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Abstract
We give exponential lower bounds on the Price of Stability (PoS) of weighted congestion games
with polynomial cost functions. In particular, for any positive integer d we construct rather
simple games with cost functions of degree at most d which have a PoS of at least Ω(Φd)d+1,
where Φd ∼ d/ ln d is the unique positive root of equation xd+1 = (x + 1)d. This essentially
closes the huge gap between Θ(d) and Φd+1

d and asymptotically matches the Price of Anarchy
upper bound. We further show that the PoS remains exponential even for singleton games. More
generally, we also provide a lower bound of Ω((1 + 1/α)d/d) on the PoS of α-approximate Nash
equilibria, even for singleton games. All our lower bounds extend to network congestion games,
and hold for mixed and correlated equilibria as well.

On the positive side, we give a general upper bound on the PoS of α-approximate Nash
equilibria, which is sensitive to the range W of the player weights and the approximation para-
meter α. We do this by explicitly constructing a novel approximate potential function, based on
Faulhaber’s formula, that generalizes Rosenthal’s potential in a continuous, analytic way. From
the general theorem, we deduce two interesting corollaries. First, we derive the existence of an
approximate pure Nash equilibrium with PoS at most (d+3)/2; the equilibrium’s approximation
parameter ranges from Θ(1) to d+1 in a smooth way with respect to W . Secondly, we show that
for unweighted congestion games, the PoS of α-approximate Nash equilibria is at most (d+ 1)/α.
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Related Version A full version of this paper is available at [26], https://arxiv.org/abs/1802.
09952.

1 Introduction

In the last 20 years, a central strand of research within Algorithmic Game Theory has focused
on understanding and quantifying the inefficiency of equilibria compared to centralized,
optimal solutions. There are two standard concepts that measure this inefficiency. The
Price of Anarchy (PoA) [34] which takes the worst-case perspective, compares the worst-case
equilibrium with the system optimum. It is a very robust measure of performance. On the
other hand, the Price of Stability (PoS) [44, 5], which is also the focus of this work, takes
an optimistic perspective, and uses the best-case equilibrium for this comparison. The PoS
is an appropriate concept to analyse the ideal solution that we would like our protocols to
produce.

The initial set of problems that arose from the Price of Anarchy theory have now been
resolved. The most rich and well-studied among these models are, arguably, the atomic
and non-atomic variants of congestion games (see [38, Ch. 18] for a detailed discussion).
This class of games is very descriptive and captures a large variety of scenarios where users
compete for resources, most prominently routing games. The seminal work of Roughgarden
and Tardos [42, 43] gave the answer for the non-atomic variant, where each player controls
a negligible amount of traffic. Awerbuch et al. [6], Christodoulou and Koutsoupias [17]
resolved the Price of Anarchy for atomic congestion games with affine latencies, generalized
by Aland et al. [3] to polynomials; this led to the development of Roughgarden’s Smoothness
Framework [41] which extended the bounds to general cost functions, but also distilled and
formulated previous ideas to bound the Price of Anarchy in an elegant, unified framework.
At the computational complexity front, we know that even for simple congestion games,
finding a (pure) Nash equilibrium is a PLS-complete problem [21, 2].

Allowing the players to have different loads, gives rise to the class of weighted congestion
games [40]; this is a natural and very important generalization of congestion games, with
numerous applications in routing and scheduling. Unfortunately though, an immediate
dichotomy between weighted and unweighted congestion games occurs: the former may not
even have pure Nash equilibria [36, 25, 27, 30]; as a matter of fact, it is a strongly NP-hard
problem to even determine if that’s the case [20]. Moreover, in such games there does not, in
general, exist a potential function [37, 31], which is the main tool for proving equilibrium
existence in the unweighted case.

As a result, a sharp contrast with respect to our understanding of the two aforementioned
inefficiency notions arises. The Price of Anarchy has been studied in depth and general
techniques for providing tight bounds are known. Moreover, the asymptotic behaviour of
weighted and unweighted congestion games with respect to the Price of Anarchy is identical;
it is Θ(d/ log d)d for both classes when latencies are polynomials of degree at most d [3].

The situation for the Price of Stability though, is completely different. For unweighted
games we have a good understanding3 and the values are much lower than the Price of

3 Much work has been done on the PoS for network design games, which is though not so closely related
to our work. This problem was first studied by Anshelevich et al. [5] who showed a tight bound of
Hn, the harmonic number of the number of players n, for directed networks. Finding tight bounds on
undirected networks is still a long-standing open problem (see, e.g., [23, 9, 35]). Recently, Bilò et al.
[10] (asymptotically) resolved the question for broadcast networks. For the weighted variant of this
problem, Albers [4] showed a lower bound of Ω(logW/ log logW ), where W is the sum of the players’

https://arxiv.org/abs/1802.09952
https://arxiv.org/abs/1802.09952
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Table 1 Previous results (left table) regarding the Price of Anarchy and Stability for unweighted
and weighted congestion games, with polynomial latency functions of maximum degree d. Φd is the
unique positive solution of (x+ 1)d = xd+1 and Φd = Θ(d/ log d). Tight answers were known for
all settings, except for the Price of Stability of the weighted case were only trivial bounds existed.
In this paper (right table) we essentially close this gap by showing a lower bound of Ω(Φd)d+1

(Theorem 1), even for network games, which is exponential even for singleton games Theorem 5.

PoA PoS

unweighted bΦdcd+1 [3] Θ(d) [15]

weighted Φd+1
d [3] [Θ(d),Φd+1

d ]

PoS lower bound

general Ω(Φd)d+1

singleton Ω(2d/d)
α-approximate

equilibria Ω((1 + 1/α)d/d)

Anarchy values, and also tight; approximately 1.577 for affine functions [16, 14], and Θ(d) [15]
for polynomials. For weighted games though there is a huge gap; the current state of the
art lower bound is Θ(d) and the upper bound is Θ(d/ ln d)d. These previous results are
summarized at the left of Table 1.

The main focus of this work is precisely to deal with this lack of understanding, and to
determine the Price of Stability of weighted congestion games. What makes this problem
challenging is that the only general known technique for showing upper bounds for the
Price of Stability is the potential method, which is applicable only to potential games. In
a nutshell, the idea of this method is to use the global minimizer of Rosenthal’s potential
[39] as an equilibrium refinement. This equilibrium is also a pure Nash equilibrium and
can serve as an upper bound of the Price of Stability. Interestingly, it turns out that, for
several classes of potential games, this technique actually provides the tight answer (see
for example [5, 16, 14, 15]). However, as already mentioned above, unlike their unweighted
counterparts, weighted congestion games are not potential games;4 so, a completely fresh
approach is required.

One way to override the aforementioned limitations of non-existence of pure Nash
equilibria, but also their computational hardness, is to consider approximate equilibria.
In this direction, Hansknecht et al. [29] have shown that (d + 1)-approximate pure Nash
equilibria always exist in weighted congestion games with polynomial latencies of maximum
degree d, while, in the negative side, there exist games that do not have 1.153-approximate
pure Nash equilibria. Notice here, that these results do not take into account computational
complexity considerations; if we insist in polynomial-time algorithms for actually finding
those equilibria, then the currently best approximation parameter becomes dO(d) [12, 13, 22].

1.1 Our Results

We provide lower and upper bounds on the Price of Stability for the class of weighted
congestion games with polynomial latencies with nonnegative coefficients. We consider both
exact and approximate equilibria. Our lower bounds are summarized at the right of Table 1.

weights. See [10] and references therein for a thorough discussion of those results.
4 For the special case of weighted congestion games with linear latency functions, a potential does exist [25]

and this was used by [8] to provide a PoS upper bound of 2.
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Lower Bound for Weighted Congestion Games. In our main result in Theorem 1, we
resolve a long-standing open problem by providing almost tight bounds for the Price of
Stability of weighted congestion games with polynomial latency functions. We construct
an instance having a Price of Stability of Ω(Φd)d+1, where d is the maximum degree of the
latencies and Φd ∼ d

ln d is the unique positive solution of equation (x+ 1)d = xd+1.
This bound essentially closes the previously huge gap between Θ(d) and Φd+1

d for the
PoS of weighted congestion games. The previously best lower and upper bounds were rather
trivial: the lower bound corresponds to the PoS results of Christodoulou and Gairing [15] for
the unweighted case (and thus, it is also a valid lower bound for the general weighted case as
well) and the upper bound comes from the Price of Anarchy results of Aland et al. [3] (PoA,
by definition, upper-bounds PoS).

We stress that, although as mentioned before, weighted congestion games do not always
possess pure equilibria, our lower bound construction involves a unique equilibrium occurring
by iteratively eliminating strongly dominated strategies. As a result, this lower bound holds
not only for pure, but mixed and correlated equilibria as well.

Singleton Games. Next we switch to the class of singleton congestion games, where a pure
strategy for each player is a single resource. This class is very well-studied as, on one hand,
it abstracts scheduling environments, and on the other, it has very attractive equilibrium
properties; unlike general weighted congestion games, there exists an (ordinal) lexicographic
potential [24, 32], thus implying the existence of pure Nash equilibria. It is important to
note that, the tight lower bounds for the Price of Anarchy of general weighted congestion
games, hold also for the class of singleton games [14, 7, 11].

Nevertheless, even for this special class, we show in Theorem 5 an exponential lower
bound of Ω(2d/d). The previous best upper and lower bounds were the same as those of
the general case, namely Θ(d) and Φd+1

d , respectively. As a matter of fact, this new lower
bound comes as a corollary of a more general result that we show in Theorem 5, that extends
to approximate equilibria and gives a lower bound of Ω((1 + 1/α)d/d) on the PoS of α-
approximate equilibria, for any (multiplicative) approximation parameter α ∈ [1, d). Setting
α = 1 we recover the special case of exact equilibria and the aforementioned exponential
lower bound on the standard, exact notion of the PoS. Notice here that, as we show in [26,
Appendix D], the optimal solution (which, in general, is not an equilibrium) itself constitutes
a (d+ 1)-approximate equilibrium with a (trivially) optimal PoS of 1.

Positive Results for Approximate Equilibria. In light of the above results, in Section 4,
we turn our attention to identifying environments with more structure or flexibility with
respect to the underlying solution concept, for which we can hope for improved quality of
equilibria. Both our lower bound constructions discussed above use players’ weights that
form a geometric sequence. In particular the ratio W of the largest over the smallest weight
is equal to wn (for some w > 1), which grows very large as the number of players n→∞.
On the other hand, for games where the players have equal weights, i.e. W = 1, we know
that the PoS is at most d+ 1. It is therefore natural to ask how the performance of the good
equilibria captured by the notion of PoS varies with respect to W . In Theorem 9, we are
able to give a general upper bound for α-approximate equilibria which is sensitive to this
parameter W and to α. This general theorem has two immediate, interesting corollaries.

Firstly (Corollary 10), by allowing the ratio W to range in [1,∞), we derive the existence
of an α-approximate pure Nash equilibrium with PoS at most (d+ 3)/2; the equilibrium’s
approximation parameter α ranges from Θ(1) to d+ 1 in a smooth way with respect to W .
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This is of particular importance in settings where player weights are not very far away from
each other (that is, W is small). Secondly (Corollary 11), by setting W = 1 and allowing α
to range, we get an upper bound of d+1

α for the α-approximate PoS of unweighted congestion
games which, to the best of our knowledge, was not known before, degrading gracefully from
d+ 1 (which is the actual PoS of exact equilibria in the unweighted case [15]) down to the
optimal value of 1 if we allow (d+ 1)-approximate equilibria (which in fact can be achieved
by the optimum solution itself; see [26, Appendix D]).

Our Techniques. An advantage of our main lower bound (Theorem 1) is the simplicity of
the underlying construction, as well as its straightforward adaptation to network games (see
Section 3.1.1)). However, fine-tuning the parameters of the game (player weights and latency
functions), to ensure uniqueness of the equilibrium at the “bad” instance, was a technically
involved task. This was in part due to the fact that, in order to guarantee uniqueness (via
iteratively dominant strategies), each player interacts with a window of µ other players. This
µ depends on d in a delicate way (see [26, Fig. 1] and Lemma 2); it has to be an integer but,
at the same time, needs also to balance nicely with the algebraic properties of Φd. Moreover
we needed to provide deeper insights on the asymptotic, analytic behaviour of Φd, and to
explore some new algebraic characteristics of Φd (see, e.g., [26, Lemma 7]).

In order to derive our upper bounds, we need to define a novel approximate potential
function [18, 29]. First, in Lemma 6, we identify clear algebraic sufficient conditions for the
existence of approximate equilibria with good social-cost guarantees, and then explicitly define
(see the (8) and the proof of Theorem 9 in [26]) a function that satisfies them. This continuous
function, which is defined in the entire space of positive reals, essentially generalizes that of
Rosenthal’s in a smooth way: by setting W = α = 1, we recover exactly the first significant
terms of the well known Rosenthal potential [39] polynomial, with which one can demonstrate
the usual PoS results for the unweighted case (see, e.g. [16]). The simple, analytic way in
which this function is defined, is the very reason why we can handle both the approximation
parameter α of the equilibrium and the ratio W of the weights in a smooth manner while at
the same time providing good PoS guarantees.

It is important to stress that, by the purely analytical way in which our approximate
potential function is defined, in principle it can also incorporate more general cost functions
than polynomials; so, we believe that this technique may be of independent interest. We
point towards that direction in [26, Appendix C].

Due to space limitations, all omitted proofs and various supplementary figures can be
found in the full version of our paper [26].

2 Model and Notation

Weighted Congestion Games. A weighted congestion game consists of a finite, nonempty
set of players N and resources (or facilities) E. Each player i ∈ N has a real weight wi 0 and
a strategy set Si ⊆ 2E . Associated with each resource e ∈ E is a cost (or latency) function
ce : (0,∞) −→ [0,∞). In this paper we mainly focus on polynomial cost functions with
maximum degree d ≥ 0 and nonnegative coefficients; that is, every cost function is of the
form ce(x) =

∑d
j=0 ae,j · xj , with ae,j ≥ 0 for all j. In the following, whenever we refer to

polynomial cost functions we mean cost functions of this particular form.
A pure strategy profile is a choice of strategies s = (s1, s2, ...sn) ∈ S = S1 × · · · × Sn by

the players. We use the standard game-theoretic notation s−i = (s1, . . . , si−1, si+1, . . . sn),
S−i = S1×· · ·×Si−1×Si+1×· · ·×Sn, such that s = (si, s−i). Given a pure strategy profile

ICALP 2018
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s, we define the load xe(s) of resource e ∈ E as the total weight of players that use resource
e on s, i.e., xe(s) =

∑
i∈N :e∈si

wi. The cost player i is defined by Ci(s) =
∑
e∈si

ce(xe(s)).
A singleton weighted congestion game is a special form of congestion games where the

strategies of all players consist only of single resources; that is, for all players i ∈ N , |si| = 1
for all si ∈ Si. In a weighted network congestion games the resources E are given as the
edge set of some directed graph G = (V,E), and each player i ∈ N has a source oi ∈ V and
destination ti ∈ V node; then, the strategy set Si of each player is implicitly given as the
edge sets of all directed oi → ti paths in G.

Nash Equilibria. A pure strategy profile s is a pure Nash equilibrium if and only if for every
player i ∈ N and for all s′i ∈ Si, we have Ci(s) ≤ Ci(s′i, s−i). Similarly a strategy profile is
an α-approximate pure Nash equilibrium, for α ≥ 1, if Ci(s) ≤ α · Ci(s′i, s−i) for all players
i ∈ N and s′i ∈ Si. As discussed in the introduction, weighted congestion games do not
always admit pure Nash equilibria. However, by Nash’s theorem they have mixed Nash
equilibria. A tuple σ = (σ1, · · · , σN ) of independent probability distributions over players’
strategy sets is a mixed Nash equilibrium if

E
s∼σ

[Ci(s)] ≤ E
s−i∼σ−i

[Ci(s′i, s−i)]

holds for every i ∈ N and s′i ∈ Si. Here σ−i is a product distribution of all σj ’s with j 6= i,
and s−i denotes a strategy profile drawn from this distribution. We use NE(G) to denote
the set of all mixed Nash equilibria of a game G.

Social Cost and Price of Stability. Fix a weighted congestion game G. The social cost of
a pure strategy profile s is the weighted sum of the players’ costs

C(s) =
∑
i∈N

wi · Ci(s) =
∑
e∈E

xe(s) · ce(xe(s)).

Denote by OPT(G) = mins∈S C(s) the optimum social cost over all strategy profiles s ∈ S.
Then, the Price of Stability (PoS) of G is the social cost of the best-case Nash equilibrium
over the optimum social cost:

PoS(G) = min
σ∈NE(G)

Es∼σ[C(s)]
OPT(G) .

The Price of Stability of α-approximate Nash equilibria is defined accordingly. The PoS
for a class G of games is the worst (i.e., largest) PoS among all games in the class, that is,
PoS(G) = supG∈G PoS(G). For example, our focus in this paper is determining the Price of
Stability for the class G of weighted congestion games with polynomial cost functions.

Finally, notice that, by using a straightforward scaling argument, it is without loss with
respect to the PoS metric to analyse games with player weights in [1,∞); if not, divide all
wi’s with mini wi and scale cost functions accordingly.

3 Lower Bounds

In this section, we present our lower bound constructions. In Section 3.1 we present the
general lower bound and then in Section 3.2 the lower bound for singleton games.
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3.1 General Congestion Games
The next theorem presents our main negative result on the Price of Stability of weighted
congestion games with polynomial latencies of degree d, that essentially matches the Price of
Anarchy upper bound of Φd+1

d from Aland et al. [3]. Our result, shows a strong separation
of the Price of Stability of weighted and unweighted congestion games, where the Price of
Stability is at most d+ 1 [15]. This is in sharp contrast to the Price of Anarchy of these two
classes, where the respective bounds are essentially the same.

We will need to introduce some notation. Let Φd = Θ
(
d

ln d
)
be the unique positive root

of the equation (x + 1)d = xd+1 and let βd be a parameter such that βd ≥ 0.38 for any d,
limd→∞ βd = 1

2 . A plot of its values can be seen in [26, Fig. 1].

I Theorem 1. The Price of Stability of weighted congestion games with polynomial latency
functions of degree at most d ≥ 9 is at least (βdΦd)d+1.

I Lemma 2. For any positive integer d define

cd = 1
d

⌊
d

ln(Φ1+2/d
d − Φd)− ln(Φ1+2/d

d − Φd − 1)
ln Φd

⌋
and βd = 1− Φ−cd

d , (1)

Then Φd+2
d ≤

(
Φd + 1

βd

)d
; furthermore, for all d ≥ 9 we have: d · cd ≥ 3, 0.38 ≤ βd ≤ 1

2 and
limd→∞ βd = 1

2 .

Proof of Theorem 1. We now move on to the description of our congestion game instance.
Fix some integer5 d ≥ 9. Our instance consists of n + µ players and n + µ + 1 facilities,
where µ ≡ c · d for some real c ≥ 3

d (to be specifically determined later on, see (1)) such that
µ ≥ 3 is an integer. You can think of n as a very large integer, since at the end we will take
n→∞. Every player i = 1, 2, . . . , n+ µ has a weight of wi = wi, where w = 1 + 1

Φd
.

It will be useful for subsequent computations to notice that wd =
(

1 + 1
Φd

)d
= (Φd+1)d

Φd
d

=
Φd+1

d

Φd
d

= Φd and wd+1 = wd · w = Φd
(

1 + 1
Φd

)
= Φd + 1. Let also define

α = α(µ) ≡
µ∑
j=1

w−j = 1− w−µ

w − 1 = 1− (wd)−c

w − 1 =
1− Φ−cd

1 + 1
Φd
− 1

= Φd
(
1− Φ−cd

)
= βdΦd,

where βd ≡ 1− Φ−cd ∈ (0, 1). Observe that

w−µ = 1− βdΦd(w − 1) = 1− βdΦd
(

1 + 1
Φd
− 1
)

= 1− βd

and furthermore, for every i ≥ µ + 1,
∑i−1
j=i−µ wj =

∑µ
j=1 w

i−j = α · wi,
∑i
j=i−µ wj =

(α+ 1) · wi and
∑∞
`=1 w

−` = 1
w−1 = 1

1+ 1
Φd
−1 = Φd.

The facilities have latency functions

cj(t) = (α+ 1)d, if j = 1, . . . , µ,

cj(t) = w−j(d+1)td, if j = µ+ 1, . . . , µ+ n,

cn+µ+1(t) = 0,

where for simplicity we use j instead ej to refer to the j-th facility.

5 For polynomial latencies of smaller degrees d ≤ 8 we can instead apply the simpler lower-bound instance
for singleton games given in Section 3.2.

ICALP 2018
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Every player i has two available strategies, s∗i and s̃i. Eventually we will show that
the profile s∗ corresponds to the optimal solution, while s̃ corresponds to the unique Nash
equilibrium of the game. Informally, at the former the player chooses to stay at her “own”
i-th facility, while at the latter she chooses to deviate and play the µ following facilities
i+ 1, . . . , i+ µ. However, special care shall be taken for the boundary cases of the first µ
and last µ players, so for any player i we formally define Si = {s∗i , s̃i} where s∗i = {i} and

s̃i =


{µ+ 1, . . . , µ+ i}, if i = 1, . . . , µ,
{i+ 1, . . . , i+ µ}, if i = µ+ 1, . . . , n,
{i+ 1, . . . , n+ µ+ 1}, if i = n+ 1, . . . , n+ µ.

These two outcomes, s∗ and s̃, are shown in [26, Fig. 2].
Notice here that any facility j cannot get a load greater than the sum of the weights of

the previous µ players plus the weight of the j-th player. So, for and any strategy profile s:

xj(s) ≤
j∑

`=j−µ
w` = (α+ 1)wj for all j ≥ µ+ 1 (2)

Next we will show that the strategy profile s̃ = (s̃1, . . . , s̃n+µ) is the unique Nash
equilibrium of our congestion game. We do that by proving that

1. It is a strongly dominant strategy for any player i = 1, . . . , µ to play s̃i.
2. For any i = µ+ 1, . . . , n+ µ, given that every player k < i has chosen to play s̃k, then it

is a strongly dominant strategy for player i to deviate to s̃i as well.

For the first condition, fix some player i ≤ µ and a strategy profile s−i for the other
players and observe that by choosing s̃i, player i incurs a cost of at most

Ci(s̃i, s−i) =
∑
j∈s̃i

cj(xj(s̃i)) ≤
µ+i∑

`=µ+1
c`
(
(α+ 1)w`

)
=

d+i∑
`=d+1

w−`(d+1)(α+ 1)dw`d = (α+ 1)d
d+i∑

`=d+1
w−`

< (α+ 1)dw−d
∞∑
`=1

w−` = (α+ 1)d 1
Φd

Φd = (α+ 1)d = Ci(s∗i , s−i),

where in the first inequality we used the bound from (2).
For the second condition, we will consider the deviations of the remaining players.6 Fix

now some i = µ+ 1, . . . , n and assume a strategy profile s−i = (s̃1, . . . , s̃i−1, si+1, . . . , sn+µ)
for the remaining players. If player i chooses strategy s∗i she will experience a cost of

Ci(s∗i , s−i) = ci

 i∑
`=i−µ

w`

 = ci
(
(α+ 1)wi

)
= w−i(d+1)(α+ 1)dwid = (α+ 1)dw−i.

It remains to show that

Ci(s̃i, s−i) < Ci(s∗i , s−i) = (α+ 1)dw−i. (3)

6 For the remaining last µ players i = n+ 1, . . . , n+ µ the proof is similar to the text, and as a matter of
fact easier, since when these players deviate to s̃i they also use the final “dummy” facility n+ µ+ 1
that has zero cost.
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The cost Ci(s̃i, s−i) is complicated to bound immediately, for any profile s−i. Instead,
we will resort to the following claim which characterizes the profile s−i where this cost is
maximized. 7

I Claim 3. There exists a profile s′ with
1. s′j = sj for all j ≤ i and i > i+ µ

2. s′i+µ = s∗i+µ
3. there exists some k ∈ {i+ 1, . . . , i+ µ− 1} such that

s′j = s̃j for all j ∈ {i+ 1, . . . , i+ µ− 1} \ {k},

that dominates s, i.e. Ci(s̃i, s−i) ≤ Ci(s̃i, s′−i).

By use of Claim 3, it remains to show

Ci(s̃i, s′−i) < (α+ 1)dw−i, (4)

just for the special case of profiles s′ that are described in Claim 3. We do this in [26,
Appendix A.4].

Summarizing, we proved that indeed s̃ is the unique Nash equilibrium of our congestion
game. Finally, to conclude with lower-bounding the Price of Stability, let us compute the
social cost on profiles s̃ and s∗. On s∗, any facility j (except the last one) gets a load equal
to the weight of player j, so

C(s∗) =
n+µ∑
j=1

wjcj(wj)

=
µ∑
j=1

wj(α+ 1)d +
n+µ∑
j=µ+1

wjw−j(d+1)(wj)d

= (α+ 1)d
µ∑
j=1

wj +
µ+n∑
j=µ+1

1

= (α+ 1)dww
µ − 1
w − 1 + n

= n+ (βΦd + 1)d
(

1 + 1
Φd

) 1
1−β − 1

1 + 1
Φd
− 1

= n+ (βΦd + 1)d(Φd + 1) β

1− β

≤ n+ β

1− β (Φd + 1)d+1.

On the other hand, at the unique Nash equilibrium s̃ each facility j ≥ µ+ 1 receives a load
equal to the sum of the weights of the previous µ players, i.e.

xj(s̃) =
j−1∑
`=j−µ

w` = αwj

7 For an explanatory figure and a proof of this claim, see the full version of our paper [26, Fig. 3].

ICALP 2018



150:10 The Price of Stability of Weighted Congestion Games

so

C(s̃) ≥
n+µ∑
j=µ+1

xj(s̃)cj(xj(s̃)) =
n+µ∑
j=µ+1

w−j(d+1) (αwj)d+1 = αd+1
µ+n∑
j=µ+1

1 = αd+1n.

By taking n arbitrarily large we get a lower bound on the Price of Stability of

lim
n→∞

C(s̃)
C(s∗) ≥ lim

n→∞

αd+1n

n+ β
1−β (Φd + 1)d+1

= αd+1 = (βΦd)d+1,

where from Lemma 2 we know that 1
3 ≤ β = 1

2 − o(1). J

3.1.1 Network Games
Due to the rather simple structure of the players’ strategy sets in the lower bound construction
of Theorem 1, it can be readily extended to network games as well:

I Proposition 4. Theorem 1 applies also to network weighted congestion games.

3.2 Singleton Games
In this section we give an exponential lower bound for singleton weighted congestion games
with polynomial latency functions. The following theorem handles also approximate equilibria
and provides a lower bound on the Price of Stability in a very strong sense; even if one allows
for the best approximate equilibrium with approximation factor α = o

(
d

ln d
)
, then its cost is

lower-bounded by ω(d) times the optimal cost.8 In other words, in order to achieve linear
guarantees on the Price of Stability, one has to consider Ω

(
d

ln d
)
-approximate equilibria—

almost linear in d; this shows that our positive result in Corollary 10, of the following
Section 4.3, is essentially tight. This is furthermore complemented by [26, Appendix D],
where we show that the socially optimum profile is a (d + 1)-approximate equilibrium
(achieving an optimal Price of Stability of 1).

I Theorem 5. For any positive integer d and any real α ∈ [1, d), the α-approximate (mixed)
Price of Stability of weighted (singleton) congestion games with polynomial latencies of degree
at most d is at least 1

e(d+1)
(
1 + 1

α

)d+1. In particular, for the special case of α = 1, we derive
that the Price of Stability of exact equilibria is Ω(2d/d) = (2− o(1))d+1.

4 Upper Bounds

The negative results of the previous sections, involve constructions where the ratio W of the
largest to smallest weight can be exponential in d. In the main theorem (Theorem 9) of this
section we present an analysis which is sensitive to this parameter W , and identify conditions
under which the performance of approximate equilibria can be significantly improved.

Our upper bound approach is based on the design of a suitable approximate potential
function and has three main steps. First, in Section 4.1, we set up a framework for the
definition of this function by identifying conditions that, on the one hand, certify the existence
of an approximate equilibrium and, on the other, provide guarantees about its efficiency.

8 To see this, just take any upper bound of d+1
c ln(d+1) on α, for a constant c > 2. Then, the lower bound in

Theorem 5 becomes Ω(dc−1).
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Then, in Section 4.2, by use of the Euler-Maclaurin summation formula we present a general
form of an approximate potential function, which extends Rosenthal’s potential for weighted
congestion games (see also [26, Appendix C]). Finally, in Section 4.3, we deploy this potential
for polynomial latencies. Due to its analytic description, our potential differs from other
extensions of the Rosenthal’s potential that have appeared in previous work, and we believe
that this contribution might be of independent interest, and applied to other classes of
latency functions.

4.1 The Potential Method
In the next lemma we lay the ground for the design and analysis of approximate potential
functions, by supplying conditions that not only provide guarantees for the existence of
approximate equilibria, but also for their performance with respect to the social optimum. In
the premises of the lemma, we give conditions on the resource functions φe, having in mind
that Φ(s) =

∑
e∈E φe(xe(s)) will eventually serve as the “approximate” potential function.

I Lemma 6. Consider a weighted congestion game with latency functions ce, for each
facility e ∈ E, and player weights wi, for each player i ∈ N . If there exist functions
φe : [0,∞) −→ R and parameters α1, α2, β1, β2 > 0 such that for any facility e and player
weight w ∈ {w1, . . . , wn}

α1 ≤
φe(x+ w)− φe(x)
w · ce(x+ w) ≤ α2, for all x ≥ 0, (5)

and

β1 ≤
φe(x)
x · ce(x) ≤ β2, for all x ≥ min

n
wn, (6)

then our game has an α2
α1

-approximate pure Nash equilibrium which, furthermore, has Price
of Stability at most β2

β1
.

4.2 Faulhaber’s Potential
In this section we propose an approximate potential function, which is based on the following
classic number-theoretic result, known as Faulhaber’s formula9, which states that for any
positive integers n,m,

n∑
k=1

km = 1
m+ 1

m∑
j=0

(−1)j
(
m+ 1
j

)
Bjn

m+1−j

= 1
m+ 1n

m+1 + 1
2n

m + 1
m+ 1

m∑
j=2

(
m+ 1
j

)
Bjn

m+1−j , (7)

where the coefficients Bj are the usual Bernoulli numbers.10 In particular, this shows that
the sum of the first n powers of m can be expressed as a polynomial of n with degree
m+ 1. Furthermore, this sum corresponds to the well-known potential of Rosenthal [39] for
unweighted congestion games when the latency function is the monomial x 7→ xm.

9 See, e.g., [33, p. 287] or [19, p. 106]).
10 See, e.g., [28, Chapter 6.5] or [1, Chapter 23]. The first Bernoulli numbers are: B0 = 1, B1 = −1/2, B2 =

1/6, B3 = 0, B4 = −1/30, . . . . Also, we know that Bj = 0 for all odd integers j ≥ 3.
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Based on the above observation, we go beyond just integer values of n, and generalize this
idea to all positive reals; in that way, we design a “potential” function that can handle different
player weights and, furthermore, incorporate in a more powerful, analytically smooth way,
approximation factors with respect to both the Price of Stability, as well as the approximation
parameter of the equilibrium (in the spirit of Lemma 6). A natural way to do that is to
directly generalize (7) and simply define, for any real x ≥ 0 and positive integer m,

Sm(x) ≡ 1
m+ 1x

m+1 + 1
2x

m, (8)

keeping just the first two significant terms.11 For the special case of m = 0 we set S0(y) = y.
For any nonnegative integer m we define the function Am : [1,∞) −→ (0,∞) with

Am(x) ≡
[
Sm(x)
xm+1

]−1
=
(

1
m+ 1 + 1

2x

)−1
= 2(m+ 1)x

2x+m+ 1 . (9)

Observe that Am is strictly increasing (in x) for all m ≥ 1,

Am(1) = 2(m+ 1)
m+ 3 ∈ [1, 2), and lim

x→∞
Am(x) = m+ 1. (10)

For the special case of m = 0 we simply have A0(x) = 1 for all x ≥ 0. A graph of these
functions can be found in [26, Fig. 6]. Since Am is strictly increasing for m ≥ 1, its inverse
function, A−1

m : [2m+1
m+3 ,m+ 1] −→ [1,∞), is well-defined and also strictly increasing for all

m ≥ 1.
The following two lemmas describe some useful properties regarding the algebraic beha-

viour, and the relation among, functions Am and Sm:

I Lemma 7. Fix any reals y ≥ x ≥ 1. Then the sequences Am(x)
m+1 and Am(x)

Am(y) are decreasing,
and sequence Am(x) is increasing (with respect to m).

I Lemma 8. Fix any integer m ≥ 0 and reals γ,w ≥ 1. Then

γm+1

Am(γw) ≤
Sm(γ(x+ w))− Sm(γx)

w(x+ w)m ≤ γm+1, for all x ≥ 0, (11)

and

γm+1

m+ 1 ≤
Sm(γx)
xm+1 ≤ γm+1

Am(γ) , for all x ≥ 1. (12)

4.3 The Upper Bound
Now we are ready to state our main positive result:

I Theorem 9. At any congestion game with polynomial latency functions of degree at most
d ≥ 1 and player weights ranging in [1,W ], for any 2(d+1)W

2W+d+1 ≤ α ≤ d + 1 there exists an
α-approximate pure Nash equilibrium that, furthermore, has Price of Stability at most

1 +
(
d+ 1
α
− 1
)
W.

11 See [26, Sec. 4.4] for further discussion on this choice.
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Observe that, as the approximation parameter α increases, the Price of Stability decreases,
in a smooth way, from d+3

2 down to the optimal value of 1. Furthermore, notice how the
interval within which α ranges, shrinks as the range of player weights W grows; in particular,
its left boundary 2(d+1)W

2W+d+1 goes from 2d+1
d+3 (for W = 1) up to d+ 1 (for W →∞).

As a result, Theorem 9 has two interesting corollaries, one for α = 2(d+1)W
2W+d+1 and one for

W = 1 (unweighted games):

I Corollary 10. At any congestion game with polynomial latencies of degree at most d ≥ 1
where player weights lie within the range [1,W ], there is an 2(d+1)W

2W+d+1 -approximate pure Nash
equilibrium with Price of Stability at most d+3

2 .

It is interesting to point out here that, in light of Theorem 5, the above result of Corollary 10
is essentially asymptotically tight as far as the Price of Stability is concerned (see the
discussion preceding Theorem 5).

I Corollary 11. At any unweighted congestion game with polynomial latencies of degree
at most d ≥ 1, the Price of Stability of α-approximate equilibria is at most d+1

α , for any
2d+1
d+3 ≤ α ≤ d+ 1.
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