
Hanani–Tutte for Approximating Maps of Graphs
Radoslav Fulek1

IST Austria
Am Campus 1, 3400 Klosterneuburg, Austria
radoslav.fulek@ist.ac.at

https://orcid.org/0000-0001-8485-1774

Jan Kynčl2

Department of Applied Mathematics and Institute for Theoretical Computer Science, Charles
University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
kyncl@kam.mff.cuni.cz

https://orcid.org/0000-0003-4908-4703

Abstract
We resolve in the affirmative conjectures of A. Skopenkov and Repovš (1998), and M. Skopenkov
(2003) generalizing the classical Hanani–Tutte theorem to the setting of approximating maps of
graphs on 2-dimensional surfaces by embeddings. Our proof of this result is constructive and
almost immediately implies an efficient algorithm for testing whether a given piecewise linear
map of a graph in a surface is approximable by an embedding. More precisely, an instance of this
problem consists of (i) a graph G whose vertices are partitioned into clusters and whose inter-
cluster edges are partitioned into bundles, and (ii) a region R of a 2-dimensional compact surface
M given as the union of a set of pairwise disjoint discs corresponding to the clusters and a set
of pairwise disjoint “pipes” corresponding to the bundles, connecting certain pairs of these discs.
We are to decide whether G can be embedded inside M so that the vertices in every cluster are
drawn in the corresponding disc, the edges in every bundle pass only through its corresponding
pipe, and every edge crosses the boundary of each disc at most once.
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1 Introduction

The Hanani–Tutte theorem is a classical result [20, 32] stating that a graph G is planar
if it can be drawn in the plane so that every pair of edges not sharing a vertex cross an
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even number of times. According to Schaefer [29, Remark 3.6], “The planarity criterion
of Hanani–Tutte brings together computational, algebraic and combinatorial aspects of the
planarity problem.” Perhaps the most remarkable algorithmic aspect of this theorem is that
it implies the existence of a polynomial-time algorithm for planarity testing [28, Section
1.4.2]. In particular, the Hanani–Tutte theorem reduces planarity testing to solving a system
of linear equations over Z2.

Seeing a graph G as a 1-dimensional topological space, an embeddability-testing algorithm
decides whether there exists an injective continuous map, also called an embedding, ψ : G→
M , where M is a given triangulated compact 2-dimensional manifold without boundary. It is
a classical result of Hopcroft and Tarjan that graph embeddability in the plane can be tested
in linear time [22], and a linear-time algorithm is also known for testing whether G can be
embedded into an arbitrary compact 2-dimensional manifold M [24], though computing the
orientable genus (as well as Euler genus and non-orientable genus) of a graph is NP-hard [31].
We study a variant of this algorithmic problem in which we are given a piecewise linear
continuous map ϕ : G → M , which is typically not an embedding, and we are to decide
whether for every ε > 0 there exists an embedding ψ : G→M such that ‖ψ−ϕ‖ < ε, where
‖.‖ is the supremum norm. Such a map ψ is called an ε-approximation of ϕ, and in this case
we say that ϕ is approximable by an embedding; or as in [2], a weak embedding. If ϕ is a
constant map, the problem is clearly equivalent to the classical planarity testing. Obviously,
an instance of our problem is negative if there exists a pair of edges e and g in G such that
the curves ϕ(e) and ϕ(g) induced by ϕ properly cross. Hence, in a typical instance of our
problem the map ϕ somewhat resembles an embedding except that we allow a pair of edges
to overlap and an edge to be mapped onto a single point.

Building upon the work of Minc [23], M. Skopenkov [30] gave an algebraic characterization
via van Kampen obstructions of maps ϕ approximable by an embedding in the plane in the
case when G is a cycle or when G is subcubic and the image of ϕ is a simple closed curve.
This implies a polynomial-time algorithm for the decision problem in the corresponding
cases and can be seen as a variant of the characterization of planar graphs due to Hanani
and Tutte. The aim of this work is to prove a conjecture of M. Skopenkov [30, Conjecture
1.6] generalizing his results along with its algorithmic consequences to arbitrary graphs.
Independently of the aforementioned developments, a series of recent papers [1, 7, 9] on
weakly simple embeddings shows that the problem of deciding the approximability of ϕ by an
embedding is tractable and can be carried out in O(|ϕ| log |ϕ|) time, where |ϕ| is the number
of line segments specifying ϕ.

In spite of the analytic definition, the algorithmic problem of deciding whether ϕ is
approximable by an embedding admits a polynomially equivalent reformulation that is of
combinatorial flavor and that better captures the essence of the problem. Therefore we state
our results in terms of the reformulation, whose planar case is a fairly general restricted
version of the c-planarity problem [10, 11] of Feng, Cohen and Eades introduced by Cortese
et al. [9]. The computational complexity of c-planarity testing is a well-known notoriously
difficult open problem in the area of graph visualization [8]. To illustrate this state of affairs
we mention that Angelini and Da Lozzo [5] have recently studied our restricted variant (as
well as its generalizations) under the name of c-planarity with embedded pipes and provided
an FPT algorithm for it [5, Corollary 18].

Roughly speaking, in the clustered planarity problem, shortly c-planarity, we are given
a planar graph G equipped with a hierarchical structure of subsets of its vertex set. The
subsets are called clusters, and two clusters are either disjoint or one contains the other. The
question is whether a planar embedding of G with the following property exists: the vertices
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in each cluster are drawn inside a disc corresponding to the cluster so that the boundaries of
the discs do not intersect, the discs respect the hierarchy of the clusters, and every edge in
the embedding crosses the boundary of each disc at most once.

Notation. Let us introduce the notation necessary for precisely stating the problem that we
study. Let G = (V,E) be a multigraph without loops. If we treat G as a topological space,
then a drawing ψ of G is a piecewise linear map from G into a triangulated 2-dimensional
manifold M where every vertex in V (G) is mapped to a unique point and every edge e ∈ E
joining u and v is mapped bijectively to a simple arc joining ψ(u) and ψ(v). We understand
E as a multiset, and by a slight abuse of notation we refer to an edge e joining u and v as
uv even though there might be other edges joining the same pair of vertices. Multiple edges
are mapped to distinct arcs meeting at their endpoints. Given a map m we denote by m|X ,
where X is a subset of the domain of m, the function obtained from m by restricting its
domain to X. If H is a graph equipped with an embedding, we denote by H|X , where X is
a subgraph of H, the graph X with the embedding inherited from H.

If it leads to no confusion, we do not distinguish between a vertex or an edge and its
image in the drawing and we use the words “vertex” and “edge” in both contexts. Also when
talking about a drawing we often mean its image.

We assume that drawings satisfy the following standard general position conditions. No
edge passes through a vertex, every pair of edges intersect in finitely many points, no three
edges intersect at the same inner point, and every intersection point between a pair of edges
is realized either by a proper crossing or a common endpoint. Here, by a proper crossing we
mean a transversal intersection that is a single point.

An embedding of a graph G is a drawing of G in M without crossings. The rotation
at a vertex v in a drawing of G is the clockwise cyclic order of the edges incident to v in
a small neighborhood of v in the drawing w.r.t a chosen orientation at the vertex. The
rotation system of a drawing of G is the set of rotations of all the vertices in the drawing.
The embedding of G is combinatorially determined by the rotation system and consistently
chosen orientations at the vertices if M is orientable. If M is non-orientable we need to
additionally specify the signs of the edges as follows. We assume that M is constructed from
a punctured 2-sphere by turning all the holes into cross-caps, i.e., by identifying the pairs of
opposite points on every hole. A sign on an edge is positive if overall the edge passes an
even number of times through the cross-caps, and negative otherwise.

Refer to Figure 1. We refer the reader to the monograph by Mohar and Thomassen [25]
for a detailed introduction into surfaces and graph embeddings. Let ϕ : G → M be a
piecewise linear map with finitely many linear pieces. Suppose that ϕ is free of edge crossings,
and in ϕ, edges do not pass through vertices. As we will see later, the image of ϕ can be
naturally identified with a graph H embedded in M . Throughout the paper we denote both
vertices and edges of H by Greek letters. Let the thickening H of H be a 2-dimensional
surface with boundary obtained as a quotient space of a union of pairwise disjoint topological
discs as follows. We take a union of pairwise disjoint closed discs D(ν), called clusters, for
all ν ∈ V (H) and closed rectangles P(ρ), called pipes, for all ρ ∈ E(H). We connect every
pair of discs D(ν) and D(µ), such that ρ = νµ ∈ E(H), by P(ρ) in correspondence with the
rotations at vertices of the given embedding of H as described next. Let ∂X denote the
boundary of X. We consider a subset of ∂D(ν), for every ν ∈ V (H), consisting of deg(ν)
pairwise disjoint closed (non-trivial) arcs A(ν, µ), one for every νµ ∈ E(H), appearing along
∂D(ν) in correspondence with the rotation of ν. For every D(ν), we fix an orientation of
∂D(ν) and ∂P(νµ).

SoCG 2018
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G
H

H

D(ν)
D(µ)

ν
µ

Figure 1 An instance (G,H,ϕ) and its approximation by an embedding contained in the thickening
H of H. The valves of the pipe of ρ = νµ at D(ν) and D(µ) are highlighted by bold arcs.

IfM is orientable, for every P(νµ), we identify by an orientation reversing homeomorphism
its opposite sides with A(ν, µ) and A(µ, ν) w.r.t. the chosen orientations of ∂D(ν), ∂D(µ),
and ∂P(νµ). If M is non-orientable, for every P(νµ) with the positive sign we proceed as in
the case when M is orientable and for every every P(νµ) with the negative sign, we identify
by an orientation preserving homeomorphism its opposite sides with A(ν, µ) and A(µ, ν)
w.r.t. the chosen orientations of ∂D(ν) and ∂P(νµ), and the reversed orientation of ∂D(µ).
We call the intersection of ∂D(ν) ∩ ∂P(νµ) a valve of νµ.

Instance. An instance of the problem that we study is defined as follows. The instance is a
triple (G,H,ϕ) of an (abstract) graph G, a graph H embedded in a closed 2-dimensional
manifold M , and a map ϕ : V (G) → V (H) such that every pair of vertices joined by
an edge in G are mapped either to a pair of vertices joined by an edge in H or to the
same vertex of H. We naturally extend the definition of ϕ to each subset U of V (G)
by putting ϕ(U) = {ϕ(u)| u ∈ U}, and to each subgraph G0 of G by putting ϕ(G0) =
(ϕ(V (G0)), {ϕ(e)| e ∈ E(G0), |ϕ(e)| = 2}). The map ϕ induces a partition of the vertex set
of G into clusters Vν , where Vν = ϕ−1[ν].

Question. Decide whether there exists an embedding ψ of G in the interior of a thickening
H of H so that the following hold.

(A) Every vertex v ∈ Vν is drawn in the interior of D(ν), i.e., ψ(v) ∈ int(D(ν)).
(B) For every ν ∈ V (H), every edge e ∈ E(G) intersecting ∂D(ν) does so in a single proper

crossing, i.e., |ψ(e) ∩ ∂D(ν)| ≤ 1.

Note that conditions (A) and (B) imply that every edge of G is allowed to pass through
at most one pipe as long as G is drawn in H. The instance is positive if an embedding ψ of
G satisfying (A) and (B) exists and negative otherwise. If (G,H,ϕ) is a positive instance we
say that (G,H,ϕ) is approximable by the embedding ψ, shortly approximable. We call ψ the
approximation of (G,H,ϕ). When the instance (G,H,ϕ) is clear from the context, we call ψ
the approximation of ϕ.

The instance (G,H,ϕ), or shortly ϕ, is locally injective if for every vertex v ∈ V (G), the
restriction of ϕ to the union of v and the set of its neighbors is injective, or equivalently, no
two vertices that are adjacent or have a common neighbor in G are mapped by ϕ to the same
vertex in H. An edge of G is a pipe edge if it is mapped by ϕ to an edge of H. When talking
about pipe edges, we have a particular instance in mind, which is clear from the context.



R. Fulek and J. Kynčl 39:5

The pipe degree, pdeg(C), of a subgraph C of G[Vν ] is the number of edges ρ of H for which
there exists a pipe edge e with one vertex in C such that ϕ(e) = ρ.

1.1 The result
An edge in a drawing is even if it crosses every other edge an even number of times. A vertex
in a drawing is even if every pair of its incident edges cross an even number of times. An edge
in a drawing is independently even if it crosses every other non-adjacent edge an even number
of times. A drawing of a graph is (independently) even if all edges are (independently) even.
Note that every embedding is an even drawing.

We formulate our main theorem in terms of a relaxation of the notion of an approximable
instance (G,H,ϕ). An instance (G,H,ϕ) is Z2-approximable if there exists an independently
even drawing of G in the interior of H satisfying (A) and (B). We call such a drawing a
Z2-approximation of (G,H,ϕ). The proof of the Hanani–Tutte theorem from [26] proves
that given an independently even drawing of a graph in the plane, there exists an embedding
of the graph in which the rotations at even vertices are preserved, that is, they are the
same as in the original independently even drawing. We refer to this statement as to the
unified Hanani–Tutte theorem [14]. Our result can be thought of as a generalization of this
theorem, which also motivates the following definition. A drawing ψ of G is compatible with
a drawing ψ0 of G if every even vertex in ψ0 is also even in ψ and has the same rotation in
both drawings ψ0 and ψ.3

It is known that Z2-approximability of (G,H,ϕ) does not have to imply its approximability
by an embedding [27, Figure 1(a)]. Our main result characterizes the instances (G,H,ϕ) for
which such implication holds. The characterization is formulated in terms of the derivative
of (G,H,ϕ), whose formal definition is postponed to Section 2, since its definition relies
on additional concepts that we need to introduce, which would unnecessarily further delay
stating of our main result.

I Theorem 1. If an instance (G,H,ϕ) is Z2-approximable by an independently even drawing
ψ0 then either (G,H,ϕ) is approximable by an embedding ψ compatible with ψ0, or it is
not approximable by an embedding and in the ith derivative (G(i), H(i), ϕ(i)), for some
i ∈ {1, 2, . . . , 2|E(G)|}, there exists a connected component C ⊆ G(i) such that C is a cycle,
ϕ(i) is locally injective and (C,H(i)|ϕ(i)(C), ϕ

(i)|C) is not approximable by an embedding.

The obstruction (C,H(i)|ϕ(i)(C), ϕ
(i)|C) from the statement of the theorem has the form

of the “standard winding example” [27, Figure 1(a)], in which the cycle C is forced by ϕ(i)

to wind around a point inside a face of H more than once (and an odd number of times,
since it has a Z2-approximation). Our main result implies the following.

I Corollary 2. If G is a forest, the Z2-approximability implies approximability by an embed-
ding.

Theorem 1 confirms a conjecture of M. Skopenkov [30, Conjecture 1.6], since our definition
of the derivative agrees with his definition in the case when G is a cycle and since for
every cycle C in G(i) there exists a cycle D in G such that (D(i), H(i)|ϕ(D(i)), ϕ

(i)|D(i)) =
(C,H(i)|ϕ(i)(C), ϕ

(i)|C). Corollary 2 confirms a conjecture of Repovš and A. Skopenkov [27,
Conjecture 1.8]. The main consequence of Theorem 1 is the following.

3 Since in general we work also with non-orientable surfaces the rotation is determined only up to the
choice of an orientation at each vertex for non-orientable surfaces.

SoCG 2018
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I Theorem 3. We can test in O(|ϕ|2ω), where O(nω) is the complexity of multiplication4 of
square n× n matrices, whether (G,H,ϕ) is approximable by an embedding.

Theorem 3 implies tractability of c-planarity with embedded pipes [9] and therefore
solves a related open problem of Chang, Erickson and Xu [7, Section 8.2] and Akitaya et
al. [1]. The theorem also implies that strip planarity introduced by Angelini et al. [3] is
tractable, and hence, solves the main problem asked therein. The theorem generalizes results
of [13] and [17], and implies that c-planarity [10, 11] for flat clustered graphs is tractable for
instances with three clusters, which has been open, to the best of our knowledge. We remark
that only solutions to the problem for two clusters were given so far [6, 19, 21]. Nevertheless,
after the completion of this work our running time was improved to O(|ϕ|2 log |ϕ|) [2]. The
improvement on the running time was achieved by using a similar strategy as in the present
work, while eliminating the need to solve the linear system and employing a very careful
running time analysis. Previously, polynomial running time O(|ϕ|4) was obtained by the
first author [12] for graphs with fixed combinatorial embedding.

We mention that Theorem 1 and Theorem 3 easily generalize to the setting when clusters
are homeomorphic to cylinders and H is homeomorphic to a torus or a cylinder, which
extends some recent work [4, 15, 16]. It is an interesting open problem to find out if the
technique of [2] generalizes to this setting as well.

Our proof of Theorem 1 extends the technique of Minc [23] and M. Skopenkov [30].
In particular, we extend the definition of the derivative for maps of graphs to instances
in a certain normal form which can be assumed without loss of generality. Roughly, the
derivative is an operator that takes an input instance (G,H,ϕ) and produces a simpler
instance (G′, H ′, ϕ′) that is positive if and only (G,H,ϕ) is. We remark that the operations
of cluster expansion and pipe contraction of Cortese et al. [9] bear many similarities with
the derivative, and can be considered as local analogs of the derivative. One of the reasons
for introducing the normal form is to impose on the instance conditions analogous to the
properties of a contractible base [9], or a safe pipe [2], which make the derivative reversible.

Organization. In Section 2, we define the normal form of instances and the operation of
the derivative for instances in the normal form. Furthermore, we state a claim (Claim 8)
saying that for any instance admitting a Z2-approximation there exists, in some sense, an
equivalent instance in the normal form. Thus, it is enough to define the derivative only for
instances in the normal form. In Section 3, we prove Theorem 1.

2 Normal form and derivative

Normal form. We define the normal form of an instance (G,H,ϕ) to which we can apply
the derivative. In order to keep the definition more compact we define the normal form via
its topologically equivalent subdivided variant; see Figure 2 for an illustration. This variant
also facilitates the definition of the derivative and those are its only purposes in this work.
Roughly speaking, (G,H,ϕ) is in the subdivided normal form if there exists an independent
set Vs ⊂ V (G) without degree-1 vertices such that every connected component C of G[V \Vs]
is mapped by ϕ to an edge ϕ(C) = νµ of H and both its parts mapped to ν and µ are forests.

4 The best current algorithms for matrix multiplication give ω < 2.3729 [18, 34]. Since a linear system
appearing in the solution is sparse, it is also possible to use Wiedemann’s randomized algorithm [33],
with expected running time O(|ϕ|4 log |ϕ|2) in our case.
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D(ν)

C
ϕ(C)

vs D(ν)

St(vs)

vs

Figure 2 A part of (G,H,ϕ) in the subdivided normal form illustrated by its approximation in
H. A connected component C of G[V \ Vs] (left) and St(vs) (right), both colored gray. The empty
vertices belong to the independent set Vs ⊂ V (G).

We call vertices in Vs central vertices, which conveys an intuition that every vertex of Vs
constitutes in some sense a center of a connected component induced by a cluster.

The normal form is obtained from the subdivided normal form by suppressing in Vs any
vertices of degree 2, i.e., by replacing each such vertex vs and both its incident edges by a
single edge, and performing the same replacement for ϕ(vs) which must be also of degree 2;
see Figure 3 left for an illustration.

I Definition 4. The instance (G,H,ϕ) is in the subdivided normal form if there exists an
independent set Vs ⊂ V (G) with the following properties.
For every connected component C of G[V \ Vs] the image ϕ(C) is an edge of E(H); and
ϕ−1|ν [ϕ(C)] is a forest for both vertices ν ∈ ϕ(C). For every connected component C of
G[Vν ], for every ν ∈ V (H) the following holds. If pdeg(C) ≥ 2 then |V (C) ∩ Vs| = 1, and
V (C) ∩ Vs = ∅ otherwise; for every vs ∈ Vs ∩ V (C) we have that deg(vs) = pdeg(C); and no
two edges incident to vs join vs with connected components C1 and C2 of G[V \ Vs] such
that ϕ(C1) = ϕ(C2).

The instance obtained from an instance (G,H,ϕ) in the subdivided normal form by
suppressing all degree-2 vertices in Vs is in the normal form. Such an instance in the normal
form corresponds to the original instance (G,H,ϕ) in the subdivided normal form, and
vice-versa.

Derivative. The rest of the section is inspired by the work of M. Skopenkov [30] and also
Minc [23]. In particular, the notion of the derivative in the context of map approximations
was introduced by Minc and adapted to the setting of Z2-approximations by M. Skopenkov
for instances (G,H,ϕ) where G is subcubic and H is a cycle. We extend his definition to
instances (G,H,ϕ) in the normal form. (A somewhat simplified extension was already used
in [12].) Thus, by derivating (G,H,ϕ) we, in fact, mean bringing the instance (G,H,ϕ) into
the normal form and then derivating the instance in the normal form. Given the instance
(G,H,ϕ) in the normal form or the subdivided normal form already, the operation of the
derivative outputs an instance (G′, H ′, ϕ′), where G′ = G and H ′ is defined next.

In order to keep the definition more compact we formulate it first for the instances in the
subdivided normal form. Thus, in the following we assume (G,H,ϕ) to be in the subdivided
normal form.

SoCG 2018
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D(ν)vs

ϕ(C)
C ϕ(C)∗

v∗s

Figure 3 A part of (G,H,ϕ) in the normal form (left) illustrated by its approximation in H, and
its derivative (right). The empty vertices belong to the independent set Vs ⊂ V (G).

Let Vs be the set of central vertices in G. Let G be a bipartite graph with the vertex
set Vs ∪ C, where C = {C| C is a connected component of G[V \ Vs]}, in which vs ∈ Vs and
C ∈ C are joined by an edge if and only if vs is joined by an edge with a vertex of C in G.

Let the star of vs, St(vs), with vs ∈ Vs be the subgraph of G induced by {vs} ∪⋃
C∈V (G): vsC∈E(G) V (C); see Figure 2 (right) for an illustration. The vertices of H ′ are in

the bijection with the union of Vs with the set of the edges of H. This bijection is denoted
by superscript ∗. The graph H ′ is a bipartite graph with the vertex set V (H ′) = {ρ∗|ρ ∈
E(H)} ∪ {v∗s | vs ∈ Vs}. We have ρ∗v∗s ∈ E(H ′) if and only if ρ ∈ E(ϕ(St(vs))). We use
the convention of denoting a vertex in V (H ′) whose corresponding edge in E(H) is ρ = νµ

by both ρ∗ or (νµ)∗. An embedding of H ′ in M and signs on the edges of H ′, if M is
non-orientable, are naturally inherited from those of H. Figure 3 (right) illustrates the
restriction of the embedding of H ′ to its subgraph “stemming” from ν.

I Definition 5. Let (G,H,ϕ) be Z2-approximable and in the subdivided normal form. The
derivative (G,H,ϕ)′ of (G,H,ϕ) is the instance (G′, H ′, ϕ′) such that ϕ′(vs) = v∗s , for vs ∈ Vs,
and ϕ′(v) = ϕ(C)∗, for every v ∈ V (C), where C is a connected component of G[V \ Vs].
(Hence, ϕ(C) is an edge of H by the definition of the subdivided normal form.)

The derivative (G,H,ϕ)′ of (G,H,ϕ), where (G,H,ϕ) is Z2-approximable and in the
normal form, is the instance obtained from the derivative of the corresponding instance in
the subdivided normal form by suppressing every vertex vs of degree 2 in Vs and its image
ϕ(vs) in H ′, and eliminating multiple edges in H ′.

Remark. Since (G′, H ′, ϕ′) is defined only for instances in the (subdivided) normal form,
by derivating an instance, which is not in the normal form, we will mean an operation that,
first, brings the instance into the normal form, and second, applies the derivative to the
instance. We take the liberty of denoting by G′, H ′ and ϕ′ an object that does not depend
only on G,H and ϕ, respectively, but on the whole instance (G,H,ϕ).

The proof of Theorem 1 proceeds by induction on the potential p(G,H,ϕ), which is
always non-negative and is defined as follows. Let Ep(G) be the set of pipe edges in G,
we put p(G,H,ϕ) = |Ep(G)| − |E(H)|. We will show that an application of the derivative
decreases the potential unless the instance is locally injective. The latter can be thought of
as the base case of the induction. In order to prove that the inductive step goes through we
will need the following three claims.
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We show that if (G,H,ϕ) in the normal form is Z2-approximable then (G′, H ′, ϕ′) is
Z2-approximable as well. More precisely, we prove the following claim.

I Claim 6. If an instance (G,H,ϕ) in the normal form is Z2-approximable by a drawing ψ0
then (G′ = G,H ′, ϕ′) is Z2-approximable by a drawing ψ′0 such that ψ0 is compatible with
ψ′0. Moreover, if ψ0 is crossing free so is ψ′0.

The previous claim implies that if (G,H,ϕ) is approximable by an embedding the same
holds for (G′, H ′, ϕ′), which we use in the proof of Theorem 1 to conclude that if (G′, H ′, ϕ′)
is not approximable by an embedding the same holds for (G,H,ϕ). However, we need also
the converse of this to hold, which is indeed the case.

I Claim 7. If the instance (G′, H ′, ϕ′) is approximable by an embedding ψ′ compatible with
ψ′0 from Claim 6 then (G,H,ϕ) is approximable by an embedding compatible with ψ0.

We say that (Ĝ, Ĥ, ϕ̂, ψ̂0) is a clone of (G,H,ϕ, ψ0) if the following holds. If (Ĝ, Ĥ, ϕ̂)
is approximable by an embedding compatible with ψ̂0 then (G,H,ϕ) is approximable by
an embedding compatible with ψ0; and if (G,H,ϕ) is approximable by an embedding then
(Ĝ, Ĥ, ϕ̂) is approximable by an embedding. Note that being a clone is a transitive relation.
However, the relation is not symmetric, and thus, it is not an equivalence relation.

Due to the following claim, it is indeed enough to work with instances in the normal form
in Claim 6.

I Claim 8. Given a Z2-approximation ψ0 of (G,H,ϕ) there exist an instance (Ĝ, Ĥ, ϕ̂)
in the normal form that is Z2-approximable, such that p(G,H,ϕ) = p(Ĝ, Ĥ, ϕ̂); and (2) a
Z2-approximation ψ̂0 of (Ĝ, Ĥ, ϕ̂) such that (Ĝ, Ĥ, ϕ̂, ψ̂0) is a clone of (G,H,ϕ, ψ0).

3 Proof of Theorem 1

Let (G,H,ϕ) be an instance that is Z2-approximable by an independently even drawing ψ0.
We start with a claim that helps us to identify instances that cannot be further simplified by
derivating. We show that by successively applying the derivative we eventually obtain an
instance such that ϕ is locally injective.

I Claim 9. If (G,H,ϕ) is in the normal form then p(G′, H ′, ϕ′) ≤ p(G,H,ϕ). If additionally
ϕ is not locally injective after suppressing in G all degree-2 vertices incident to an edge
induced by a cluster, the inequality is strict; that is, p(G′, H ′, ϕ′) < p(G,H,ϕ).

Furthermore, if G is connected and every connected component C induced by Vν , for all
ν ∈ V (H), has pipe-degree at most 2, then |Ep(G′)| ≤ |Ep(G)|.

Proof. We prove the first part of the claim and along the way establish the second part.
Let ψ0 be a Z2-approximation of (G,H,ϕ). Note that in G′ the pipe edges incident to a
central vertex vs ∈ Vs (every such vs has degree at least 3) and edges in H ′ incident to ϕ′(vs)
contribute together zero towards p(G′, H ′, ϕ′). Let H ′0 = H ′ \ {v∗s | vs ∈ Vs}.

(∗) The number of edges in H ′0 is at least |V (H ′0)| − c = |E(H)| − c,
where c is the number of connected components of H ′0 that are trees.

We use this fact together with a simple charging scheme in terms of an injective mapping ζ
defined in the next paragraph to prove the claim.

Suppose for a while that H ′0 is connected. The set of pipe edges of G′ not incident to
any vs ∈ Vs forms a matching M ′ in G′ by Definitions 4 and 5. Let D(v), v ∈ V (G′), be the
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connected component of G′ \ Ep(G′) containing the vertex v. By the first property of the
components G[V \ Vs] in Definition 4, for every v ∈ V (M ′), the component D(v) contains at
least one former pipe edge, i.e., a pipe edge in (G,H,ϕ). Let Vp be the set of vertices in G′
incident to these former pipe edges.

We construct an injective mapping ζ from the set V (M ′) to Vp. The mapping ζ maps a
vertex v ∈ V (M ′) to a closest vertex (in terms of the graph theoretical distance in D(v)) in
Vp ∩ V (D(v)). The mapping ζ is injective by the fact, that in the corresponding subdivided
normal form, every connected component of G[Vν ] of pipe-degree 2, for ν ∈ V (H), contains
at most one central vertex. Indeed, recall that this central vertex is suppressed in the normal
form and the edge thereby created becomes a pipe edge e in H ′, and thus, belongs to M ′.
Each end vertex v of e is mapped by ζ to a vertex u such that ϕ(u) = ϕ(v). Thus, the
injectivity could be violated only by the end vertices of e. However, this cannot happen since
every connected component of G[Vν ] is a tree. The injectivity of ζ implies that 2|M ′| is upper
bounded by 2|Ep(G)|, and therefore |M ′| is upper bounded by |Ep(G)|, which proves the
second part of the claim. Furthermore, |Ep(G)| = |M ′| only if after suppressing all vertices
of degree 2 incident to an edge induced by a cluster, ϕ is locally injective, and H ′0 contains a
cycle.

If H ′0 is disconnected, then we have |M ′| ≤ |Ep(G)| − c, where the inequality is strict if ϕ
is not locally injective after suppressing all degree-2 vertices incident to an edge induced by a
cluster. Indeed, if |M ′| = |Ep(G)| − c, then there exist exactly 2c vertices v, v ∈ e ∈ Ep(G),
that are not in the image of the map ζ. However, there are at least 2c vertices in G′ each of
which is mapped by ϕ′ to a vertex of degree at most 1 in H ′0. This follows since a connected
component of H ′0, that is an isolated vertex ν, contributes at least two end vertices of an
edge e ∈ Ep(G) such that ϕ′(e) = ν; and a connected component of H ′0, that is a tree, has at
least two leaves each of which contributes by at least one end vertex of an edge in Ep(G)
mapped to it by ϕ′. Hence, if |M ′| = |Ep(G)| − c then all the vertices that are not contained
in the image of ζ, are accounted for by these 2c vertices.

Putting it together, we have |M ′| ≤ |Ep(G)| − c and (∗) |E(H)| − c ≤ |E(H ′0)|, where
the first inequality is strict if ϕ is not locally injective after suppressing all degree-2 vertices
incident to an edge induced by a cluster. Since the remaining pipe edges of G′ and edges of
H ′ contribute together zero towards p(G′, H ′, ϕ′), summing up the inequalities concludes
the proof. J

I Claim 10. Suppose that ϕ is locally injective after suppressing all degree-2 vertices incident
to an edge induced by a cluster. Applying the derivative |Ep(G)| many times yields an instance
in which no connected component of G is a path.

Proof of Theorem 1. We assume that every edge of H is in the image of ϕ and proceed by
induction on p(G,H,ϕ). First, we discuss the inductive step. By Claim 8, we assume that
(G,H,ϕ) is in the normal form, which leaves p(G,H,ϕ) unchanged. Suppose that ϕ is not
locally injective after suppressing degree-2 vertices incident to an edge induced by a cluster.
Derivating (G,H,ϕ) decreases p(G,H,ϕ) by Claim 9. By Claims 6 and 7, (G′, H ′, ϕ′, ψ′0) is
a clone of (G,H,ϕ, ψ0), where ψ′0 is obtained by Claim 6. Hence, in this case we are done
by induction. Thus, we assume that ϕ is locally injective, which includes the case when
p(G,H,ϕ) = 0. This means that either we reduced G to an empty graph, or every connected
component C of G[Vν ], for every ν ∈ V (H), is a single vertex. We suppose that G is not a
trivial graph, since otherwise we are done. The proof will split into two cases, the acyclic
and the cyclic case below, but first we introduce some tools from [13] that we use extensively
in the argument.
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Figure 4 A pair of ν-diagonals Q1 and Q2, and a vertex v such that v <p Q1 and Q2 <p Q1

(left). The edge e forcing Q1 <p Q2 (middle). The relation Q1,1 <p1 Q2,1 forces Q1,2 <p2 Q2,2

(right).

We will work with a Z2-approximation ψ0 of (G,H,ϕ) unless specified otherwise. Let
P be a path of length 2 in G. Let the internal vertex u of P belong to G[Vν ], for some
ν ∈ V (H). The curve obtained by intersecting the disc D(ν) with P is a ν-diagonal supported
by u. By a slight abuse of notation we denote in different drawings ν-diagonals with the
same supporting vertex and joining the same pair of valves by the same symbol. Let Q be a
ν-diagonal supported by a vertex u of G[Vν ]. Since ϕ is locally injective, Q must connect a
pair of distinct valves. Let p be a point on the boundary of the disc D(ν) of ν such that p is
not contained in any valve.

I Definition 11. (See Figure 4 (left) for an illustration.) For a vertex v ∈ Vν , v 6= u, we
define v <p Q if in the two-coloring of the complement of Q (such that connected regions
sharing a non-trivial part of the boundary receive different colors) in the disc D(ν), v receives
the same color as the component having p on the boundary. Let Q1 and Q2 be a pair of
ν-diagonals connecting the same pair of valves. We define Q1 <p Q2 if for the vertex v
supporting Q1 we have v <p Q2. Analogously we define the relation >p.

Recall that H contains no multiple edges, since we do not introduce them by derivating.
Thus, the upcoming Claims 12 and 13 follow easily by the same argument as (1) and (2)
in [13, Theorem 13].

I Claim 12. The relation <p is anti-symmetric: If for a pair of ν-diagonals Q1, Q2 of G[Vν ]
we have Q1 <p Q2 then Q1 6>p Q2.

By Claim 12, the relation <p defines a tournament, that is, a complete oriented graph,
on ν-diagonals joining the same pair of valves. A pair of a ν1-diagonal Q1 and a ν2-diagonal
Q2 of G is neighboring if Q1 and Q2 have endpoints on the same (pipe) edge.

Let Q1,i and Q2,i be a neighboring pair of a ν1-diagonal and a ν2-diagonal sharing a pipe
edge ei, for i = 1, 2, such that ϕ(e1) = ϕ(e2) = ρ = ν1ν2. Let p1 and p2 be on the boundary
of D(ν1) and D(ν2), respectively, very close to the same side of the pipe of ρ.

I Claim 13. If Q1,1 <p1 Q1,2 then Q2,1 <p2 Q2,2; see Figure 4 (right) for an illustration.

Let D1 and D2 be a set of ν1-diagonals and ν2-diagonals, respectively, in G of the same
cardinality such that every ν1-diagonal in D1 ends on the valve of ρ and forms a neighboring
pair with a ν2-diagonal in D2. We require that all the diagonals in D1 join the same pair of
valves. Let

−−−−→
G(Di), for i = 1, 2, be the tournament with vertex set Di defined by the relation

<pi . An oriented graph −→D is strongly connected if there exists a directed path in −→D from u

to v for every ordered pair of vertices u and v in V (−→D). The following claim follows from
Claim 13.

I Claim 14. If
−−−−→
G(D1) is strongly connected then all the diagonals in

−−−−→
G(D2) join the same

pair of valves, and the oriented graph
−−−−→
G(D2) is strongly connected.
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The part of G inside D(ν) is the union of all ν-diagonals. The part of G inside D(ν) is
embedded if ψ0 does not contain any edge crossing in D(ν).

Acyclic case. In this case, we assume that for every ν ∈ V (H) and every p ∈ ∂D(ν) not
contained in any valve, the relation <p induces an acyclic tournament on every set of pairwise
vertex-disjoint ν-diagonals joining the same pair of valves.

We show that we can embed the part of G inside every disc D(ν) while respecting the
relation <p defined according to ψ0. In other words, in every cluster we embed connected
components (now just vertices) induced by Vν together with parts of their incident pipe edges
ending on valves so that the relations Q1 <p Q2 are preserved for every pair of ν-diagonals
Q1 and Q2 joining the same pair of valves. Then by reconnecting the parts G inside D(ν)’s
we obtain a required embedding of G which will conclude the proof.

By an easy application of the unified Hanani–Tutte theorem we obtain an embedding
of the part of G inside D(ν). We apply the theorem to an independently even drawing of
an auxiliary graph Gaux(ν) in D(ν), where the drawing is obtained as the union of the part
of G inside D(ν) and ∂D(ν). By subdividing edges in Gaux(ν) we achieve that the vertices
drawn in ∂D(ν) are even and therefore we indeed obtain an embedding of the part of G
inside D(ν) as required. Suppose that in the embedding of the part of G inside D(ν) we
have Q1 >p Q2 while in the drawing ψ0 we have Q1 <p Q2. For the sake of contradiction
we consider the embedding with the smallest number of such pairs, and consider such pair
Q1 and Q2 whose end points are closest to each other along the valve that contains them.

First, we assume that both Q1 and Q2 pass through a connected component (a single
vertex) of G[Vν ] of pipe degree 2. The endpoints of Q1 and Q2 are consecutive along valves,
since <p is acyclic. Thus, we just exchange them thereby contradicting the choice of the
embedding. Second, we show that if Q1 passes through a connected component C1 of G[Vν ]
of pipe degree at least 3 and Q2 passes through a component C2 of pipe degree 2, then the
relation Q1 >p Q2 in the drawing of ψ0 leads to contradiction as well. Let ρ be an edge
of H such that there exists an edge incident to C1 mapped to ρ by ϕ and there does not
exist such an edge incident to C2, see Figure 4 (middle) for an illustration. Let B be the
complement of the union of the valves containing the endpoints of Q1 or Q2 in the boundary
of D(ν). Suppose that the valve of ρ and p are contained in the same connected component
of B. It must be that Q1 <p Q2 in every Z2-approximation of (G,H,ϕ). If the valve of ρ
and p are contained in the different connected components of B, it must be that Q1 >p Q2
in every Z2-approximation of (G,H,ϕ), in particular also in an approximation.

Finally, we assume that Q1 and Q2 pass through a connected component C1 and C2,
respectively, of G[Vν ] of pipe degree at least 3. Similarly as above, let ρ1 and ρ2 be edges
of H such that there exists an edge incident to C1 and C2, respectively, mapped to ρ1 and
ρ2 by ϕ, and neither Q1 nor Q2 ends on its valve. By applying the unified Hanani–Tutte
theorem to Gaux(ν) as above, we have ρ1 6= ρ2. By the same token, the valve of ρ1 and ρ2
are not contained in the same connected component B. Thus, by the same argument as
in the previous case it must be that either in every Z2-approximation of (G,H,ϕ) we have
Q1 <p Q2 or in every Z2-approximation of (G,H,ϕ) we have Q1 >p Q2.

In order to finish the proof in the acyclic case, we would like to reconnect neighboring
pairs of diagonals by curves inside the pipes without creating a crossing. Let Q1,i and Q2,i,
for i = 1, 2, be a pair of a neighboring ν1-diagonal and ν2-diagonal sharing a pipe edge ei,
for i = 1, 2, such that ϕ(e1) = ϕ(e2) = ρ. We would like the endpoints of Q1,1 and Q1,2 to
be ordered along the valve of ρ consistently with the endpoints of Q2,1 and Q2,2 along the
other valve of ρ. We are done if Claim 13 applies to Qi,j ’s. However, this does not have to
be the case if, let’s say Q1,1 and Q2,1, does not join the same pair of valves. Nevertheless,
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by treating all the valves distinct from the valve of ρ at D(ν1) as a single valve, we see that
both Claim 12 and Claim 13, in fact, apply to <p1 and <p2 .

Cyclic case. In this case, we assume that for a vertex ν ∈ V (H) and p ∈ ∂D(ν) not
contained in any valve, the relation <p induces an acyclic tournament on a set of pairwise
vertex-disjoint ν-diagonals joining the same pair of valves.

We consider at least three ν-diagonalsQ1, . . . , Ql inducing a strongly connected component
in the tournament defined by <p. Let pk and qk be endpoints of Qk, for k = 1, . . . , l. We
assume that pk, for k = 1, . . . , l, are contained in the same valve, and therefore the same
holds for qk. By Claim 10, we assume that no connected component in G is a path. Hence,
by Claim 14 every Qk is contained in a (drawing of a) connected component of G which is a
cycle. Indeed, a vertex of degree at least 3 in a connected component of G, whose vertex
supports Qk, would inevitably lead to a pair of independent edges crossing oddly in ψ0, since
we assume that ϕ is locally injective. Thus, by a simple inductive argument using Claim 14
and the fact that no two distinct strongly connected components in an oriented graph share
a vertex we obtain the following property of Q1, . . . , Ql.

Every endpoint pk is joined by a curve in the closure of ψ0(G)\
⋃l
l′=1 Ql′ with an endpoint

qk′ . This defines a permutation π of the set {Q1, . . . , Ql}, where π(Qk) = Qk′ . On the one
hand, each orbit in the permutation π must obviously consist of ν-diagonals supported by
vertices in the same connected component of G, which is a cycle as we discussed in the
previous paragraph. On the other hand, every pair of diagonals belonging to different orbits
is supported by vertices in different cycles in G. Hence, the orbits of π are in a one-to-one
correspondence with a subset of connected components in G all of which are cycles. Let
C1 . . . Co, o ≤ l, denote such cycles. By a simple inductive argument which uses Claim 14,
we have that every ϕ(Ck) = Wk, . . . ,Wk with Wk being repeated ok-times, where Wk is a
closed walk of H and ok is the size of the orbit corresponding to Ck. By the hypothesis of
Theorem 1 we assume that (Ck, H|ϕ(Ck), ϕ|Ck

), for k = 1, . . . , o, is a positive instance.
By the previous assumption, if the number of negative signs on the edges in Wk (counted

with multiplicities) is even then ok = 1. Indeed, a closed neighborhood of an approximation
ψCk

(which is an embedding) of (Ck, H|ϕ(Ck), ϕ|Ck
) is the annulus, in which (the image of)

ψCk
is a non-self intersecting closed piecewise linear curve. Analogously, we show that if the

number of negative signs on the edges in Wk (counted with multiplicities) is odd then ok ≤ 2,
and ok = 1 for at most a single value of k, i.e., if ok1 = ok2 = 1 then k1 = k2. Suppose that
the previous claim holds for every k = 1, . . . , o. Since l ≥ 3 and ok ≤ 2 for k = 1, . . . , o,
we have that o ≥ 2. We assume that o2 ≤ o1. We remove the cycle C1 from G and apply
induction. Let ψ be an approximation of (G \C1, H, ϕ|G\C1) that we obtain by the induction
hypothesis. We construct the desired approximation of (G,H,ϕ) by extending ψ to G as
follows. We embed C1 alongside C2 while satisfying (A) and (B) for (G,H,ϕ), which is
possible since 1 ≤ o2 ≤ o1 ≤ 2.

It remains to show the claim. For the sake of contradiction we assume that ok1 = ok2 = 1,
for k1 6= k2. The curves ψ0(Ck1) and ψ0(Ck2) are one-sided and homotopic, and therefore
they must cross an odd number of times in ψ0(G) (contradiction). Finally, for the sake of
contradiction suppose that for some k, we have ok ≥ 3 and that there exists an approximation
ψCk

of (Ck, H|ϕ(Ck), ϕ|Ck
) (which is an embedding). If ok is odd we replace (the image of)

ψCk
by the boundary of its small closed neighborhood, which is connected. Thus, we can

and shall assume that ok is even and still bigger than 2. A closed neighborhood of ψCk
is the

Möbius band. By lifting ψ(Ck) to the annulus via the double cover of the Möbius band, we
obtain a piecewise linear closed non-self intersecting curve winding ok/2 > 1 times around
its center (contradiction). J
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