
Approximating All-Pair Bounded-Leg Shortest
Path and APSP-AF in Truly-Subcubic Time
Ran Duan1

Institute for Interdisciplinary Information Sciences, Tsinghua University, China
duanran@mail.tsinghua.edu.cn

Hanlin Ren
Institute for Interdisciplinary Information Sciences, Tsinghua University, China
rhl16@mails.tsinghua.edu.cn

Abstract
In the bounded-leg shortest path (BLSP) problem, we are given a weighted graph G with nonneg-
ative edge lengths, and we want to answer queries of the form “what’s the shortest path from u

to v, where only edges of length ≤ L are considered?”. A more general problem is the APSP-AF
(all-pair shortest path for all flows) problem, in which each edge has two weights – a length d and
a capacity f , and a query asks about the shortest path from u to v where only edges of capacity
≥ f are considered.

In this article we give an Õ(n(ω+3)/2ε−3/2 logW) time algorithm to compute a data structure
that answers APSP-AF queries in O(log(ε−1 log(nW))) time and achieves (1 + ε)-approximation,
where ω < 2.373 is the exponent of time complexity of matrix multiplication, W is the upper
bound of integer edge lengths, and n is the number of vertices. This is the first truly-subcubic
time algorithm for these problems on dense graphs. Our algorithm utilizes the O(n(ω+3)/2) time
max-min product algorithm [Duan and Pettie 2009]. Since the all-pair bottleneck path (APBP)
problem, which is equivalent to max-min product, can be seen as all-pair reachability for all flow,
our approach indeed shows that these problems are almost equivalent in the approximation sense.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Graph Theory, Approximation Algorithms, Combinatorial Optimization

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.42

1 Introduction

The shortest path problem is one of the most fundamental problems in algorithmic graph
theory. In this paper we study one of its variants, the apBLSP(all-pair bounded-leg shortest
path), and a more general problem, the APSP-AF(all-pair shortest path for all flows) problem.

In apBLSP, we are given a weighted graph G, and we want to find the shortest path from
u to v when only using edges with length no more than L. Answering one such query is easy:
just discard edges with length > L and run a shortest-path algorithm. So we consider that
there are many queries (u, v, L), and we need to preprocess the graph G to answer these
queries efficiently.

The apBLSP problem is a special case of the APSP-AF problem. In the APSP-AF
problem, we’re given a directed graph G, and each edge has a length d and a capacity f .
Let W and K be the maximum length and maximum capacity, respectively. We assume
that all lengths are nonnegative integers. The length of a path is the sum of lengths of all
its edges, while the capacity of a path is the minimum capacity over its edges. The goal

1 R. Duan is supported by a China Youth 1000-Talent grant.

EA
T

C
S

© Ran Duan and Hanlin Ren;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 42; pp. 42:1–42:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:duanran@mail.tsinghua.edu.cn
mailto:rhl16@mails.tsinghua.edu.cn
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.42
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42:2 Approximating apBLSP and APSP-AF in Truly-Subcubic Time

is to compute from G a data structure that handles such queries: given u, v ∈ V (G) and
1 ≤ f ≤ K, determine the shortest path (in terms of length) from u to v with capacity at
least f . We call the length of this shortest path “distance from i to j under flow constraint
f”. Given an instance of the apBLSP problem, we can give the capacity of edges in the order
reversely as the order of their lengths, then the apBLSP is easily reducible to APSP-AF.

We consider data structures whose query algorithm uses no arithmetic operations. In
other words, such a data structure would precompute the answers for all possible queries
and store them up. As observed in [7], any such data structure requires Ω(n4) space to
report the exact answer. It’s easy to come up with an O(n4) exact algorithm: let δ(i, j, f) be
the distance from i to j under flow constraint f , we add edges in descending order of their
capacities, and when we add an edge e from i to j with length d and capacity f , we set

δ(i′, j′, f)← min{δ(i′, j′, f0), δ(i′, i, f0) + d+ δ(j, j′, f0)},∀i′, j′ ∈ V,

where f0 is the capacity of the last edge we added before e. In this sense, the exact version
of APSP-AF is not very interesting. In the approximation setting, what we would like
to compute is actually a df -matrix2 A, which is a matrix whose entries are sets of pairs
(d, f). The answer to the query (i, j, f) is simply min{d : (d, f ′) ∈ Aij , f ′ ≥ f}, and can be
computed in O(log |Aij |) time by binary search. The data structure achieves a stretch of
(1 + ε) if for any possible query (i, j, f), the returned value is in [D, (1 + ε)D] where D is the
actual APSP-AF distance.

Related work. The bounded-leg shortest path problem was firstly considered by Bose et al.
[4], where they showed that a data structure of size O(ε−1n2 logn) can be constructed in
O(n5) time to (1 + ε)-approximate the bounded-leg length in Euclidean graphs; if explicit
paths are required, their data structure needs O(ε−1n3 logn) size. They also gave a data
structure of size O(n5/2) computable in O(n5/2) time to support exact apBLSP queries
in planar graphs. Roditty and Segal [11] showed a (1 + ε)-approximate data structure for
general graphs, which has size Õ(n2.5) and can be computed in Õ(n4) time.3 They also
obtained a (1 + ε)-approximate data structure for apBLSP in any lp-metric, which has size
O(n2 logn) and is computable in O(n3(log3 n+ log2 n · ε−d)) time. In [7], Duan and Pettie
improved the time complexity for general graphs to O(n3 log3 n) and the space complexity
to O(ε−1n2 logn). For planar directed graphs, they also gave a data structure with size
O(kn1+1/k) that answers bounded-leg reachability queries in Õ(n k−1

2k) time, for any integer
k ≥ 2.

The APSP-AF problem was introduced by Shinn and Takaoka [12, 13, 14, 15]. In
graphs with unit edge lengths, they showed an O(

√
Kn(ω+9)/4) exact algorithm. In general

graphs, they showed exact algorithms of running time O(Kn3), Õ(
√
KW (ω+5)/4n(ω+9)/4)

and O(m2n+ min(nW,mn2 log W
mn)) respectively.

We can also view APSP-AF as an offline version of partially dynamic shortest path
problem: edge insertions and distance queries appear by descending order of f , and we know
the whole sequence of insertions and queries at the beginning of algorithm. Most works on
dynamic shortest path problem are online: the sequence of operations and queries must
be processed in order. In incremental setting, Ausiello et al. [1] showed an algorithm to
handle all pair distance queries and edge insertions in a digraph in O(Wn3 log(nW)) time. In
decremental setting, Bernstein [3] showed a (1+ε)-approximate algorithm with a total running

2 See section 2.2.
3 Õ hides poly(log n) factor.

R. Duan and H. Ren 42:3

time of Õ(mnε−1 logR) in weighted digraphs, where R is the ratio of the largest weight that
was ever seen in the graph to the smallest such weight. For unweighted digraphs, Baswana,
Hariharan and Sen [2] showed a randomized algorithm with O(min(n3/2m

√
logn, n3 log2 n))

total update time which returns exact answers w.h.p, and a (1 + ε)-approximate algorithm
with O(nmε−2 logn + n2ε−1√m logn) total update time. More results can be found in
surveys [6, 10]. However, the online setting has its disadvantages: in both incremental and
decremental settings, even a reachability oracle in a truly-subcubic total time would refute
the OMV conjecture [9].

Our algorithm relies on fast algorithms for max-min product. The first truly-subcubic
time algorithm for max-min product was discovered by Vassilevska, Williams and Yuster
[16], which has running time O(n2+ω/3). Subsequently, Duan and Pettie [8] improved this
algorithm to O(n(ω+3)/2) time.

Our contribution. We show that a data structure for APSP-AF within stretch (1 + ε) can
be computed in Õ(n(ω+3)/2ε−3/2 logW) time for any n-vertex graph and any ε > 0, where
ω < 2.373 is the exponent of time complexity of matrix multiplication [5]. This is the first
truly-subcubic time (i.e. O(n3−δpoly(ε−1, logW)) for some δ > 0) algorithm to approximate
apBLSP or APSP-AF problem in general graphs when m = Θ(n2) and W = Ω(n). Our data
structure uses O(n2ε−1 logn log(nW)) space.

We also establish the equivalence between approximating APSP-AF and computing
max-min product. In particular, it’s shown in Section 3 that if the max-min product of two
matrices can be computed in T (n) time, then a (1 + ε)-approximate data structure for APSP-
AF can be computed in Õ(T (n)ε−2 logW) time. This is optimal up to poly(ε−1, logn, logW)
factors in the sense that APSP-AF approximation is at least as hard as max-min product.
In fact, max-min product is reducible to the special case of bounded-leg reachability problem
where the goal is only to query if u can reach v via edges of capacity ≥ f . 4 Consider
computing the max-min product of two n× n matrices A,B. We construct a directed graph
G = (V,E) with 3n vertices V = {u1, u2, . . . , un, v1, v2, . . . , vn, w1, w2, . . . , wn}. For every
i, j, link an edge from ui to vj with capacity Aij and link an edge from vi to wj with capacity
Bij . Let C be the max-min product of A and B, then Cij ≥ f iff wj is reachable from ui by
edges of capacity ≥ f .

2 Preliminaries

We denote [n] = {1, . . . , n}, [n]0 = [n] ∪ {0}, min(∅) = +∞,max(∅) = −∞. Rows and
columns of matrices are numbered from 1 to n. Let ω < 2.373 be the exponent of time
complexity of matrix multiplication. For a set of m × n matrices {Ai}, min{Ai} is the
entry-wise minimum of them. Let W,K be the upper bound of lengths and capacities of
edges, respectively; i.e. for any edge, its length is in [W]0 and its capacity is in [K].

2.1 Matrix products

We introduce the distance product and max-min product for two matrices, denoted as ? and
> respectively.

4 It should be “edges of length ≤ L” for bounded-leg reachability problem; However this constraint is
equivalent.

ICALP 2018

42:4 Approximating apBLSP and APSP-AF in Truly-Subcubic Time

I Definition 2.1. For two matrices A,B of size n× n, we define:

(A ? B)ij = min
k∈[n]
{Aik +Bkj};

(A>B)ij = max
k∈[n]
{min{Aik, Bkj}}.

A simpler version of our algorithm in Section 3, which runs in Õ(n(ω+3)/2ε−2 logW),
makes use of max-min product algorithm [8] for two matrices.

I Lemma 2.2 ([8]). There is an algorithm that, given two n×n matrices A and B, compute
A>B in O(n(ω+3)/2) time.

We also need the following lemma, stating that the distance product of matrices with
large entries can be approximated by several distance products of matrices with small entries:

I Lemma 2.3 (Lemma 5.1 of [17]). Suppose A,B are two matrices whose entries are in
[M]0 ∪ {+∞}, C = A ? B. Let R be a power of 2, and Scale(A,M,R) be a matrix A′ such
that

A′ij =
{
dRAij/Me if 0 ≤ Aij ≤M
+∞ otherwise

.

Define C ′ as:

C ′ = min
blog2 Rc≤r≤dlog2 Me

{(2r/R) · (Scale(A, 2r, R) ? Scale(B, 2r, R))}

Then for any i, j, Cij ≤ C ′ij ≤ (1 + 4
R)Cij.

2.2 The distance/flow pairs and their operations
We introduce the notion of df-pairs in [12]. Our algorithm is based on manipulations of
df -pairs and df -matrices.

I Definition 2.4. A df-pair is a pair (d, f) where d represents distance and f represents
capacity or flow. We may assume f ∈ [K].

A df-set is a set of df -pairs.
A df-matrix is a matrix whose entries are df -sets. If for every df -pair (d, f) ∈ Aij ,

d ∈ [R]0, then we say A is within distance R.

I Definition 2.5 ([12]). The merit order <m is defined as (d1, f1) >m (d2, f2) iff d1 <

d2 ∧ f1 ≥ f2. For a df -set S, define C(S) = {(d, f) : @(d′, f ′) ∈ S, (d′, f ′) >m (d, f)}.

I Remark. Given a df -set S sorted by distances, C(S) can be computed in O(|S|) time.
We can see if (d1, f1) >m (d2, f2), then (d2, f2) is not useful since its distance is larger

but flow is no larger. The operator C can be used to delete redundant elements of a df -set.

I Definition 2.6 ([12]). For two df -sets, define their addition and multiplication as

S1 + S2 =C(S1 ∪ S2)
S1 · S2 =C({(d1 + d2,min(f1, f2)) : (d1, f1) ∈ S1, (d2, f2) ∈ S2}).

The multiplication of two df -sets S1, S2 can be understood as we try to link the paths
pair-wisely in them, so the distance is the sum of their distances, and the flow is the minimum
of their flows.

R. Duan and H. Ren 42:5

I Definition 2.7. For a df -set S, define S(f) = min{d : (d, f ′) ∈ S, f ′ ≥ f}. Similarly,
for a df -matrix A, define A(f) be the matrix whose entries are in R ∪ {+∞} such that
(A(f))ij = Aij(f).

For two df -sets S, S′, we say S = S′ if ∀f ∈ [K], S(f) = S′(f). The relation = is an
equivalence relation. We say S′ is a (1 + ε)-approximation of S, denoted as S′ ≈ε S, if
S(f) ≤ S′(f) ≤ (1 + ε)S(f) for any f ∈ [K]. Similarly, for two df -matrices A,A′ of size
n× n, say A = A′ if Aij = A′ij for all i, j ∈ [n], and say A′ is a (1 + ε)-approximation of A,
denoted as A′ ≈ε A, if A′ij is a (1 + ε)-approximation of Aij for all i, j ∈ [n].

I Definition 2.8. The product of two df -matrices A,B, denoted as A ? B, is defined as
(A ? B)ij =

∑
k∈[n] Aik ·Bkj . We define A1 = A and Ap = Ap−1 ? A for integer p > 1.

Intuitively, this product can be understood in the following way: suppose we have a
3-layer graph G = (V,E) where V = {u1, u2, . . . , un, v1, v2, . . . , vn, w1, w2, . . . , wn}. Let A be
the df -matrix representing edges among {ui} and {vk}: for all (d, f) ∈ Aik, there is an edge
with length d and capacity f from ui and vk. Similarly let B be the df -matrix representing
edges among {vk} to {wj}. Let C = A ? B, then each element (d, f) ∈ Cij corresponds to a
path from ui to wj with total length d and capacity f .

We have the following facts:

I Fact 2.9. Let S1, S2 be two df-sets and f ∈ [K]. Then (C(S))(f) = S(f), (S1 + S2)(f) =
min{S1(f), S2(f)} and (S1 · S2)(f) = S1(f) + S2(f).

Proof. These are immediate from definition. J

I Fact 2.10. For three df-matrices A,B,C and ε ≥ 0, C ≈ε A ? B if and only if C(f) ≈ε
A(f) ? B(f) for any f ∈ [K]. In particular when ε = 0, C = A ? B iff C(f) = A(f) ? B(f)
for all f ∈ [K].

Proof. For all i, j, f , from Fact 2.9,

(A ? B)ij(f) = (
∑
k∈[n]

Aik ·Bkj)(f) = min
k∈[n]
{Aik(f) +Bkj(f)} = (A(f) ? B(f))ij ,

and

C ≈ε (A ? B)
⇐⇒ ∀i, j, f, Cij(f)/(A ? B)ij(f) ∈ [1, 1 + ε]
⇐⇒ ∀i, j, f, Cij(f)/(A(f) ? B(f))ij ∈ [1, 1 + ε]
⇐⇒ ∀f, C(f) ≈ε A(f) ? B(f). J

I Fact 2.11. Let A,B,C be df-matrices. If B is a (1 + ε1)-approximation of A and C is a
(1 + ε2)-approximation of B, then C is a (1 + ε1)(1 + ε2)-approximation of A.

Proof. For any i, j, f , Aij(f) ≤ Bij(f) ≤ Cij(f) ≤ (1+ε2)Bij(f) ≤ (1+ε1)(1+ε2)Aij(f). J

I Fact 2.12. Let A,B be df-matrices and ε > 0. If B ≈ε A, then B ? B ≈ε A ? A.

Proof. For any i, j, f , from Fact 2.10, (A ? A)(f) = A(f) ? A(f), and:

(A ? A)(f)ij = min
k∈[n]
{A(f)ik +A(f)kj}

≤ min
k∈[n]
{B(f)ik +B(f)kj} = (B ? B)(f)ij

≤(1 + ε) min
k∈[n]
{A(f)ik +A(f)kj}

=(1 + ε)(A ? A)(f)ij . J

ICALP 2018

42:6 Approximating apBLSP and APSP-AF in Truly-Subcubic Time

3 Main Algorithm

In this section we introduce an Õ(n(ω+3)/2ε−2 logW) algorithm for approximating APSP-AF
problem within a stretch of (1 + ε). The idea is not hard. Suppose M is the df -matrix
corresponding to G, and D = Mn, then D is the exact df -matrix representing all-pair
distances for all flows. To approximate D, we only need an algorithm that approximates
the product of df -matrices by a stretch of (1 + Θ(ε/ logn)). By Lemma 2.3, this can be
done by exact df -matrix product algorithms that only handles distances no more than
R = O(ε−1 logn), which turns out to be expressible as O(R2) max-min products.

3.1 Exact product for small distances
The following algorithm shows that the product of two df -matrices A and B can be reduced
to O(R2) max-min products if the distances are integers between 0 and R.

Algorithm 1 Exact product for two df -matrices.
1: function Exact-Prod(A,B,R)
2: Cij ← ∅
3: for d0 in [R]0 do
4: A

(d0)
ij ← max{f : (d, f) ∈ Aij , d ≤ d0}

5: B
(d0)
ij ← max{f : (d, f) ∈ Bij , d ≤ d0}

6: for d1, d2 in [R]20 do
7: C ′ ← A(d1) >B(d2)

8: Cij ← Cij ∪ {(d1 + d2, C
′
ij)}

9: Cij ← {C(Cij)}; return C

I Lemma 3.1. Exact-Prod correctly returns the product A ? B of two df-matrices A,B
which are both within distance R.

Proof. Let C = Exact-Prod(A,B,R). For any i, j ∈ [n] and f ∈ [K],

(A(f) ? B(f))ij
= min
k∈[n]
{A(f)ik +B(f)kj}

= min
k∈[n]
{min{d1 : (d1, f1) ∈ Aik, f1 ≥ f}+ min{d2 : (d2, f2) ∈ Bkj , f2 ≥ f}}

= min
d1,d2
{d1 + d2 : ∃k ∈ [n], A(d1)

ik ≥ f,B(d2)
kj ≥ f}

= min
d1,d2
{d1 + d2 :

(
A(d1) >B(d2)

)
ij
≥ f}

= min{d′ : (d′, f ′) ∈ Cij , f ′ ≥ f} = (C(f))ij ,

thus C = A ? B by Fact 2.10. J

3.2 Approximate product for arbitrary distances
For two df -matrices A,B within distance M , we can compute an approximation of A ? B by
applying Lemma 2.3. Given a parameter R which is a power of 2, the following algorithm
computes a (1 + 4

R)-approximation of A ? B.

R. Duan and H. Ren 42:7

Algorithm 2 Approximate product of two df -matrices.
1: function Scale(a,M,R)

2: a′ =
{
dR · a/Me 0 ≤ a ≤M
+∞ otherwise

3: return a′

4: function Approx-Prod(A,B,M,R)
5: Cij ← ∅
6: for r ← blog2 Rc to dlog2 Me do
7: A

(r)
ij ← C({(Scale(d, 2r, R), f) : (d, f) ∈ Aij})

8: B
(r)
ij ← C({(Scale(d, 2r, R), f) : (d, f) ∈ Bij})

9: C(r) = Exact-Prod(A(r), B(r), R)
10: Cij ← Cij ∪ {((2r/R) · d, f) : (d, f) ∈ C(r)

ij }

11: Cij ← {C(Cij)}; return C

I Lemma 3.2. Let A,B be two df-matrices within distance M , and R a power of 2, C =
Approx-Prod(A,B,M,R), then C ≈ 4

R
A ?B. Moreover, for each i, j, |Cij | = O(R logM).

Proof. Fix f ∈ [K]. Then A(r)(f) = Scale(A(f), 2r, R), B(r)(f) = Scale(B(f), 2r, R). By
Lemma 3.1,

C(f) = min
blog2 Rc≤r≤dlog2 Me

{(2r/R) · (A(r)(f) ? B(r)(f))}.

From Lemma 2.3, C(f) ≈ 4
R
A(f) ? B(f) for all f . The lemma is immediate from Fact 2.10.

The “moreover” part holds since |Cij | ≤
∑dlog2 Me
r=blog2 Rc

|C(r)
ij | ≤ 2Rdlog2 Me for any i, j. J

3.3 Main procedure
Consider an instance G of APSP-AF problem, we represent G as a df -matrix A: Aij is the
set of all (d, f) such that there is an edge from i to j with length d and capacity f . Given
ε > 0, the following algorithm computes a df -matrix that approximates answers of APSP-AF
problem within a stretch of 1 + ε.

Algorithm 3 the main procedure
1: function APSP-AF-Approx(A,W, ε)
2: M ← nW

3: R← 4dlog2 ne/ ln(1 + ε)
4: R← 2dlog2 Re

5: D̃
(0)
ij ← Aij

6: D̃
(0)
ii ← {(0,K)}

7: for t = 1 to dlog2 ne do
8: D̃(t) ← Approx-Prod(D̃(t−1), D̃(t−1),M,R)
9: return D̃(dlog2 ne)

I Theorem 3.3. For a graph G, let A be the df-matrix representing G as above, D be the
df-matrix such that D(f)ij is the shortest distance from i to j under flow constraint f in G,
and D̃ = APSP-AF-Approx(A,W, ε). Then D̃ ≈ε D. Moreover, APSP-AF-Approx runs
in Õ(n(ω+3)/2ε−2 logW) time, and D̃ occupies O(n2ε−1 logn log(nW)) space.

ICALP 2018

42:8 Approximating apBLSP and APSP-AF in Truly-Subcubic Time

Proof. The time bottleneck of APSP-AF-Approx is O(log(nW)) invocations of Exact-
Prod, which runs in Õ(n(ω+3)/2R2) time. From Lemma 3.2, for each i, j, we have |D̃ij | =
O(R log(nW)). Since R = O(ε−1 logn), the “moreover” part is proved.

Let D(t)
ij (f) be the shortest distance from i to j under flow constraint f , where only

paths of ≤ 2t edges are considered. Then D(t) = D(t−1) ? D(t−1), D̃(t) ≈ 4
R
D̃(t−1) ? D̃(t−1)

(by Lemma 3.2), and D(0) = D̃(0). We can prove by induction that D̃(t) is a (1 + 4
R)t-

approximation of D(t). Base case (t = 0) is obvious; suppose this is true for t0, let
D̂(t0+1) = D̃(t0) ? D̃(t0), then D̂(t0+1) is a (1 + 4

R)t0-approximation of D(t0+1) by induction
hypothesis and Fact 2.12. Since D̃(t0+1) ≈ 4

R
D̂(t0+1), D̃(t0+1) is a (1+ 4

R)(t0+1)-approximation
of D(t0+1) by Fact 2.11.

Since

(
1 + 4

R

)dlog2 ne

≤
(

1 + ln(1 + ε)
dlog2 ne

)dlog2 ne

≤ 1 + ε,

D̃ = D̃(dlog2 ne) is a (1 + ε)-approximation of D. J

3.4 Computing witnesses

Our algorithm can be adapted to answer path queries in addition to distance queries: given
i, j ∈ [n] and f ∈ [K], we not only find the approximated distance from i to j under flow
constraint f , but also find an actual path with that distance. Suppose the path contains `
vertices, then a query takes O(` log log1+ε(nW)) time to report the whole path.

First we notice that the max-min product algorithm in [8] can be modified to return
witnesses of max-min product:

I Lemma 3.4 ([8]). For two n×n matrices A,B, a pair of matrices (C,W) can be computed
in O(n(ω+3)/2) time, where C = A > B and for any i, j ∈ [n], suppose k = Wij, then
Cij = min{Aik, Bkj}. We call W a witness of A>B.

We attach a node in the graph as additional information to every df -pair we encounter.
For a df -pair representing a path p from i to j, suppose node x is attached to it, then x is
on p. Moreover, if x = i or x = j, then p contains at most one edge. More precisely:

In Algorithm 1, we compute a witness matrix W besides computing C ′ = A(d1) >B(d2).
Each df -pair (d1 + d2, C

′
ij) in line 8 is attached with Wij ;

In Algorithm 2, line 10, the node attached with ((2r/R) · d, f) is the same as the node
attached with (d, f);

In Algorithm 3, line 6, the node attached with (0,K) ∈ D̃(0)
ii is i.

It is easy to see from above modifications that, suppose node x is attached with (d, f) ∈
D̃ij , then there is a path from i to j with distance ≤ d, flow ≥ f which passes through
node x.

We give a simple recursive algorithm that, based on nodes attached to df -pairs in the
data structure, find the whole path for a query (u, v, f).

R. Duan and H. Ren 42:9

Algorithm 4 Path querying
1: function Query(u, v, f)
2: (d′, f ′)← arg min{d′ : (d′, f ′) ∈ D̃uv, f

′ ≥ f}
3: x← the node attached with (d′, f ′)
4: if x = u or x = v then
5: return edge u→ v

6: else
7: return Query(u, x, f)+Query(x, v, f)

4 Faster Implementation of Exact Product

In this section we show how to multiply two df -matrices within distance R in Õ(n(ω+3)/2R3/2)
time. This implies an Õ(n(ω+3)/2ε−3/2 logW) time algorithm for the original APSP-AF
approximation problem.

The idea is to look into details of the max-min product algorithm in [8]. The task of
computing max-min product of two matrices can be composed into O(t) Boolean matrix
multiplications and O(n3/t) extra work, so in our case we have O(tR2) matrix multiplications
and O(R2n3/t) extra work. However, these O(tR2) matrix multiplications can be expressed
as O(t) distance products of matrices whose elements are in [R], thus can be accelerated by
Zwick’s algorithm for distance product [17] to run in Õ(tRnω) time.

I Lemma 4.1 ([17]). The distance product of two n× n matrices whose entries are in [M]
can be computed in Õ(Mnω) time.

4.1 Row-balancing and column-balancing
The max-min product algorithm in [8] uses the concept of row-balancing and column-
balancing. The function of row (column)-balancing is to rearrange the entries of a sparse
matrix such that every row (column) has a moderate number of entries. We adapt this
technique to df -matrices here.

I Definition 4.2. Let A be an n × n df -matrix where m =
∑
i,j∈[n] |Aij |. We define the

row-balancing of A, denoted by rb(A), as a pair of n× n df -matrices (A′, A′′), where each
row of A′ or A′′ contains at most k = dm/ne df -pairs in total. More precisely, we first sort all
df -pairs in the i-th row of A by ascending order of f values, and partition them into blocks
of size ≤ k: T 1

i , T
2
i , . . . , T

ai
i . The last block T ai

i has at most k df -pairs, and other blocks
have exactly k df -pairs. We define A′ to contain all entries in the last block: A′ij = Aij ∩ T ai

i .
Since

∑
i∈[n](ai− 1) ≤ m/k ≤ n, we can rearrange all T ji (1 ≤ j < ai) into n distinct rows, by

selecting an injection ρ : {(i, j) : i ∈ [n], j ∈ [ai − 1]} → [n]. Then we define A′′ij = Ai′j ∩ T qi′
where (i′, q) = ρ−1(i).

The column-balancing of A, denoted by cb(A), is a pair of n × n df -matrices (A′, A′′)
such that (A′>, A′′>) = rb(A>).

4.2 Dominance product
I Definition 4.3. The dominance product of two df -matrices A,B, denoted as A < B, is
defined as (A<B)ij = min{d1 + d2 : (d1, f1) ∈ Aik, (d2, f2) ∈ Bkj , f1 ≤ f2}.

There is also a “3-layer graph interpretation” of the dominance product of two df -matrices:
consider a graph G = (V,E) where V = {u1, u2, . . . , un, v1, v2, . . . , vn, w1, w2, . . . , wn}. Let

ICALP 2018

42:10 Approximating apBLSP and APSP-AF in Truly-Subcubic Time

A be the df -matrix representing edges among {ui} and {vk}: for all (d, f) ∈ Aik, there is
an edge with length d and capacity f from ui and vk. Similarly let B be the df -matrix
representing edges among {vk} to {wj}. Let C = A<B, then Cij is the minimum distance
of a path from ui to wj , where it’s required that the capacity of the first edge is no more
than the capacity of the second edge.

I Lemma 4.4. Given two df-matrices A,B within distance R, let m1 =
∑
i,j∈[n] |Aij |,

m2 =
∑
i,j∈[n] |Bij |. The dominance product A<B can be computed in Õ(m1m2/n+Rnω)

time.

Proof. Let (A′, A′′) = cb(A), the column-balancing of A. Define two (scalar) matrices Ã
and B̃:

Ãik = min{d : (d, f) ∈ A′′ik}, B̃kj = min{d : (d, f) ∈ Bk′j , f ≥ max flow of T q
′

k′ },

where (k′, q′) = ρ−1(k). Note that (Ã ? B̃)ij is the smallest d1 + d2 such that:
(d1, f1) ∈ Aik′ , (d2, f2) ∈ Bk′j ;
(d1, f1) ∈ T q

′

k′ , q′ < ak′ , and f2 dominates all flows in T q
′

k′ .

What we haven’t considered are pairs (d1, f1) ∈ Aik′ and (d2, f2) ∈ Bk′j such that (d1, f1)
is contained in the largest part of column k′, or f2 is smaller than the largest flow in T q

′

k′ ,
that is, f1 and f2 locate in the same “block”. In either cases, for any (d2, f2) there are
only O(m1/n) entries in A′ or A′′ to compare. The time complexity for distance product is
Õ(Rnω), and the time complexity for the rest pairs are O(m1m2/n). J

4.3 Faster exact product
I Theorem 4.5. Given two df-matrices A,B within distance R, their product A ? B can be
computed in Õ(n(ω+3)/2R3/2) time.

Proof. Let D(d)
ij = max{f1 : d1 + d2 = d, f1 ≤ f2, (d1, f1) ∈ Aik, (d2, f2) ∈ Bkj} and

D
′(d)
ij = max{f2 : d1 + d2 = d, f1 ≥ f2, (d1, f1) ∈ Aik, (d2, f2) ∈ Bkj}, then (A ? B)ij =
C
(⋃

d

{
(d,max{D(d)

ij , D
′(d)
ij })

})
. We show D(d) for all 0 ≤ d ≤ 2R can be computed in

Õ(n(ω+3)/2R3/2) total time; D′(d) is similar.
Sort all df -pairs of A and B by their f values in increasing order, and then partition

this sorted list into t parts L1, L2, . . . , Lt, where each part has O(n2R/t) elements. Let
A

(r)
ij = Aij ∩ Lr, B(r)

ij = Bij ∩ Lr for 1 ≤ r ≤ t. For each r we let (A′(r), A′′(r)) = rb(A(r)),
and compute A(r) <B, A′(r) <B, A′′(r) <B. For each d, i, j, we can compute D(d)

ij as follows:
1. We first determine which part D(d)

ij lies in, i.e. find the largest r such that (A(r) <B)ij ≤ d;
2. If (A′(r) <B)ij ≤ d, then we only need to consider k where A′(r)

ik 6= ∅ to determine D(d)
ij ;

3. Otherwise, we find the largest q such that (A′′(r) <B)ρ(i,q),j ≤ d, and determine D(d)
ij by

looking through the q-th part of i-th row of A(r).

The above procedure takes O(nR/t) time for each d, i, j. We compute A(r) < B in
Õ(n3R2/t2 + Rnω) time as follows. Let f ′ = min{f : (d, f) ∈ Lr+1}, then A(r) < B =
min{A(r) < B(r), A(r)(0) ? B(f ′)}. The A(r) < B(r) part considers comparisons inside Lr,
which we compute in Õ((n2R/t)2/n + Rnω) time by Lemma 4.4; the A(r)(0) ? B(f ′) part
represents comparisons between Lr and

⋃
r<r′≤t Lr′ , and is simply a distance product

computable in Õ(Rnω) time. We can compute A′(r) <B and A′′(r) <B similarly as we did
in A(r) < B. Therefore, we spend Õ(n3R2/t + tRnω) time in total for all 1 ≤ r ≤ t. The
theorem follows by setting t = n(3−ω)/2R1/2. J

R. Duan and H. Ren 42:11

4.4 Computing witnesses
We modify this algorithm to support path queries as in Section 3.4. We call k ∈ [n] is a
witness of D(d)

ij if there is (d1, f1) ∈ Aik, (d2, f2) ∈ Bkj such that d1 + d2 = d, f1 ≤ f2 and
D

(d)
ij = f1. For any d, i, j, a witness of D(d)

ij can be found by step 2,3 when computing D(d)
ij .

Similarly we can find witnesses of D′(d)
ij . For each d, i, j, if D(d)

ij ≥ D
′(d)
ij , attach the witness

of D(d)
ij to the df -pair (d,D(d)

ij); otherwise attach the witness of D′(d)
ij to the df -pair (d,D′(d)

ij).
The time complexity remains the same.

5 Conclusions

Our work shows that the apBLSP and APSP-AF problem can be approximated within a
stretch of (1 + ε) in Õ(n(ω+3)/2ε−3/2 logW) time. Also, a faster algorithm for max-min
product would imply a faster algorithm for approximating APSP-AF problem. In this sense,
since approximating APSP-AF is at least as hard as max-min product, our algorithm is
optimal up to Õ(poly(ε−1) logW) factors.

We think the main open problem left by our work is to further improve the dependence on
ε. Can the APSP-AF problem be approximated in, say, Õ(n(ω+3)/2ε−1 logW) time? There
is an ε−1/2 gap here, and we might need a more refined approach to fill this gap.

References
1 Giorgio Ausiello, Giuseppe F Italiano, Alberto Marchetti Spaccamela, and Umberto Nanni.

Incremental algorithms for minimal length paths. Journal of Algorithms, 12(4):615–638,
1991.

2 Surender Baswana, Ramesh Hariharan, and Sandeep Sen. Improved decremental algorithms
for maintaining transitive closure and all-pairs shortest paths. Journal of Algorithms,
62(2):74–92, 2007.

3 Aaron Bernstein. Maintaining shortest paths under deletions in weighted directed graphs.
SIAM Journal on Computing, 45(2):548–574, 2016.

4 Prosenjit Bose, Anil Maheshwari, Giri Narasimhan, Michiel Smid, and Norbert Zeh. Ap-
proximating geometric bottleneck shortest paths. Computational Geometry, 29(3):233–249,
2004.

5 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9(3):251–280, 1990.

6 Camil Demetrescu and Giuseppe F Italiano. Dynamic shortest paths and transitive closure:
Algorithmic techniques and data structures. Journal of Discrete Algorithms, 4(3):353–383,
2006.

7 Ran Duan and Seth Pettie. Bounded-leg distance and reachability oracles. In Proceedings
of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 436–445.
Society for Industrial and Applied Mathematics, 2008.

8 Ran Duan and Seth Pettie. Fast algorithms for (max, min)-matrix multiplication and
bottleneck shortest paths. In Twentieth Acm-Siam Symposium on Discrete Algorithms,
SODA 2009, New York, Ny, Usa, January, pages 384–391, 2009.

9 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proceedings of the forty-seventh annual ACM sym-
posium on Theory of computing, pages 21–30. ACM, 2015.

10 Daniel P Martin. Dynamic shortest path and transitive closure algorithms: A survey. arXiv
preprint arXiv:1709.00553, 2017.

ICALP 2018

42:12 Approximating apBLSP and APSP-AF in Truly-Subcubic Time

11 Liam Roditty and Michael Segal. On bounded leg shortest paths problems. In Proceedings
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 775–784.
Society for Industrial and Applied Mathematics, 2007.

12 Tong-Wook Shinn and Tadao Takaoka. Efficient graph algorithms for network analysis.
In First International Conference on Resource Efficiency in Interorganizational Networks-
ResEff 2013, page 236, 2013.

13 Tong-Wook Shinn and Tadao Takaoka. Combining all pairs shortest paths and all pairs
bottleneck paths problems. In Latin American Symposium on Theoretical Informatics,
pages 226–237. Springer, 2014.

14 Tong-Wook Shinn and Tadao Takaoka. Combining the shortest paths and the bottle-
neck paths problems. In Proceedings of the Thirty-Seventh Australasian Computer Science
Conference-Volume 147, pages 13–18. Australian Computer Society, Inc., 2014.

15 Tong-Wook Shinn and Tadao Takaoka. Variations on the bottleneck paths problem. Theor-
etical Computer Science, 575:10–16, 2015. Special Issue on Algorithms and Computation.

16 Virginia Vassilevska, Ryan Williams, and Raphael Yuster. All-pairs bottleneck paths for
general graphs in truly sub-cubic time. In Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, pages 585–589. ACM, 2007.

17 Uri Zwick. All pairs shortest paths in weighted directed graphs – exact and almost exact
algorithms. In Foundations of Computer Science, 1998. Proceedings. Symposium on, pages
310–319, 1998.

	Introduction
	Preliminaries
	Matrix products
	The distance/flow pairs and their operations

	Main Algorithm
	Exact product for small distances
	Approximate product for arbitrary distances
	Main procedure
	Computing witnesses

	Faster Implementation of Exact Product
	Row-balancing and column-balancing
	Dominance product
	Faster exact product
	Computing witnesses

	Conclusions

