat) be its heat-bath variant as in (3) and let
α and β be constants with αβ > 0. If

α− β(1− λRi ) ≥ 0, (4)

for all R ∈ Ra and i ∈ (1, . . . , |R| − 1), then P only has non-negative eigenvalues and

1
α

1
1− λheat∗

≤ 1
β

1
1− λ∗

, (5)

where λ(heat)
∗ is the second largest eigenvalue of P(heat). In particular, for α = β = 1, we find

(1− λheat∗ )−1 ≤ (1− λ∗)−1.

We will use Propositions 10 and 11 in the proof of Theorem 2. Our proof makes use of
positive semi-definite matrices; a symmetric real-valued matrix A is positive semidefinite if
all its eigenvalues are non-negative, this is denoted by A � 0.

I Proposition 10 ([33]). Let X,Y be symmetric ` × ` matrices. If X − Y � 0, then
λi(X) ≥ λi(Y ) for i = 1, . . . , `, where λi(C) is the i-th largest eigenvalue of C = X,Y .

I Proposition 11. Let X be the k × k transition matrix of an ergodic reversible Markov
chain with stationary distribution π, and eigenvalues 1 = λ0 > λ1 ≥ · · · ≥ λk−1. Let
X∗ = limt→∞Xt be the matrix containing the row vector π on every row. Then the
eigenvalues of α(I −X∗)− β(I −X) are

{0} ∪ {α− β(1− λi)
∣∣ i = 1, . . . , k − 1}.

for given constants α and β.

Proof. Since X is the transition matrix of a reversible Markov chain, it holds that the matrix
V XV −1 is symmetric9, where V = diag(π1/2

1 , π
1/2
2 , . . . , π

1/2
k ) = diag(

√
π). Using the fact

that similar10 matrices have the same set of eigenvalues we determine the eigenvalues of
α(I −X∗)− β(I −X) by finding those of

V (α(I −X∗)− β(I −X))V −1 = α(I −
√
π
T√

π)− β(I − V XV −1).

Let 1 = (1, 1, 1, . . . , 1)T denote the all-ones vector. We find

V XV −1√πT = V X1 = V 1 =
√
π
T
,

so that
√
π
T is an eigenvector of V XV −1 with eigenvalue 1. It then follows that

√
π
T is an

eigenvector of α(I−
√
π
T√

π)−β(I−V XV −1) with eigenvalue 0. Let
√
π
T = w0, w1, . . . , wk−1

be a basis of orthogonal eigenvectors for V XV −1 corresponding to eigenvalues λ1, . . . , λk−1
(note that X and V XV −1 have the same eigenvalues). It then follows that

[α(I −
√
π
T√

π)− β(I − V XV −1)]wi = (α− β(1− λi))wi

because of orthogonality. This completes the proof. J

9 This is the same argument that is used to show that a reversible Markov chain only has real eigenvalues.
10Two square matrices A and B are similar if there exists an invertible matrix T such that A = T −1BT .
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Proof of Theorem 2. We first show that all eigenvalues of P are non-negative. Let D be
the |Ω| × |Ω| diagonal matrix with (D)xx =

√
π(x). Note that the matrices D−1PRD are

positive semi-definite: they are symmetric because PR defines a reversible Markov chain
on R. The eigenvalues of D−1PRD are equal to those of PR, which are all non-negative by
assumption. Any non-negative linear combination of positive semi-definite matrices is again
positive semi-definite, hence D−1PD � 0. Thus P has non-negative eigenvalues. A similar
argument holds for Pheat and was shown in [12]. In particular, this implies that λ∗ = λ1 and
λheat∗ = λheat1 .

Let

YR := D−1[α(IR − 1 · σR)− β(IR − PR)]D

where IR is defined by IR(x, x) = 1 if x ∈ R and zero otherwise. The matrix YR is symmetric
since the matrices 1 · σR and PR define reversible Markov chains on R. Furthermore its
eigenvalues are {0} ∪ {α− β(1− λi)

∣∣ i = 1, . . . , k − 1} by Proposition 11 and the fact that
similar matrices have the same set of eigenvalues. These eigenvalues are non-negative by
assumption, hence YR is positive semi-definite. It then follows that the matrix

D−1[α(I − Pheat)− β(I − P )]D =
∑
a∈L

ρ(a)
∑
R∈Ra

D−1[α(IR − 1 · σR)− β(IR − PR)]D

is also positive semidefinite. Using Proposition 10 and again the fact that similar matrices
have the same set of eigenvalues, it follows that

α(1− λheati ) ≥ β(1− λi)

which finishes the proof. J

B Markov chain comparison using Dirichlet forms

In this appendix we include some notes on the comparison framework for Markov chains
based on Dirichlet forms and show that, for our setting, it is equivalent to a comparison in
terms of positive semidefiniteness. The description is taken from Chapter 13.3 [24].

LetM be an ergodic, reversible Markov chain on state space Ω with transition matrix P
and stationary distribution π. The Dirichlet form for the pair (P, π) is defined by

E(f, h) := 〈(I − P )f, h〉π

for functions f, h ∈ {g
∣∣ g : Ω→ R}, where 〈g1, g2〉π =

∑
x∈Ω g1(x)g2(x)π(x). To illustrate

the usefulness of Dirichlet forms, consider the following result, which appears, e.g., as Lemma
13.22 in [24].

I Lemma 12. Let P and P̃ be reversible transition matrices with stationary distributions π
and π̃, respectively. If Ẽ(f, f) ≤ αE(f, f) for all f ∈ {g

∣∣ g : Ω→ R}, then

1− λ̃1 ≤
[
max
x∈Ω

π(x)
π̃(x)

]
α(1− λ1),

where λ1 and λ̃1 are resp. the second largest eigenvalue of P and P̃ . In particular, if both
stationary distributions are the same, we get 1− λ̃1 ≤ α(1− λ1).

The following proposition relates the Dirichlet form to the use of positive semidefinite
matrices, in case both stationary distributions are the uniform distribution over Ω. We
can then essentially use the above lemma instead of Proposition 10. We choose to give
Proposition 10 as this avoids having to introduce the Dirichlet framework.
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I Proposition 13. Suppose that π and π̃ are both the uniform distribution over Ω. Then
Ẽ(f, f) ≤ αE(f, f) is equivalent to

α(I − P ) � (I − P̃ ).

Proof. If both stationary distributions are the uniform distribution over Ω, then the condition

Ẽ(f, f) ≤ αE(f, f) (13)

is equivalent to

fT (I − P̃ )f ≤ αfT (I − P )f

where the function f is interpreted as a vector. This in turn is equivalent to stating that
α(I − P ) � (I − P̃ ). This follows from the equivalence that A � 0 if and only if xTAx ≥ 0
for all real-valued vectors x. J
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