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Abstract
The longest Lyndon substring of a string T is the longest substring of T which is a Lyndon word.
LLS(T ) denotes the length of the longest Lyndon substring of a string T . In this paper, we
consider computing LLS(T ′) where T ′ is an edited string formed from T . After O(n) time and
space preprocessing, our algorithm returns LLS(T ′) in O(logn) time for any single character edit.
We also consider a version of the problem with block edits, i.e., a substring of T is replaced by a
given string of length l. After O(n) time and space preprocessing, our algorithm returns LLS(T ′)
in O(l log σ + logn) time for any block edit where σ is the number of distinct characters in T .
We can modify our algorithm so as to output all the longest Lyndon substrings of T ′ for both
problems.
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1 Introduction

A string w is said to be a Lyndon word if w is lexicographically smaller than any of its
non-empty proper suffixes. An equivalent definition of Lyndon words is a string w which
is lexicographically smaller than any of its cyclic rotations. For instance, aab is a Lyndon
word, but its cyclic rotations aba and baa are not. Lyndon words have many important
combinatorial properties in stringology, and have various applications in, e.g., musicology [7],
bioinformatics [12], approximation algorithms [21], string matching [9, 6, 23], combinatorics
on words [3, 15, 24], and free Lie algebras [20].
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19:2 Longest Lyndon Substring After Edit

In stringology, Lyndon words are closely related to repetitive structures. A string w
is said to be primitive if there do not exist an integer k and a string x such that w = xk.
For any primitive string w, ww contains one or two Lyndon words of length |w|. Recently,
Bannai et al. showed that the maximum number of maximal repetitions in a string of length
n, is less than n [3]. A key idea of their proof relied on the notion of the longest Lyndon word
that starts at each position of the string. There are several recent studies on Lyndon trees
and Lyndon arrays [14, 10, 22], which are closely related to longest Lyndon word because
they represent all the longest Lyndon words in a given string. Although these structures
take linear space and can be computed in linear time for an integer alphabet, they are not
easy to maintain when allowing dynamic edit operations, since the structures may change a
lot, even for a single character edit operation.

Although fully dynamic data structures are difficult in general, Amir et al. considered a
new type of problem concerning the Longest Common Factor problem [1]. The goal there
was to compute, given strings S and T , the longest common factor of strings S and T ′ where
T ′ is a string which is obtained by a single character edit operation on T . Their algorithm
uses O(n log4 n) expected time and O(n log3 n) space for preprocessing, and then for any
single character edit query, the LCF can be answered in O(log3 n) time. The important and
interesting aspect of this problem setting is that all edit queries are on the original string T ,
and the edited string is not maintained for subsequent edit queries.

In this paper, we consider the problem of computing the longest Lyndon substring after
a single (character or block) edit operation. Let LLS(T ) be the length of the longest Lyndon
substring of a string T of length n. We first consider the problem of computing LLS(T ′) for
any single character edit (substitution, insertion, deletion) where T ′ is the string obtained
after the edit operation on T . We then extend the problem that asks for LLS(T ′) for
any single block edit, where T ′ is the string obtained by replacing a substring of T with a
given string of length l specified in the edit query. For single character edit operations, our
algorithm runs in O(logn) time for each edit query after O(n) time and space preprocessing.
For block edit operations, our algorithm runs in O(l log σ + logn) time for each edit query
after O(n) time and space preprocessing, where σ is the number of distinct characters in
T . We can modify our algorithm so as to output all the longest Lyndon substrings of T ′ for
both problems.

The rest of this paper is organized as follows. In Section 2, we state some definitions and
properties on strings. In Section 3, we propose our algorithm for a version of the problem
with single character edits. In Section 4, we show our algorithm for a version of the problem
with single block edits. Finally, we conclude in Section 5.

2 Preliminaries

2.1 Strings and model of computation
Let Σ be an ordered finite alphabet. An element of Σ∗ is called a string. The length of a
string w is denoted by |w|. The empty string ε is a string of length 0. Let Σ+ be the set
of non-empty strings, i.e., Σ+ = Σ∗ − {ε}. For a string w = xyz, x, y and z are called a
prefix, substring, and suffix of w, respectively. A prefix x, a substring y, and a suffix z of w
are called a proper prefix, a proper substring, and a proper suffix of w if x 6= w, y 6= w, and
z 6= w, respectively. The i-th character of a string w is denoted by w[i], where 1 ≤ i ≤ |w|.
For a string w and two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that
begins at position i and ends at position j. For convenience, let w[i..j] = ε when i > j. For
any string w let w1 = w, and for any integer k ≥ 2 let wk = wwk−1, i.e., wk is a k-times
repetition of w.
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If character a is lexicographically smaller than another character b, then we write a ≺ b.
For any strings x, y, let lcp(x, y) be the length of the longest common prefix of x and y. We
write x ≺ y iff either x[lcp(x, y) + 1] ≺ y[lcp(x, y) + 1] or x is a proper prefix of y.

Our model of computation is the word RAM. We assume the computer word size is at
least dlog2 |w|e, and hence, standard operations on values representing lengths and positions
of string w can be manipulated in O(1) time. Space complexities will be determined by the
number of computer words (not bits).

2.2 Lyndon words and Lyndon factorization of strings

A string w is said to be a Lyndon word, if w is lexicographically strictly smaller than all
of its non-empty proper suffixes. The longest Lyndon substring of a string w is the longest
substring of w which is a Lyndon word. LLS(w) denotes the length of the longest Lyndon
substring of a string w.

The Lyndon factorization of a string w, denoted LFw, is the factorization `p1
1 , . . . , `

pm
m

of w, such that each `i ∈ Σ+ is a Lyndon word, pi ≥ 1, and `i � `i+1 for all 1 ≤ i < m.
The size of LFw, denoted by |LFw|, is m. LFw can be represented by the sequence
(|`1|, p1), . . . , (|`m|, pm) of integer pairs, where each pair (|`i|, pi) represents the i-th Lyndon
factor `pi

i of w. Note that this representation requires O(m) space.
In the literature, the Lyndon factorization is sometimes defined to be a sequence of

lexicographically non-increasing Lyndon words, namely, each Lyndon factor `p is decomposed
into a sequence of p `’s. In this paper, each Lyndon word ` in the Lyndon factor `p is called a
decomposed Lyndon factor. We also refer to the factorization by decomposed Lyndon factors
as the decomposed Lyndon factorization.

I Lemma 1 ([13]). For any string w, we can compute LFw in O(|w|) time.

For any string w, let LFw = `p1
1 , . . . , `

pm
m . Let lfbw(i) denote the position where the

i-th Lyndon factor begins in w, i.e., lfbw(1) = 1 and lfbw(i) = lfbw(i − 1) + |`pi−1
i−1 | for any

2 ≤ i ≤ m. For any 1 ≤ i ≤ m, let lfsw(i) = `pi

i `
pi+1
i+1 · · · `pm

m and lfpw(i) = `p1
1 `

p2
2 · · · `

pi

i . For
convenience, let lfsw(m+ 1) = lfpw(0) = ε.

2.3 Lyndon tree

Given a Lyndon word w of length |w| > 1, (u, v) is the standard factorization [8, 19] of w,
if w = uv and v is the longest proper suffix of w that is a Lyndon word, or equivalently,
the lexicographically smallest proper suffix of w. It is well known that for the standard
factorization (u, v) of any Lyndon word w, the factors u and v are also Lyndon words (e.g.[4]).
The Lyndon tree of w is the full binary tree defined by recursive standard factorization of w;
w is the root of the Lyndon tree of w, its left child is the root of the Lyndon tree of u, and
its right child is the root of the Lyndon tree of v. The longest Lyndon word that starts at
each position can be obtained from the Lyndon tree, due to the following lemma.

I Lemma 2 (Lemma 5.4 of [3]). Let w be a Lyndon word with respect to ≺. w[i..j] corresponds
to a right node (or possibly the root) of the Lyndon tree with respect to ≺ if and only if w[i..j]
is the longest Lyndon word with respect to ≺ that starts from i.

CPM 2018
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2.4 Longest Common Extension
For any string w, the longest common extension query is, given two positions 1 ≤ i, j ≤ |w|,
to answer

LCEw(i, j) = max{k | w[i..i+ k − 1] = w[j..j + k − 1], i+ k − 1, j + k − 1 ≤ |w|}.

By using suffix tree [26] of w and the Lowest Common Ancestor query (also called Nearest
Common Ancestor) [16] on the suffix tree, we can compute any LCE query in constant time
after O(|w|) time and space preprocessing.

3 Longest Lyndon substring after 1-edit

In this paper, we consider three edit operations, i.e., substitution, insertion and deletion. Let
T ′ be the string which was edited at a given position from a string T of length n. A 1-edit
longest Lyndon substring query (1-edit LLS) asks us to return LLS(T ′).

Firstly, we explain a basic property of LLS(T ) and give a naïve solution. The following
lemma can be obtained by the definition of Lyndon factorization.

I Lemma 3. For any string T , LLS(T ) is the length of the longest decomposed Lyndon
factor of LFT .

Proof. Let x be the longest Lyndon substring of T . Suppose that x is not a decomposed
Lyndon factor of LFT . If x is a proper substring of a decomposed Lyndon factor y, then
y is a Lyndon substring which is longer than x. This implies that x contains a boundary
of consecutive decomposed factors. Let x = stu where s is a suffix of some decomposed
Lyndon factor and u is a prefix of some Lyndon decomposed factor (s, u ∈ Σ+, t ∈ Σ∗). By
the definition of Lyndon factorization, s � u holds. Thus, x is not a Lyndon word. J

This fact can be obtained by Observation 3 of [14] in a different context. Due to this
lemma, computing LFT leads to the longest Lyndon substring of T . Since we can compute
LFT ′ in O(n) time by using Duval’s algorithm [13], we can compute LLS(T ′) in O(n) time
for each query.

I Example 4 (1-edit LLS). Let T = acbabcabcabac. Since LFT = acb, (abc)2, abac, the
longest Lyndon substring of T is abac. (substitution) If the second c is replaced by b, then
the longest Lyndon substring of T ′ is abbabc since LFT ′ = acb, abbabc, abac. (insertion) If
a is inserted at the position preceded by the last b, then the longest Lyndon substrings of T ′
are acb, abc, aac since LFT ′ = acb, (abc)2, ab, aac. (deletion) If the second a from the last is
deleted, then the longest Lyndon substring of T ′ is abcabcbac since LFT ′ = acb, abcabcbac.

Our goal of this paper is the following.

I Theorem 5. After constructing an O(n)-space data structure of a given string T in O(n)
time, we can compute LLS(T ′) in O(logn) time for each 1-edit query.

In this section, we explain our algorithm for substitution operations. We can solve our
problem for the other two types of operations in a similar way.

More formally, for substitutions, let T ′ = T [1..e− 1] · α · T [e+ 1..n] = Tp · α · Ts where
α ∈ Σ. In our algorithm, we compute LFT ′ by concatenating LFTp , LFα, and LFTs . I et
al. [18] showed an efficient algorithm to compute LFuv from LFu and LFv for any string
u, v (we will explain in Section 3.1). Hence, we can use this concatenation algorithm to
compute LFT ′ . The rest of this section is organized as follows. In Section 3.2, we show
how to compute LFTp . In Section 3.3, we explain how to characterize LFTs . Finally, we
summarize our algorithm in Section 3.4.
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3.1 Overview of computing Lyndon factorization by concatenation
Here, we explain an overview of a Lyndon factorization algorithm which was proposed by I
et al. [18]. This algorithm computes the Lyndon factorization of the concatenation of two
strings by using their Lyndon factorizations.

For any string u and v, let LFu = up1
1 , . . . , u

pm
m and LFv = vq1

1 , . . . , v
qm′
m′ . Then, LFuv is

characterized as follows.

I Lemma 6 ([2, 11]). LFuv = up1
1 . . . upc

c z
kv
qc′
c′ . . . v

qm′
m′ for some 0 ≤ c ≤ m, 1 ≤ c′ ≤ m′+ 1

and LF lfsu(c+1)lfpv(c′−1) = zk.

This lemma implies that there is at most one new Lyndon factor zk (each of the other
Lyndon factors of LFuv is also a Lyndon factor of LFu or LFv). By a simple observation,
we can consider three cases as follows.

If um � v1, then LFuv = LFu,LFv(z = ε).
If um = v1, then LFuv = up1

1 , . . . , u
pm−1
m−1 , u

pm+q1
m , vq2

2 , . . . , v
qm′
m′ (z = um = v1).

If um ≺ v1, there exists the medial decomposed factor z which begins in u and ends in v.
In the first two cases, we can compute LFuv by one lexicographic string comparisons. In the
third case, computing the medial decomposed Lyndon factor z leads to computing LFuv.

I Lemma 7 (Lemma 16 of [18]). Assume that LFu and LFv have been computed. Then, we
can compute the medial decomposed Lyndon factor z by O(log |LFu|+log |LFv|) lexicographic
string comparisons.

A key point of that result is that the medial decomposed Lyndon factor z satisfies the
following properties.

The beginning position of z is equal to lfbu(i) such that lfsu(1)v � . . . � lfsu(i)v ≺ . . . ≺
lfsu(m+ 1)v.
The ending position of z is equal to lfbv(j)− 1 such that lfsv(1) � lfsv(j− 1) � lfsu(i)v �
lfsv(j) � . . . � lfsv(m′ + 1).

From these monotonous conditions of suffixes which begin at the beginning position of
some Lyndon factor, we can compute the beginning position and the ending position of z,
respectively, by a binary search. After computing z, we can compute the Lyndon factor zk
by checking whether ui−1 (vj) is equal to z or not, respectively (i.e., ui−1 and vj may be
equal to z).

I Example 8. Let LFu = abb, (ab)2, a and LFv = bc, b, abababcb, ab, (a)2. Then, the
medial decomposed Lyndon factor is z = abababcb obtained by Lyndon factors (ab)2, a, bc, b.
Since the decomposed Lyndon factor succeeding to z is also abababcb, we need to pack them.
Thus, LFuv = abb, (abababcb)2, ab, (a)2.

In addition, we can modify the second property for the decomposed Lyndon factorization
of v by using the following property.

I Lemma 9. Let z = lfsu(i)lfpv(j − 1) be the medial decomposed factor of LFuv. Then,
lfsv(j − 1) � vqj−1−1

j−1 lfsv(j) � . . . � vj−1lfsv(j) � lfsu(i)v � lfsv(j) also holds.

3.2 Computing the Lyndon factorization of Tp

The following lemma is a well-known property of Lyndon words and Lyndon factorizations.

CPM 2018
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ℓ  =! a! b! a! b! b! a! b! a! b! b! a! b! b!

|x|! 1! 2! 2! 2! 5! 5! 5! 5! 5! 5! 5! 5! 13!

k! 1! 1! 1! 2! 1! 1! 1! 1! 1! 2! 2! 2! 1!

|x’|! 0! 0! 1! 0! 0! 1! 2! 3! 4! 0! 1! 2! 0!

Figure 1 By Lemma 10, any prefix w of a Lyndon word ` can be represented as w = xkx′. For
instance, ababbababba = (ababb)2a. Thus, we store (|x|, k, |x′|) = (5, 2, 1) for this prefix of `.

I Lemma 10. For any string w which is a prefix of some Lyndon word, there exists a unique
Lyndon word x s.t. w = xkx′ where x′ is a proper prefix of x and an integer k ≥ 1. Moreover,
LFw = xk,LFx′ .

I Lemma 11. We can compute LFTp for any 1 ≤ e ≤ n in O(logn) time after O(n) time
and space preprocessing.

Proof. Let LFT = `p1
1 , . . . , `

pm
m . Assume that lfbT (i) + |`k−1

i | ≤ e < lfbT (i) + |`ki |, i.e., the
edited position e is in the k-th decomposed Lyndon factor of the i-th Lyndon factor. Then,
Tp = `p1

1 · · · `
k−1
i `′i where `′i is a (possibly empty) proper prefix of `i. It is easy to see

that the Lyndon factorization of `p1
1 · · · `

k−1
i is `p1

1 , . . . , `
pi−1
i−1 , `

k−1
i . On the other hand, from

Lemma 10, LF `′
i

= xj , x′ for some integer j ≥ 1 and some Lyndon word x. Since x′ is also a
prefix of Lyndon word x, we can consider LFx′ in the same way. Because x′ must be shorter
than half of `′i, it follows that LF `′

i
consists of at most log |`′i| Lyndon factors. It is easy to

see that LFTp = `p1
1 , . . . , `

k−1
i ,LF `′

i
.

Based on this observation, we show our data structure for computing LFTp . We can
compute LFT in O(n) time and store it in O(|LFT |) space. Let ` be a decomposed Lyndon
factor of T . For each prefix of `, we store a triple (|x|, k, |x′|) based on Lemma 10. An
example is shown in Figure 1. We note that all the triples for T can be computed in O(n)
time by using Duval’s Lyndon factorization algorithm [13] (we can compute them together
with the Lyndon factorization of T ).

Now we explain how to compute LFTp by using above data structures. The first (i− 1)
Lyndon factors of LFTp are in LFT . The i-th Lyndon factor of LFTp is `k−1

i (changed only
the exponent of `i). Finally, we have to compute LF `′

i
. The form of LF `′

i
= uj , u′ is stored

as the |`′i|-th triple of `i. If u′ = ε (i.e., the third entry of the triple is 0), then uj is a
Lyndon factor of LFTp . Otherwise, since u′ is a prefix of `i, the form of LFu′ is stored as
the |u′|-th triple of `i. By repeating this recursively at most log |`′i| times, we can obtain
LF `′

i
. Therefore, we can compute LFTp in O(logn) time. J

3.3 The Lyndon factorization of Ts by Lyndon tree
In the previous subsection, we have computed the Lyndon factorization of a prefix of some
Lyndon word, since the number of Lyndon factors of Tp which are not in LFT is bounded
by logn. We also want to compute LFTs , but the size of the factorization can be large.
Hence, we cannot compute LFTs explicitly for each query in order to achieve an O(logn)
time bound. To overcome this problem, we use the Lyndon tree of T , which can represent
the Lyndon factorization of each suffix of T .

Let LFT = `p1
1 , . . . , `

pm
m . Assume that lfbT (i) + |`k−1

i | ≤ e < lfbT (i) + |`ki |, i.e., the
edited position e is in the k-th decomposed factor of the i-th Lyndon factor. Then, Ts =
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a!$! a!b!a!a! a!b!b! b!a! b!b!a! a!a!b!

9! 13!5!3!1! 11!7!2! 15!4! 12!10!6! 16!14!8!0!

w
1!

w
2!

w
3!

w
4!

w
5!

w
6!

w
7!

w
8!

w
9!

w
10!

Figure 2 This figure shows the Lyndon tree of $abaababbababaaba and the path
P6 = w1, . . . , w10. P ′

6 is the sequence of internal nodes on P6 which are drawn by
circles, namely, P ′

6 = w1, w2, w4, w5, w8, w9. For this example, Lemma 12 shows that
Rstr(w9), Rstr(w8), Rstr(w5), Rstr(w4), Rstr(w2), Rstr(w1) = b, b, ab, ab, aab, a is the decomposed
Lyndon factorization of T [7..16].

`′′i `
pi−k
i · · · `pm

m where `′′i is a (possibly empty) proper suffix of `i. For convenience, we
introduce a special character $ which is lexicographically smaller than any other characters.
It is easy to see that the string $T is a Lyndon word for any T . We consider LTree($T ).
Let Pj = w1, . . . , wh be the path from the root to the leaf which corresponds to T [j] in
LTree($T ) (w1 is the root and wh is the leaf), and P ′j = w′1, . . . , w

′
h′ be the sequence of

internal nodes on path P such that the right child of any node on P ′j is not on Pj . For any
node w, Rstr(w) denotes the string which is represented by the rightchild of w (see also
Figure 2). The following lemma shows that the Lyndon tree of $T represents the Lyndon
factorization of any of its suffixes.

I Lemma 12. Rstr(w′h′), . . . ,Rstr(w′1) is the decomposed Lyndon factorization of LFT [j+1..n].

Proof. For any 1 ≤ i < h′, Rstr(w′i+1) is a suffix of the string which is represented by the
leftchild of w′i. Since Rstr(w′i+1) is the longest Lyndon word which begins at that position by
Lemma 2, then Rstr(w′i+1) � Rstr(w′i). It is clear that Rstr(w′h′) · · ·Rstr(w′1) = T [j + 1..n].
Thus Rstr(w′h′), . . . ,Rstr(w′1) is the decomposed Lyndon factorization of T [j + 1..n]. J

It is known that the Lyndon tree of a string can be computed in linear time [17, 3]. We
can compute LTree($T ) in O(n) time and space. In addition, for our algorithm, we process
the Lyndon tree so as to be able to answer Level Ancestor Query (shortly LAQ).

I Lemma 13 (Level Ancestor Query [5]). We can pre-process a given rooted tree in linear
time and space so that the i-th node in the path from any node to the root can be found in
O(1) time for any i ≥ 0, if such exists.

For any node w, we also compute na(w) which is the nearest ancestor of w that has w in
the left subtree. This preprocessing can also be done in O(n) time and space.

CPM 2018



19:8 Longest Lyndon Substring After Edit

3.4 Computing the longest Lyndon substring
In the rest of this section, we summarize our method.

Firstly, we compute LFTp based on Lemma 11 in O(logn) time. From LFTp and α, we
compute LFTp·α by O(log |LFTp |) lexicographic string comparisons by using Lemma 6 and 7.
After that, we compute LFT ′ from LFTp·α and LFTs . Let z be the medial decomposed
Lyndon factor in this step. Since we know LFTp·α and Ts, we can compute the beginning
position of z by O(log |LFTp·α|) lexicographic string comparisons on T ′. Then we compute
the ending position of z, by using Lemmas 7 and 9.

In order to compute the ending position, we access the necessary suffixes by considering
the path Pe, defined in Section 3.3, in the LTree($T ). The key idea is that we can conduct a
binary search on Pe, and obtain z by O(log h) lexicographic string comparisons on T ′. For
any range of depths on Pe, we can choose the middle node w in the range in constant time
using Lemma 13. If the rightchild of w is on Pe, we choose na(w) as w. We then compare
the suffix of Ts which begins at the beginning position of Rstr(w) and the suffix of T ′ which
begins at the beginning position of z, and recurse on the upper or lower half of the range
depending on the result of the comparison.

Thus we can get LFT ′ by O(logn) string comparisons in total. The number of Lyndon
factors of T ′ such that we should have explicitly is O(logn) (new logn factors in Tp and a
new factor by concatenations). It is easy to see that we can compare lexicographic order
between any substrings of T ′ by constant number of LCE queries on T . Thus, we can
compute LFT ′ in O(logn) time.

We have three candidates as the longest Lyndon substrings.
Unchanged Lyndon factors at prefix.
O(logn) new Lyndon factors.
Unchanged Lyndon factors at suffix.

Since we store O(logn) new Lyndon factors explicitly, we can get the longest Lyndon factor
in this part in O(logn) time. To get the longest decomposed Lyndon factor in the first
candidate, we precompute the rightmost longest Lyndon factor for each prefix of T which is
a concatenation of Lyndon factors (i.e., for each `p1

1 , . . . , `
pi

i ). This can be computed in O(n)
time and space. By using this information, we can see the length of longest Lyndon factor in
the first part in constant time. For suffixes of T , we precompute the same data structure as
prefixes. Therefore, we obtain Theorem 5.

It is easy to see that we can return all the longest Lyndon substrings in unchanged part
at prefix and at suffix in linear time w.r.t. the number of such factors. Then, we can get all
the longest Lyndon substrings in T ′.

I Corollary 14. After constructing an O(n)-space data structure of a given string T in O(n)
time, we can compute all the longest Lyndon substrings of T ′ in O(logn+ occ) time for each
1-edit query where occ is the number of outputs.

4 Longest Lyndon substring after block edit

Here, we consider more general problem called 1-block-edit longest Lyndon substring query
(1-block-edit LLS). Namely, a substring of T is replaced by a given string of length l.

I Example 15 (1-block-edit LLS). Let T = acbabcabcabac. The longest Lyndon substring
of T is abac since LFT = acb, (abc)2, abac. When we are given an interval [2, 3] of T and a
string bac, the longest Lyndon substring of T ′ is abacabcabc since LFT ′ = abacabcabc, abac.
When we are given [8, 10] and an empty string, thte longest Lyndon substring of T ′ is abac
since LFT ′ = acb, abc, abac.
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I Theorem 16. After constructing an O(n)-space data structure of a given string T in O(n)
time, we can compute LLS(T ′) in O(l log σ + logn) time for each 1-block-edit query.

This algorithm is almost similar to the 1-edit version. Let α be a given string of length l.
Firstly, we need to compute LFα in O(l) time. After that we can concatenate three parts
in the similar way. The key difference is that we conduct an additional O(l log σ) time and
O(l) space processing in order to compare any two substrings in T ′ in constant time. Any
comparisons on T ′ can be separated to constant number of comparisons between

a substring in T and a substring in T ,
a substring in α and a substring in α,
a substring in T and a substring in α.

The first one can be done by an LCE query on T . The second one can be done in constant
time after constructing an LCE data structure for α in O(l) time and space. Now we explain
the last case. Assume that we have computed the suffix tree of T in O(n) time preprocessing.
For each of suffixes αi of α, we compute the lowest node in the suffix tree which corresponds
to some prefix of αi. This can be done in O(l log σ) time by using Ukkonen’s suffix tree
construction algorithm [25]. Then we can compare a substring in T and a substring in α
by using LCA queries. Thus we can do any substring comparisons in constant time after
constructing O(l log σ) time and space data structures. Therefore, we obtain Theorem 16.

In the similar way to Section 3, we can get the following.

I Corollary 17. After constructing an O(n)-space data structure of a given string T in O(n)
time, we can compute all the longest Lyndon substrings of T ′ in O(l log σ + logn+ occ) time
for each 1-block-edit query where occ is the number of outputs.

I Remark. If l is constant, we can compare the lexicographic order of any two substrings
in T ′ in constant time (by using constant number of LCE queries and constant number of
character comparisons) without using suffix trees. Then the querying time of Theorem 16
turns out to be O(logn) time. Thus, this result includes Theorem 5.

5 Conclusion

We considered the problem of computing the longest Lyndon substring after 1-edit operation.
We proposed an algorithm which uses O(n) time and space so that for any single block edit
query, the longest Lyndon substring can be answered in O(l log σ+ logn) time where l is the
length of a given query string and σ is the number of distinct characters in T .

Our algorithm in this paper is almost the same for single characters edits and single block
edits, and one of our interests is whether there is a more efficient solution at least for the
case of single character edits.
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