
Edit Distance between Unrooted Trees in Cubic
Time
Bartłomiej Dudek
Institute of Computer Science, University of Wrocław, Poland
bartlomiej.dudek@cs.uni.wroc.pl

Paweł Gawrychowski
Institute of Computer Science, University of Wrocław, Poland
gawry@cs.uni.wroc.pl

Abstract
Edit distance between trees is a natural generalization of the classical edit distance between
strings, in which the allowed elementary operations are contraction, uncontraction and relabeling
of an edge. Demaine et al. [ACM Trans. on Algorithms, 6(1), 2009] showed how to compute
the edit distance between rooted trees on n nodes in O(n3) time. However, generalizing their
method to unrooted trees seems quite problematic, and the most efficient known solution remains
to be the previous O(n3 logn) time algorithm by Klein [ESA 1998]. Given the lack of progress
on improving this complexity, it might appear that unrooted trees are simply more difficult than
rooted trees. We show that this is, in fact, not the case, and edit distance between unrooted trees
on n nodes can be computed in O(n3) time. A significantly faster solution is unlikely to exist,
as Bringmann et al. [SODA 2018] proved that the complexity of computing the edit distance
between rooted trees cannot be decreased to O(n3−ε) unless some popular conjecture fails, and
the lower bound easily extends to unrooted trees. We also show that for two unrooted trees of
size m and n, where m ≤ n, our algorithm can be modified to run in O(nm2(1 + log n

m)). This,
again, matches the complexity achieved by Demaine et al. for rooted trees, who also showed that
this is optimal if we restrict ourselves to the so-called decomposition algorithms.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases tree edit distance, dynamic programming, heavy light decomposition

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.45

Related Version A full version of the paper is available at [14], https://arxiv.org/abs/1804.
10186.

1 Introduction

Computing the edit distance between two strings [30] is the most well-known example of
dynamic programming. Thanks to the new fine-grained complexity paradigm, we know that
this simple approach is essentially the best possible [1, 5], so the problem appears to be
solved from the theoretical perspective. However, in many real-life applications we would
like to operate on more complicated structures than strings. As a prime example, while
primary structure of RNA can be seen as a string, computational biology is often interested
in comparing also secondary structures. Second structure of RNA can be modeled as an
ordered tree [17, 26], so we would like to generalize computing the edit distance between
strings to computing the edit distance between ordered trees.

Tai [29] defined the edit distance between two ordered trees as the minimum total cost of
a sequence of elementary operations that transform one tree into the other. For unrooted

EA
T

C
S

© Bartłomiej Dudek and Paweł Gawrychowski;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 45; pp. 45:1–45:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bartlomiej.dudek@cs.uni.wroc.pl
mailto:gawry@cs.uni.wroc.pl
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.45
https://arxiv.org/abs/1804.10186
https://arxiv.org/abs/1804.10186
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2 Edit Distance between Unrooted Trees in Cubic Time

a

de

b

contract edge x

uncontract edge xc

a

b

de

c

x

Figure 1 Contraction and uncontraction of the edge with label x costs cdel(x) = cins(x).

trees, which are the focus of this paper, the trees are edge-labeled, and we have three
elementary operations: contraction, uncontraction and relabeling of an edge. We think
that the trees are embedded in the plane, i.e., there is a cyclic order on the neighbors
of every node that is preserved by the contraction/uncontraction. See Figure 1. The
cost of an operation depends on the label(s) of the edge(s): cdel(τ), cins(τ), cmatch(τ1, τ2),
respectively. We assume that every operation has the same cost as its reverse counterpart:
cdel(τ) = cins(τ), cmatch(τ1, τ2) = cmatch(τ2, τ1), and each edge participates in at most one
elementary operation.

Computing the edit distance between trees is used as a measure of similarity in mul-
tiple contexts. The most obvious, given that some biological structures resemble trees, is
computational biology [26]. Others include comparing XML data [10,11,16], programming
languages [18]. Others, less obvious, include computer vision [6, 20, 22, 25], character re-
cognition [24], automatic grading [3], and answer extraction [31]. See also the survey by
Bille [7].

Tai [29] introduced the edit distance between rooted node-labeled trees on n nodes and
designed an O(n6) algorithm. Zhang and Shasha [27] improved the time complexity to O(n4)
by designing a recursive formula, which reduces computing the edit distance between two
trees to computing the edit distance between two smaller trees. Then, Klein [21] considered
the more general problem of computing the edit distance between unrooted edge-labeled trees
and further improved the complexity to O(n3 logn) using essentially the same formula, but
applying it more carefully to restrict the number of different trees that appear in the whole
process. This high-level idea of using the recursive formula can be formalized using the notion
of decomposition strategy algorithms as done by Dulucq and Touzet [15]. Finally, Demaine
et al. [13] further improved the complexity for rooted node-labeled trees to O(n3). For trees
of different sizes m and n, where m ≤ n, their algorithm runs in O(nm2(1 + log n

m)) time. At
a very high level, the gist of their improvement was to apply the heavy path decomposition
to both trees, while in Klein’s algorithm only one tree is decomposed. This requires some
care, as switching from being guided by the heavy path decomposition of the first tree to the
second tree cannot be done too often.

Although Demaine et al. [13] showed that their algorithm is optimal among all decom-
position strategies, it is not clear that any algorithm must be based on such a strategy.
Nevertheless, there has been no progress on beating the best known O(n3) time worst-case
bound for exact tree edit distance. Pawlik and Augsten [23] presented an experimental
comparison of the known algorithms. Aratsu et al. [4], Akutsu et al. [2], and Ivkin [19]
designed approximation algorithms. Only very recently a convincing explanation for the
lack of progress on improving this worst-case complexity has been found by Bringmann et
al. [9], who showed that a significant improvement on the cubic time complexity for rooted
node-labeled trees is rather unlikely: an O(n3−ε algorithm for computing the edit distance
between rooted trees on n nodes implies an O(n3−ε) algorithm for APSP (assuming alphabet
of size Θ(n)) and an O(nk(1−ε)) algorithm for Max-Weight k-Clique (assuming alphabet of
sufficiently large but constant size).

B. Dudek and P. Gawrychowski 45:3

Thus, the complexity of computing the edit distance between rooted trees seems well-
understood by now. However, in multiple important applications, the trees are, in fact,
unrooted. For example, Sebastian et al. [25] use unrooted trees to recognize shapes (in a paper
with over 700 citations). Unfortunately, while the almost 20 years old algorithm presented by
Klein works for unrooted trees in O(n3 logn) time, it is not clear how to translate Demaine
et al.’s improvement to the unrooted case. In fact, even if one of the trees is a rooted full
binary tree and the other is a simple caterpillar, their approach appears to use O(n4) time,
and it is not clear how to modify it. Given the lack of further progress, it might seem that
unrooted trees are simply more difficult than rooted trees.

Our contribution. We present a new algorithm for computing the edit distance between
unrooted trees which runs in O(n3) time and O(n2) space. For the case of trees of possibly
different sizes n and m where m ≤ n, it runs in O(nm2(1 + log n

m)) time and O(nm) space.
This matches the complexity of Demaine et al.’s algorithm for the rooted case and improves
Klein’s algorithm for the unrooted case. By a simple reduction, unrooted trees are as difficult
as rooted trees, so our algorithm is optimal among all decomposition algorithms [13], and
significantly faster approach is unlikely to exist unless some popular conjecture fails [9].

Our starting point is dynamic programming using the recursive formula of Zhang and
Shasha, similarly as done by Klein and Demaine et al., but instead of presenting the
computation in a top-down order, we prefer to work bottom-up. This gives us more control
and allows us to be more precise about the details of the implementation. In the simpler
O(n3 log logn) version of the algorithm, we apply the heavy path decomposition to both
trees. As long as the first tree is sufficiently big, we proceed similarly as Klein, that is,
look at its heavy path decomposition. However, if the first tree is small (roughly speaking)
we consider the heavy path decomposition of the second tree and design a new divide and
conquer strategy that is applied on every heavy path separately.

In the full version of the paper [14] we further improve the complexity to O(n3). Instead
of a global parameter we modify the divide and conquer strategy so that the larger the
first tree is the sooner the strategy terminates and switches to another approach. A careful
analysis of such a modification leads to O(nm2(1 + log2 n

m)) = O(n3) running time. Then,
we shave one log n

m by making the divide and conquer sensitive to the sizes of the subtrees
attached to the heavy path instead of its length, that is, making some nodes more important
than the other, reminiscing the so-called telescoping trick [8, 12]. All the improvements
applied together decrease the overall complexity to O(nm2(1 + log n

m)), thus matching the
running time of the algorithm by Demaine et al. for rooted trees [13].

I Theorem 1. Edit distance between unrooted trees of size n and m, where m ≤ n, can be
computed in O(nm2(1 + log n

m)) = O(n3) time and O(nm) space.

A straightforward reduction shows that computing edit distance between unrooted trees
is at least as difficult as computing edit distance between rooted trees. Thus, invoking the
lowerbound of Demaine et al. [13] we obtain that our algorithm is optimal if we restrict
ourselves to the so-called decomposition algorithms, and by the result of Bringmann et al. [9]
a significantly faster O(n3−ε) algorithm is not possible assuming some popular conjecture.

Roadmap. In Section 2 we introduce the notation and the recursive formula that are then
used to present Klein’s algorithm adapted for the rooted case. Next, in Section 3 we return
to the unrooted case, introduce new notation and transform both input trees by adding some
auxiliary edges. Then, in Section 4 we present our new O(n3 log logn) algorithm for the

ICALP 2018

45:4 Edit Distance between Unrooted Trees in Cubic Time

unrooted case which already improves the state-of-the-art Klein’s algorithm and is essential
for understanding our main O(n3) algorithm described in the full version of the paper. Both
algorithms are described in a bottom-up fashion. In the simpler O(n3 log logn) version we
first assume that one of the trees is a caterpillar and then generalize to arbitrary trees. In
the more complicated O(n3) algorithm we start with an even more restricted case of one tree
being a caterpillar and the other a rooted full binary tree. When analyzing both algorithms
we only bound the total number of considered subproblems. As explained in the full version,
this can be translated into an implementation with the same running time.

2 Preliminaries

We are given two unrooted trees T1, T2 with every edge labeled by an element of Σ and
a cyclic order on the neighbors of every node. For every label α ∈ Σ, we know the cost
cdel(α) = cins(α) of contracting or uncontracting of an edge with label α. For every α, β ∈ Σ,
cmatch(α, β) = cmatch(β, α) is the cost of changing the label of an edge from α to β. All
costs are non-negative and each edge can participate in at most one operation. Edit distance
between T1 and T2 is defined as the minimum total cost of a sequence of the above operations
transforming T1 to T2. Equivalently, it is the minimum cost of transforming both the trees
to a common tree using only contracting and relabeling operations, as each operation has
the same cost as its undo-counterpart. Note that for unrooted trees, edit distance is the
minimum edit distance over all possible rootings of T1 and T2, where a rooting is uniquely
determined by choice of the root and the leftmost edge from the root.

We first assume, that both trees are of equal size n = |T1| = |T2|, but later we will also
address the case when one of them is significantly larger than the other. We start with the
case when both trees are rooted, which is essential for the understanding of the unrooted
case. Then, every node has its children ordered left-to-right. We also assume that both
(rooted) trees are binary, as we can add O(n) edges with a fresh label that costs 0 to contract
and ∞ to relabel.

Naming convention. We use a similar naming convention as in [13]. We call main left and
right edges of a (rooted) tree respectively the leftmost and rightmost edge from the root.
For a given rooted tree T with at least 2 nodes, let rT denote the right main edge of T and
RT denote the rooted subtree of T that is under (not including) rT . By T − rT we denote
a tree obtained from T by contracting edge rT and by T − RT a tree obtained from T by
contracting edge rT and all edges from its subtree RT . Thus the tree T consists of RT , the
edge rT and edges (T −RT). lT and LT are defined analogously and T v denotes subtree of
T rooted at v. See Figure 2(a) and (b).

We define a pruned subtree of a tree T to be the tree obtained from T by a sequence
of contractions of the left or right main edge. Note that every pruned subtree is uniquely
represented by the pair of its left and right main edges. It also corresponds to an interval
on the Euler tour of the tree started in the root when we remove from the interval each
edge that occurs once. Thus we can completely represent a pruned subtree in O(1) space
by storing two edges. We can preprocess all the O(n2) pruned subtrees T ′ of a tree T to be
able to obtain trees RT ′ , LT ′ , T ′ − lT ′ , T ′ − rT ′ and edges rT ′ , lT ′ in O(1) time.

Dynamic programming. Zhang and Shasha [27] introduced the following recursive formula
for computing the edit distance between two rooted trees:

B. Dudek and P. Gawrychowski 45:5

+
AB CD

a c

RF : RG: F −RF :G−RG:

+cmatch(b, d)

A B

a b
F :

C D

c d
G :

rF

RF

F −RF

F − rF

RF

(a) (b) (c)

F

Figure 2 (a) Tree F with both rF and RG contracted. (b) F with its right main edge contracted.
(c) When both right main edges are not contracted we obtain two independent problems.

I Lemma 2. Let δ(F,G) be the edit distance between two pruned subtrees F and G of
respectively T1 and T2. Then:

δ(∅, ∅) = 0

δ(F,G) = min

δ(F − rF , G) + cdel(rF) if F 6= ∅
δ(F,G− rG) + cdel(rG) if G 6= ∅
δ(RF , RG) + δ(F −RF , G−RG) + cmatch(rF , rG) if F,G 6= ∅

The above recurrence also holds if we contract or match the left main edge.

It contracts the right main edge in one of the two trees or matches the right main edges
of the two trees. In the latter case, we get two independent subproblems (RF , RG) and
(F −RF , G−RG) that must be transformed to equal trees. See Figure 2(c) for an illustration
of this case.

To estimate time complexity of the algorithm, we only count different pairs (F,G) for
which δ(F,G) is computed. Each such value is computed at most once and stored. Note that
F is always a pruned subtree of T1, while G is a pruned subtree of T2, thus there are O(n4)
possible pairs (F,G). In the worst case, all such pairs might be considered. The formula
from Lemma 2 can be evaluated in constant time, and any previously computed value can
be retrieved in constant time from a four-dimensional table.

The above algorithm always contracts or relabels the right main edge. A more deliberate
choice of direction (whether to choose the left or right main edge) will lead to a different
behavior of the algorithm which in turn might result in a smaller total number of considered
pairs (F,G). Such a family of algorithms is called decomposition algorithms. When analyzing
the time complexity of such an algorithm, we assume that any already computed δ(F,G)
can be retrieved in constant time. If our goal is to compute significantly fewer than
O(n4) subproblems, we cannot afford to allocate the four-dimensional table anymore. An
obvious solution is to store the already computed values in a hash table, but this requires
randomization. In the full version [14] we explain how to carefully arrange the order of the
computation and store the partial results as to obtain deterministic algorithms with the
same running time.

While the formula from Lemma 2 suggests a top-down strategy, we phrase the algorithms
in a bottom-up perspective, which allows us to present the details of the computation more
precisely. The aim of all the algorithms is to compute δ(T1, T2) knowing only δ(∅, ·) and
δ(·, ∅), as the costs of contraction of an arbitrary pruned subtree are precomputed.

ICALP 2018

45:6 Edit Distance between Unrooted Trees in Cubic Time

Algorithm 1 Klein’s algorithm.
1: for each heavy path H in T1 in the bottom-up order do
2: let v1, v2, . . . , v|H| = H

3: for i = |H| − 1, . . . , 0 do
. avoiding the heavy child:

4: ComputeFrom(δ(T vi
1 , ·), δ(T vi+1

1 , ·))

Klein’s O(n3 log n) algorithm. Klein’s algorithm [21] uses heavy path decomposition [28]
of T1. The root is called light and every node calls its child with the largest subtree (and the
leftmost in case of ties) heavy and all other children light. An edge is heavy if it leads to the
heavy child.

While applying the dynamic formula from Lemma 2, Klein’s algorithm uses a strategy
that we call “avoiding the heavy child” in T1. It chooses the direction (either left or right) in
such a way that the edge leading to the heavy child of the root is contracted or relabeled
as late as possible. Observe that contracting the main edge not leading to the heavy child
of the root of a pruned subtree T , does not change the heavy child of the root of T , as its
subtree is still the largest. Note that Klein’s strategy does not depend on the considered
pruned subtree of T2.

Even though Klein uses top-down view to describe his algorithm, we find it more convenient
to implement the computations in bottom-up order. Therefore the algorithm processes heavy
paths of T1 in the bottom-up order as shown in Algorithm 1. Consider a heavy path H

with nodes v1, v2, . . . , v|H| where v1 is the closest node to the root and v|H| is a leaf. By
δ(T v

1 , ·) we denote a table of O(n2) distances between tree T v
1 and all pruned subtrees of T2.

The algorithm considers all nodes on H also bottom-up. It starts from δ(T v|H|
1 , ·) = δ(∅, ·),

which is precomputed, and then iteratively computes δ(T vi
1 , ·) from δ(T vi+1

1 , ·) for decreasing
values of i. We denote such a step by ComputeFrom subroutine. Note that in every
step the strategy avoiding the heavy child always chooses the same direction (recall that
the tree is binary) and visits altogether at most O(n) pruned subtrees of T1. Also when
actually implementing the ComputeFrom step we proceed bottom-up. That is, suppose
we have already computed δ(T vi+1

1 , ·) and that vi+1 is the left child of vi. Then the strategy
avoiding the heavy child says R that is chooses first the right main edge to consider. We
compute δ(T vi

1 , ·) as follows. First we consider the tree T vi+1
1 ∪ {{vi, vi+1}} (we call this

uncontracting the heavy edge), next T vi+1
1 ∪ {{vi, vi+1}, {vi, w}} if exists a light child w of

vi and then uncontract the subsequent edges of Tw
1 . This guarantees that while computing

δ(F,G) the subtrees F − rF and F −RF have been already processed. Pruned subtrees of
T2 are also considered in the order of increasing sizes. Clearly, as argued for Zhang and
Shasha’s algorithm, the algorithm visits O(n2) pruned subtrees of T2, so we need to bound
the number of pruned subtrees of T1.

I Observation 3. Consider an arbitrary tree T . Suppose that strategy avoiding the heavy
child in T says R for a pruned subtree F . Then F −RF is also obtained by a sequence of
contractions of the main edge according to the strategy.

The observation implies that in order to count the relevant intervals of T1 we can only
consider the trees obtained by contraction of the main edge according to the strategy, and
trees of the form LF and RF . Note that the only trees of the form LF or RF that are not
obtained in this way are rooted at a light node so will be counted separately for another
heavy path.

B. Dudek and P. Gawrychowski 45:7

x y

z

t

a

b

a b

b a

t y

x

lT1
= a

rT1
= b

lT2
= b

rT2
= a

z

b t

lT3
= rT3

= z↓

z

y

x

a

lT4
= rT4

= z↑

T :

T1:

T2:

T3:
T4:

Figure 3 Every pruned subtree is uniquely represented by its left and right main edges or a dart.

We denote apex(F) to be the top node of the heavy path containing the lowest common
ancestor of all endpoints of edges of F . In other words, apex(F) is the lowest light ancestor
of all edges of F . Now grouping all the visited pruned subtrees by their apex-es we bound
their total number:

I Observation 4. For an arbitrary tree T , there is
∑

v: light node in T |T v| pruned subtrees
of T visited while applying strategy avoiding the heavy child of T .

Let the light-depth ldepth(u) of a node u be the number of light nodes that are ancestors
of u (node is also an ancestor of itself). Because ldepth(u) ≤ log(n) + 1, we obtain:∑

v: light node in T1

|T v
1 | =

∑
v: node in T1

ldepth(v) ∈ O(n logn) (1)

Recalling that there are O(n2) relevant intervals of T2 we conclude that Klein’s algorithm
visits O(n3 logn) subproblems. As we assume the constant time memoization, it runs in
O(n3 logn) time.

3 Back to Unrooted Case

Recall that edit distance between two unrooted trees T1 and T2 is the minimum edit distance
between T1 and T2 over all possible rootings of them, where rooting is determined by the
root of the tree and its the left main edge. As Klein [21] mentioned, it is enough to choose
an arbitrary rooting in one of the trees and try all possible rootings of the other to find
an optimal setting. Observe, that we can treat the Euler tour of T2 as a cyclic string and
represent every pruned subtree of T2 as an interval of it, for all possible rootings of T2. Thus
Klein’s algorithm works in O(n3 logn) time also for the edit distance between unrooted
trees. Before we present our faster algorithm for this case, we need to introduce some new
definitions. Recall, that even in the unrooted case, we first arbitrarily root both trees and
the initial rooting remains unchanged throughout the algorithm.

Darts. We replace every edge e with two darts corresponding to two ways of traversing the
edge, either down e↓ or up the tree e↑ (with respect to the fixed rooting). Subtree of a dart
subtree((u, v)) is defined as the subtree rooted at node v, when u is its parent. Note that e↑
and e↓ belong neither to subtree(e↑) nor to subtree(e↓). Every pruned subtree of (unrooted)
tree is uniquely represented by its left and right main edges or a dart (if there is one edge
from the root). See Figure 3.

ICALP 2018

45:8 Edit Distance between Unrooted Trees in Cubic Time

Auxiliary edges for rootings. We observed that every rooting of T2 corresponds to a
subrange of a cyclic Euler tour ET2 , but later it will be convenient to represent every rooting
as a subtree of a dart. For this purpose, we add new edges labeled with a fresh label # /∈ Σ
which will be used only to denote a rooting. Setting cdel(#) = 0 and cmatch(#, ·) =∞ we
force that these edges are only contracted. For every node v we add new edges alternating
with the original ones. Thus in total, there are 2(n− 1) edges added. Using these new edges
we can compute edit distance between the unrooted trees from the values of δ(T1, subtree(d))
for all darts d in T2. Thus, our aim is to fill the table ∆ where ∆[u, d] := δ(Tu

1 , subtree(d)).

Auxiliary edges to bound the degrees. As the last step, again we add O(n) edges with
appropriate costs as to ensure that the degree of every node is at most 3. Observe that
the cost of the optimal solution for the modified trees is the same as for the initial ones
and having a sequence of operations for the modified trees, we can easily obtain an optimal
sequence for the original instance of the problem.

4 O(n3 log log n) Algorithm for Unrooted Case

After initial modifications both trees are binary and the algorithm needs to fill the table
∆ where ∆[u, d] := δ(Tu

1 , subtree(d)) for all nodes u ∈ T1 and darts d ∈ T2. We first run
Demaine et al.’s algorithm operating on labels on edges instead of nodes which computes
δ(Tu

1 , T
v
2) for all nodes u ∈ T1 and v ∈ T2 in O(n3) time and stores them in ∆[u, e↓v] where

e↓v is the dart to v from its parent. Now we need to fill the remaining fields ∆[u, e↑] for all
darts e↑ up the tree T2.

This is the main difficulty in the unrooted case, in which we need to handle many big
subtrees which are significantly different from each other. Our approach is to successively
reduce different subproblems to smaller ones, in a way that there are fewer subproblems to
consider in the next step. We use divide and conquer paradigm, in which there is more and
more sharing after every step.

In the beginning, we call each node of T1 and T2 light or heavy as in the Klein’s algorithm
and all the time the notion is with respect to the initial rootings. Similarly, the notion of
traversing an edge up or down the tree is always with respect to the rooting. Recall that we
denote apex(T) as the top node on the heavy path containing the lowest common ancestor
of all edges of T . We first fix a global value b, which will be determined exactly later. On
a high level, from the top-down perspective, the algorithm uses the following strategy to
compute δ(F,G): if |T apex(F)

1 | > n/b, then avoid the heavy child in F , and otherwise apply a
new strategy based only on G and T2.

Considering it bottom-up, the algorithm first fills values of ∆[u, e↑] for all nodes u such
that |T apex(u)

1 | ≤ n/b and all darts up T2. For the remaining fields of ∆, it uses strategy
avoiding the heavy child in T1. As in the Klein’s algorithm, in this phase, the algorithm
needs to process heavy paths of T1 in the bottom-up order. Note that for each light node
v such that |T v

1 | > n/b holds ldepth(v) < log b+ 1. Thus there are O(n3 log b) subproblems
visited in total in this phase.

For the other phase note that there are O(n2/b) relevant subtrees in T1, and now we
need to carefully design and analyze the new strategy for T2. It will be easier to think, that
in this phase the algorithm needs to compute ∆[u, e↑] for all darts e↑ up T2 and all nodes
u ∈ T1 such that |Tu

1 | ≤ n/b, call them interesting. Clearly, all subproblems in which there
is a switch to the strategy based on T2 are of this form.

B. Dudek and P. Gawrychowski 45:9

h1

h2

h3

l1

l2

l3

r2

hi
li

hi−1
subtree(h↑i)

subtree(h↑i−1)

(a) (b)

Figure 4 (a) A heavy path H with edge r2 (dotted) denoting the rooting of T2. (b) To compute
δ(∗, subtree(h↑i)) we use δ(∗, subtree(h↑i−1)), first uncontract the edge hi−1 and then li (if exists).

As now the strategy will be more complex than before, we first describe it for the case
when T2 is a caterpillar: a heavy path with possibly single nodes connected to it. This
example is already difficult in the unrooted case and will require divide and conquer approach
to handle all the possible rootings of T2 at once. Next, we will slightly modify the approach
to handle arbitrary trees T2.

4.1 Caterpillar T2

Now we consider the case when T2 is a heavy path H with possibly single nodes connected
to it. Let hi denote (heavy) edges on H, r2 = h0 be the edge denoting the initial rooting of
T2 and (if exists) li be the light edge connected to the i-th node on H. See Figure 4(a) for
an example.

In the first step we compute values of δ(∗, subtree(h↑i)) for all heavy edges hi, where ∗
denotes all pruned subtrees of T1 of size at most n/b. The strategy is to avoid the parent,
that is to contract the edge leading to the parent as late as possible. See Figure 4(b).

More precisely, in the beginning, we already know δ(∗, subtree(h↑0)), because it is the cost
of contraction of the whole pruned subtree of T1 (which is precomputed), as h0 = r2 and
subtree(h↑0) = ∅. Then, having values of δ(∗, subtree(h↑i−1)) we compute δ(∗, subtree(h↑i)) by
uncontracting first hi−1 and then li if it exists. It is an extension of the ComputeFrom
subroutine, but now we do not have subtrees T x and T y, where x is the parent of y, but two
edges hi and hi−1 with a common endpoint. Note that in this step all uncontractions are
from the same direction.

There are O(n) pruned subtrees of T2 obtained by uncontractions of a main edge according
to the strategy, starting from the empty subtree. Now we need to show that the algorithm
did not consider any other pruned subtree of T2. Suppose it uncontracted the left main edge.
Then G − LG ∈ {∅, G − lG}, depending on whether lG was the heavy edge leading to the
parent or not. Also LG ∈ {∅, G− lG}, so in both cases, all the obtained pruned subtrees are
among the O(n) described above. Finally, as there are O(n2/b) pruned subtrees of T1, in
total we computed and stored the edit distance of O(n3/b) subproblems. Now, using the
computed values we fill ∆[u, h↑i] for all interesting nodes u ∈ T1 and heavy edges hi ∈ T2.
Thus, later on, we do not have to consider the pruned subtrees of the form δ(LF , LG) or
δ(RF , RG) as their values are already stored in ∆, because either one of them is empty or
they are of the form δ(T v

1 , subtree(dh)) for an interesting node u ∈ T1 and a dart dh from a
heavy edge in T2. We only have not computed values ∆[u, l↑] for darts from light edges up
the tree, but in this phase of the algorithm, they never appear in δ(LF , LG) or δ(RF , RG)
subproblem. However, we need to compute these values because they correspond to some
rootings of T2, so we will consider them in the following paragraph.

ICALP 2018

45:10 Edit Distance between Unrooted Trees in Cubic Time

h1

h2

h3

h4

h5

l1

l2

l3

l4

l5

h1

h2

h5

l1

l2

mergedR(3, 5) :

l3

l5

left main

right main

right main

left main≡

Figure 5 Pruned subtree mergedR(3, 5) has the left main edge h2 and right h5.

Algorithm 2 Computes input tables needed for processing a heavy path H
1: function ProcessHeavyPath(δ(∗, subtree(h↑0)))
2: for i = 1..|H| do

. avoiding the parent:
3: ComputeFrom(δ(∗, subtree(h↑i)), δ(∗, subtree(h↑i−1)))
4: fill ∆[u, h↑i] for all interesting nodes u

. repeatedly uncontracting the left main edge:
5: ComputeFrom(δ(∗,mergedR(1, |H|)), δ(∗, subtree(h↑0)))

. repeatedly uncontracting the right main edge:
6: ComputeFrom(δ(∗,mergedL(1, |H|)), δ(∗, subtree(h↑0)))

7: Group(1, |H|,Data(1, |H|))

Darts from light nodes up the tree. From now on, our algorithm processes heavy paths
of T2 one-by-one. In particular, in this subsection, we process the only heavy path H of
T2. Thus, unless explicitly stated otherwise all the notion is relative to the current heavy
path H. First, we define mergedR(A,B) as the pruned subtree obtained by contraction of
edges between the A-th and B-th node on H or to the right of H:

I Definition 5. Let H be a heavy path and A and B (A ≤ B) denote indices of two nodes
on H. Then mergedR(A,B) is a tree with the left main edge hA−1 and the right main
edge hB . mergedL(A,B) is a tree with the left main edge hB and the right main edge hA−1.

See Figure 5. Note that subtree(l↑A) is either mergedR(A,A) or mergedL(A,A), depending on
which side of H is lA.

As explained earlier, in the beginning the algorithm computes δ(∗, subtree(h↑i)) for all
heavy edges on H. Additionally, it calculates δ(∗,mergedL(1, |H|)) and δ(∗,mergedR(1, |H|))
from δ(∗, subtree(h↑0)) by repeatedly uncontracting respectively the right and left main edge.
See Algorithm 2 for the summary of the whole preprocessing. Then it calls a recursive
procedure Group(1, |H|,Data(1, |H|)). The final goal of this call is to fill ∆[u, l↑i] for all
light edges li connected to the heavy path H.

Group(A,B,Data(A,B)) is a procedure which considers an interval [A,B] of indices
on H given tables of values δ(∗, subtree(h↑A−1)), δ(∗, subtree(h↓B)), δ(∗,mergedL(A,B)) and
δ(∗,mergedR(A,B)), which we denote as Data(A,B). Intuitively, Data(A,B) contains in-

B. Dudek and P. Gawrychowski 45:11

Algorithm 3 Fills ∆[u, l↑i] for light edges li connected to the heavy path H with i ∈ [A,B].
1: function Group(A,B,Data(A,B))
2: if A = B then
3: if there is a light edge lA connected to H then
4: fill ∆[u, l↑A] for interesting nodes u ∈ T1

5: return
6: M := b(A+B)/2)c
7: for i = (B − 1)..M do

. avoiding the heavy child:
8: ComputeFrom(δ(∗, subtree(h↓i)), δ(∗, subtree(h↓i+1)))

. repeatedly uncontracting the right main edge:
9: ComputeFrom(δ(∗,mergedR(A,M)), {δ(∗,mergedR(A,B)); δ(∗, subtree(h↑A−1))})

. repeatedly uncontracting the left main edge:
10: ComputeFrom(δ(∗,mergedL(A,M)), {δ(∗,mergedL(A,B)); δ(∗, subtree(h↑A−1))})

11: Group(A,M,Data(A,M))
12: symmetric computations for interval [M + 1, B]
13: Group(M + 1, B,Data(M + 1, B))

formation about subtrees “outside” the considered interval [A,B] which are relevant during
intermediate computations. Then, the procedure calls itself recursively for shorter intervals
until it holds that A = B when δ(∗,mergedL(A,A)) or δ(∗,mergedR(A,A)) contains the
fields of ∆[u, l↑A] for all interesting nodes u and then the recurrence stops.

In more detail, for an interval [A,B], the procedure computes Data(A,M) and Data(M +
1, B) for M = bA+B

2 c and calls itself recursively for the smaller intervals. Note that for
Data(A,M) it needs to compute tables δ(∗, G) for trees G = mergedR(A,M),mergedL(A,M)
or subtree(h↓M) and can reuse table δ(∗, subtree(h↑A−1)) which is a part of Data(A,B). Simil-
arly for interval [M + 1, B]. See Algorithm 3.

To analyze the complexity of the Group procedure, first note that in every step of the
loop in line 7, it considers a constant number of pruned subtrees from T2, so in total there
are O(B −M) of them. After this loop, we have δ(∗, subtree(h↓M)) computed.

The call of ComputeFrom in line 9 needs more input than the call in line 8, even
though the strategy is always uncontracting the right main edge. Note that if the dynamic
program only tried contracting the right main edge, it would be possible to compute
δ(∗,mergedR(A,M)) only from δ(∗,mergedR(A,B)). However, it is not the case when the
algorithm also matches edges. The first case when rG is a light edge (rG = lX for some value
of X) is not problematic, because then RG = ∅ and G−RG = G− rG, so this pruned subtree
is already visited. Although, if rG is a heavy edge then RG = subtree(r↓G) and G − RG is
a pruned subtree, which has not been considered yet. Observe that in this situation the
pruned subtree can be obtained from subtree(h↑A−1) by a sequence of O(B −A) contractions
of the right main edge, so we need it as a separate input to the ComputeFrom subroutine.
A similar reasoning applies to the edges to the left of H in line 10 and to the computations
for interval [M + 1, B].

To sum up, one call of Group(A,B) (not including recursive calls) visits O(B − A)
pruned subtrees of T2. As we start from an interval of length |H| and in every recursive
call its length is roughly halved, the procedure considers in total O(|H| log |H|) = O(n logn)
pruned subtrees of T2.

ICALP 2018

45:12 Edit Distance between Unrooted Trees in Cubic Time

4.2 Arbitrary Tree T2

Now we describe, how to modify the above algorithm to process not only a caterpillar, but
an arbitrary tree T2. In this case, there can be non-empty subtrees connected to the main
heavy path.

Note that for an arbitrary heavy path H inside T2, the ProcessHeavyPath procedure
only needs to know δ(∗, subtree(h↑0)) to be able to compute all the remaining input parameters
in Data(1, |H|), because δ(∗, subtree(h↓|H|)) = δ(∗, ∅) is precomputed. In the beginning, the
algorithm calls ProcessHeavyPathH0(δ(∗, ∅)), where H0 is the heavy path of T2 containing
the root of T2. The only place we need to change inside the Group procedure to handle
arbitrary trees T2 is to not only fill ∆[u, l↑A] in line 4 of Algorithm 3, but also recursively call
ProcessHeavyPathH′(δ(∗, subtree(l↑A))) where H ′ is the heavy path connected to the A-th
node of the considered heavy path. As we pointed earlier, subtree(l↑A) is either mergedR(A,A)
or mergedL(A,A), depending on which side of H is lA. Now observe, that each subsequent
pruned subtree that appears in the recursive formula is already visited and processed:

I Observation 6. In the modified Group procedure, during the call of ComputeFrom
subroutine in line 9 of Algorithm 3, all the intermediate pruned subtrees of T2 are obtained by
a sequence of uncontractions of the right main edge from the root either from mergedR(A,B)
or subtree(h↑A−1). A similar property holds for the other three calls of ComputeFrom in
lines 10 and 12.

What changes in the analysis of the procedure is that now there are not O(|H| log |H|)
pruned subtrees of T2 but O(|T v

2 | log |H|) = O(|T v
2 | logn), where v is the top node of H.

In other words, the heavy path H itself might be short, but there might be big subtrees
connected to it. However, every subtree connected to H is completely contracted (edge-by-
edge) a constant number of times on every level of recursion of Group procedure and thus
the bound.

Recall that top node of every heavy path is light, so using equation (1) we bound the
overall number of subtrees of T2 considered during this part of the algorithm:

∑
v: top node of a heavy path in T2

|T v
2 | · logn =

∑
v: light node in T2

|T v
2 | · logn ∈ O(n log2 n)

4.3 Final Analysis
To conclude, the above algorithm computes ∆[u, e↑] for all nodes u ∈ T1 such that |Tu

1 | ≤ n/b
and all darts up the tree T2 by considering O(n log2 n) pruned subtrees of T2 and O(n2/b) of
T1. At the beginning of Section 4 we described the second phase of the algorithm, which
avoids the heavy child in T1 and fills the remaining fields of ∆ considering O(n log b) pruned
subtrees of T1 and O(n2) of T2. Thus, during the two phases, the whole algorithm visits
O(n3 log2 n

b + n3 log b) subproblems. Setting b = log2 n we obtain the overall complexity
O(n3 log logn).

References
1 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Willi-

ams. Simulating branching programs with edit distance and friends: or: a polylog shaved
is a lower bound made. In 48th STOC, pages 375–388, 2016.

2 Tatsuya Akutsu, Daiji Fukagawa, and Atsuhiro Takasu. Approximating tree edit distance
through string edit distance. Algorithmica, 57(2):325–348, 2010.

B. Dudek and P. Gawrychowski 45:13

3 Rajeev Alur, Loris D’Antoni, Sumit Gulwani, Dileep Kini, and Mahesh Viswanathan. Auto-
mated grading of DFA constructions. In 23rd IJCAI, pages 1976–1982, 2013.

4 Taku Aratsu, Kouichi Hirata, and Tetsuji Kuboyama. Approximating tree edit distance
through string edit distance for binary tree codes. Fundam. Inf., 101(3):157–171, 2010.

5 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquad-
ratic time (unless SETH is false). In 47th STOC, pages 51–58, 2015.

6 J. Bellando and R. Kothari. Region-based modeling and tree edit distance as a basis for
gesture recognition. In 10th ICIAP, pages 698–703, 1999.

7 Philip Bille. A survey on tree edit distance and related problems. Theor. Comput. Sci.,
337(1-3):217–239, 2005.

8 Norbert Blum and Kurt Mehlhorn. On the average number of rebalancing operations in
weight-balanced trees. Theor. Comput. Sci., 11(3):303–320, 1980.

9 Karl Bringmann, Paweł Gawrychowski, Shay Mozes, and Oren Weimann. Tree edit distance
cannot be computed in strongly subcubic time (unless APSP can). In 29th SODA, 2018.

10 Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on compressed XML.
In 29th VLDB, pages 141–152, 2003.

11 Sudarshan S. Chawathe. Comparing hierarchical data in external memory. In 25th VLDB,
pages 90–101, 1999.

12 Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In 36th STOC, pages 91–100, 2004.

13 Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren Weimann. An optimal de-
composition algorithm for tree edit distance. ACM Trans. Algorithms, 6(1):2:1–2:19, 2009.

14 Bartłomiej Dudek and Paweł Gawrychowski. Edit distance between unrooted trees in cubic
time. CoRR, abs/1804.10186, 2018. arXiv:1804.10186.

15 Serge Dulucq and Hélène Touzet. Decomposition algorithms for the tree edit distance
problem. J. Discrete Algorithms, 3(2-4):448–471, 2005.

16 Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan. Compressing
and indexing labeled trees, with applications. J. ACM, 57(1):4:1–4:33, 2009.

17 Matthias Höchsmann, Thomas Töller, Robert Giegerich, and Stefan Kurtz. Local similarity
in RNA secondary structures. In 2nd CSB, pages 159–168, 2003.

18 Christoph M. Hoffmann and Michael J. O’Donnell. Pattern matching in trees. J. ACM,
29(1):68–95, Jan. 1982.

19 Egor Ivkin. Approximating tree edit distance through string edit distance for binary tree
codes. B.Sc. thesis, Charles University in Prague, 2012.

20 Philip Klein, Srikanta Tirthapura, Daniel Sharvit, and Ben Kimia. A tree-edit-distance
algorithm for comparing simple, closed shapes. In 11th SODA, pages 696–704, 2000.

21 Philip N. Klein. Computing the edit-distance between unrooted ordered trees. In 6th ESA,
pages 91–102, 1998.

22 Philip N. Klein, Thomas B. Sebastian, and Benjamin B. Kimia. Shape matching using
edit-distance: An implementation. In 12th SODA, pages 781–790, 2001.

23 Mateusz Pawlik and Nikolaus Augsten. Efficient computation of the tree edit distance.
ACM Trans. Database Syst., 40(1):3:1–3:40, 2015.

24 Juan Ramón Rico-Juan and Luisa Micó. Comparison of aesa and laesa search algorithms
using string and tree-edit-distances. Pattern Recogn. Lett., 24(9-10):1417–1426, jun 2003.

25 T. B. Sebastian, P. N. Klein, and B. B. Kimia. Recognition of shapes by editing their shock
graphs. IEEE Trans. Pattern Anal. Mach. Intell., 26(5):550–571, May 2004.

26 B. A. Shapiro and K. Z. Zhang. Comparing multiple RNA secondary structures using tree
comparisons. Comput. Appl. Biosci., 6(4):309–318, Oct. 1990.

27 Dennis Shasha and Kaizhong Zhang. Fast algorithms for the unit cost editing distance
between trees. J. Algorithms, 11(4):581–621, dec 1990.

ICALP 2018

http://arxiv.org/abs/1804.10186

45:14 Edit Distance between Unrooted Trees in Cubic Time

28 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal
of Computer and System Sciences, 26(3):362–391, 1983.

29 Kuo-Chung Tai. The tree-to-tree correction problem. J. ACM, 26(3):422–433, 1979.
30 Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J.

ACM, 21(1):168–173, 1974.
31 Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch, and Peter Clark. Answer extrac-

tion as sequence tagging with tree edit distance. In HLT-NAACL, pages 858–867, 2013.

	Introduction
	Preliminaries
	Back to Unrooted Case
	O(n^{3} log log n) Algorithm for Unrooted Case
	Caterpillar T2
	Arbitrary Tree T2
	Final Analysis

