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—— Abstract

The longest Lyndon substring of a string 7" is the longest substring of T" which is a Lyndon word.
LLS(T) denotes the length of the longest Lyndon substring of a string 7. In this paper, we
consider computing LLS(T") where T” is an edited string formed from T. After O(n) time and
space preprocessing, our algorithm returns LLS(T") in O(log n) time for any single character edit.
We also consider a version of the problem with block edits, i.e., a substring of T is replaced by a
given string of length . After O(n) time and space preprocessing, our algorithm returns LLS(T")
in O(llogo + logn) time for any block edit where o is the number of distinct characters in 7.
We can modify our algorithm so as to output all the longest Lyndon substrings of 7" for both
problems.
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1 Introduction

A string w is said to be a Lyndon word if w is lexicographically smaller than any of its
non-empty proper suffixes. An equivalent definition of Lyndon words is a string w which
is lexicographically smaller than any of its cyclic rotations. For instance, aab is a Lyndon
word, but its cyclic rotations aba and baa are not. Lyndon words have many important
combinatorial properties in stringology, and have various applications in, e.g., musicology [7],
bioinformatics [12], approximation algorithms [21], string matching [9, 6, 23], combinatorics
on words [3, 15, 24], and free Lie algebras [20].
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In stringology, Lyndon words are closely related to repetitive structures. A string w
is said to be primitive if there do not exist an integer k and a string « such that w = z¥.
For any primitive string w, ww contains one or two Lyndon words of length |w|. Recently,
Bannai et al. showed that the maximum number of maximal repetitions in a string of length
n, is less than n [3]. A key idea of their proof relied on the notion of the longest Lyndon word
that starts at each position of the string. There are several recent studies on Lyndon trees
and Lyndon arrays [14, 10, 22], which are closely related to longest Lyndon word because
they represent all the longest Lyndon words in a given string. Although these structures
take linear space and can be computed in linear time for an integer alphabet, they are not
easy to maintain when allowing dynamic edit operations, since the structures may change a
lot, even for a single character edit operation.

Although fully dynamic data structures are difficult in general, Amir et al. considered a
new type of problem concerning the Longest Common Factor problem [1]. The goal there
was to compute, given strings S and T, the longest common factor of strings S and 7" where
T’ is a string which is obtained by a single character edit operation on T'. Their algorithm
uses O(nlog?n) expected time and O(nlog®n) space for preprocessing, and then for any
single character edit query, the LCF can be answered in O(log®n) time. The important and
interesting aspect of this problem setting is that all edit queries are on the original string T,
and the edited string is not maintained for subsequent edit queries.

In this paper, we consider the problem of computing the longest Lyndon substring after
a single (character or block) edit operation. Let LLS(T) be the length of the longest Lyndon
substring of a string T" of length n. We first consider the problem of computing LLS(T") for
any single character edit (substitution, insertion, deletion) where 7" is the string obtained
after the edit operation on 7. We then extend the problem that asks for LLS(T") for
any single block edit, where T" is the string obtained by replacing a substring of T' with a
given string of length [ specified in the edit query. For single character edit operations, our
algorithm runs in O(logn) time for each edit query after O(n) time and space preprocessing.
For block edit operations, our algorithm runs in O(llogo + logn) time for each edit query
after O(n) time and space preprocessing, where o is the number of distinct characters in
T. We can modify our algorithm so as to output all the longest Lyndon substrings of 7" for
both problems.

The rest of this paper is organized as follows. In Section 2, we state some definitions and
properties on strings. In Section 3, we propose our algorithm for a version of the problem
with single character edits. In Section 4, we show our algorithm for a version of the problem
with single block edits. Finally, we conclude in Section 5.

2 Preliminaries

2.1 Strings and model of computation

Let X be an ordered finite alphabet. An element of ¥* is called a string. The length of a
string w is denoted by |w|. The empty string ¢ is a string of length 0. Let T be the set
of non-empty strings, i.e., 7 = ¥* — {e}. For a string w = zyz, x, y and z are called a
prefix, substring, and suffiz of w, respectively. A prefix x, a substring y, and a suffix z of w
are called a proper prefix, a proper substring, and a proper suffiz of w if x # w, y # w, and
z # w, respectively. The i-th character of a string w is denoted by wli], where 1 < i < |w|.
For a string w and two integers 1 < i < j < |w], let w[i..j] denote the substring of w that
begins at position ¢ and ends at position j. For convenience, let wli..j] = € when ¢ > j. For
any string w let w' = w, and for any integer k > 2 let w* = ww*~! k
repetition of w.

, i.e., w" is a k-times
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If character a is lexicographically smaller than another character b, then we write a < b.

For any strings z, vy, let lcp(z,y) be the length of the longest common prefix of z and y. We
write z < y iff either z[lep(x, y) + 1] < y[lep(x,y) + 1] or = is a proper prefix of y.

Our model of computation is the word RAM. We assume the computer word size is at
least [log, |w|], and hence, standard operations on values representing lengths and positions
of string w can be manipulated in O(1) time. Space complexities will be determined by the
number of computer words (not bits).

2.2 Lyndon words and Lyndon factorization of strings

A string w is said to be a Lyndon word, if w is lexicographically strictly smaller than all
of its non-empty proper suffixes. The longest Lyndon substring of a string w is the longest
substring of w which is a Lyndon word. LLS(w) denotes the length of the longest Lyndon
substring of a string w.

The Lyndon factorization of a string w, denoted LF,,, is the factorization ¢}, ... ¢Pm

of w, such that each ¢; € ¥ T is a Lyndon word, p; > 1, and ¢; = £;41 for all 1 < i < m.

The size of LF,,, denoted by |LF,|, is m. LF, can be represented by the sequence
(11, p1), -+ (|[€m|, pm) of integer pairs, where each pair (|¢;], p;) represents the i-th Lyndon
factor £ of w. Note that this representation requires O(m) space.

In the literature, the Lyndon factorization is sometimes defined to be a sequence of
lexicographically non-increasing Lyndon words, namely, each Lyndon factor ¢P is decomposed
into a sequence of p £’s. In this paper, each Lyndon word ¢ in the Lyndon factor ¢? is called a
decomposed Lyndon factor. We also refer to the factorization by decomposed Lyndon factors
as the decomposed Lyndon factorization.

» Lemma 1 ([13]). For any string w, we can compute LF,, in O(|wl|) time.

For any string w, let LF,, = (' ... (P=. Let Ifb, (i) denote the position where the
i-th Lyndon factor begins in w, i.e., Ifb,, (1) = 1 and Ifb,, (i) = Ifb,, (i — 1) + |[¢£"7'| for any
2 <i<m. Forany 1 <i <m, let Ifs, (i) = "¢ - b and Ifp,, (i) = 7' 657 -- - 47" For
convenience, let Ifs,,(m + 1) = lfp,,(0) = ¢.

2.3 Lyndon tree

Given a Lyndon word w of length |w| > 1, (u,v) is the standard factorization [8, 19] of w,
if w = uv and v is the longest proper suffix of w that is a Lyndon word, or equivalently,
the lexicographically smallest proper suffix of w. It is well known that for the standard

factorization (u,v) of any Lyndon word w, the factors v and v are also Lyndon words (e.g.[4]).

The Lyndon tree of w is the full binary tree defined by recursive standard factorization of w;
w is the root of the Lyndon tree of w, its left child is the root of the Lyndon tree of u, and
its right child is the root of the Lyndon tree of v. The longest Lyndon word that starts at
each position can be obtained from the Lyndon tree, due to the following lemma.

» Lemma 2 (Lemma 5.4 of [3]). Let w be a Lyndon word with respect to <. wli..j] corresponds
to a right node (or possibly the root) of the Lyndon tree with respect to < if and only if wli..j]
is the longest Lyndon word with respect to < that starts from i.

19:3
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2.4 Longest Common Extension

For any string w, the longest common extension query is, given two positions 1 < 4, j < |w|,
to answer

LCE,(i,j) =max{k |w[i.i+ k-1 =w[j.j+k—-1,i+k—-1j+k—1<]|w|}

By using suffix tree [26] of w and the Lowest Common Ancestor query (also called Nearest
Common Ancestor) [16] on the suffix tree, we can compute any LCE query in constant time
after O(|w|) time and space preprocessing.

3 Longest Lyndon substring after 1-edit

In this paper, we consider three edit operations, i.e., substitution, insertion and deletion. Let
T’ be the string which was edited at a given position from a string T of length n. A 1-edit
longest Lyndon substring query (1-edit LLS) asks us to return LLS(T").

Firstly, we explain a basic property of LLS(T) and give a naive solution. The following
lemma can be obtained by the definition of Lyndon factorization.

» Lemma 3. For any string T, LLS(T) is the length of the longest decomposed Lyndon
factor of LF .

Proof. Let x be the longest Lyndon substring of 7. Suppose that = is not a decomposed
Lyndon factor of LF7. If x is a proper substring of a decomposed Lyndon factor y, then
y is a Lyndon substring which is longer than z. This implies that x contains a boundary
of consecutive decomposed factors. Let x = stu where s is a suffix of some decomposed
Lyndon factor and w is a prefix of some Lyndon decomposed factor (s,u € X1t € ¥*). By
the definition of Lyndon factorization, s >= u holds. Thus, x is not a Lyndon word. <

This fact can be obtained by Observation 3 of [14] in a different context. Due to this
lemma, computing LF7 leads to the longest Lyndon substring of 7. Since we can compute
LF7/ in O(n) time by using Duval’s algorithm [13], we can compute LLS(T") in O(n) time
for each query.

» Example 4 (1-edit LLS). Let T = acbabcabcabac. Since LFr = acb, (abc)?, abac, the
longest Lyndon substring of T' is abac. (substitution) If the second c is replaced by b, then
the longest Lyndon substring of 7" is abbabc since LF7/ = acb, abbabc, abac. (insertion) If
a is inserted at the position preceded by the last b, then the longest Lyndon substrings of T’
are acb, abc, aac since LF7» = acb, (abc)?, ab, aac. (deletion) If the second a from the last is
deleted, then the longest Lyndon substring of T” is abcabcbac since LF7 = acb, abcabcbac.

Our goal of this paper is the following.

» Theorem 5. After constructing an O(n)-space data structure of a given string T in O(n)
time, we can compute LLS(T") in O(logn) time for each 1-edit query.

In this section, we explain our algorithm for substitution operations. We can solve our
problem for the other two types of operations in a similar way.

More formally, for substitutions, let 7/ = T[l..e — 1] - - T[e + 1..n] = T, - a - T, where
a € Y. In our algorithm, we compute LFr/ by concatenating LFr,, LF,, and LFr,. I et
al. [18] showed an efficient algorithm to compute LF,, from LF, and LF, for any string
u,v (we will explain in Section 3.1). Hence, we can use this concatenation algorithm to
compute LFp,. The rest of this section is organized as follows. In Section 3.2, we show
how to compute LFr,. In Section 3.3, we explain how to characterize LF r,. Finally, we
summarize our algorithm in Section 3.4.
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3.1 Overview of computing Lyndon factorization by concatenation

Here, we explain an overview of a Lyndon factorization algorithm which was proposed by 1
et al. [18]. This algorithm computes the Lyndon factorization of the concatenation of two
strings by using their Lyndon factorizations.

For any string v and v, let LF,, = u}*,... ulm and LF, =¥, ... . Then, LF,, is

’ 7rL

characterized as follows.

» Lemma 6 ([2, 11]). LF,, = u}* ...uIC’szvq,c ...vfrj,’" for some0<c<m,1<c <m'+1
and LF s, (c+1)ifp, (1) = 2*

This lemma implies that there is at most one new Lyndon factor z* (each of the other
Lyndon factors of LF,, is also a Lyndon factor of LF,, or LF,). By a simple observation,
we can consider three cases as follows.

If wy, = vq, then LF,,, = LF,, LF,(z = ¢).

1 q
If wp, = vy, then LF,, = uf', ... ulm b oubm T o200 oln! (2 = w,y, = vy).

If u,, < vy, there exists the medial decomposed factor z which begins in u and ends in v.

In the first two cases, we can compute LF., by one lexicographic string comparisons. In the
third case, computing the medial decomposed Lyndon factor z leads to computing LF,,.

» Lemma 7 (Lemma 16 of [18]). Assume that LF,, and LF, have been computed. Then, we
can compute the medial decomposed Lyndon factor z by O(log |LF,|+1og|LF,|) lexicographic
string comparisons.

A key point of that result is that the medial decomposed Lyndon factor z satisfies the
following properties.
The beginning position of z is equal to Ifb, (¢) such that Ifs, (1)v = ... > Ifs,(i)v < ... <
Ifs,(m+ 1)v.
The ending position of z is equal to ifb,(j) — 1 such that ifs, (1) > ifs,(j —1) > Ifs, (i)v >
Us,(5) = ... = Ufs,(m’ +1).

From these monotonous conditions of suffixes which begin at the beginning position of
some Lyndon factor, we can compute the beginning position and the ending position of z,
respectively, by a binary search. After computing z, we can compute the Lyndon factor z*
by checking whether u;_1 (v;) is equal to z or not, respectively (i.e., u;—1 and v; may be
equal to z).

» Example 8. Let LF, = abb,(ab)?,a and LF, = bc,b,abababcb, ab, (a)?. Then, the
medial decomposed Lyndon factor is z = abababcb obtained by Lyndon factors (ab)?, a, bc, b.
Since the decomposed Lyndon factor succeeding to z is also abababcb, we need to pack them.
Thus, LF,, = abb, (abababcb)?, ab, (a)?.

In addition, we can modify the second property for the decomposed Lyndon factorization
of v by using the following property.

» Lemma 9. Let z = lfsu(')lfpy(j — 1) be the medial decomposed factor of LF,,. Then,
Ifs,(j —1) = v;b 3 1lfssv(j) = vilfs, (5) > Ufs, (9)v = Ifs,(5) also holds.

3.2 Computing the Lyndon factorization of T,

The following lemma is a well-known property of Lyndon words and Lyndon factorizations.

19:5
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{= a b abbababbabhb
Xl |1 2 2 2 5 5 5 5 5 5 5 513
k|1 1 1 2 1 1 1 11 2 2 21
X110 0 1 0012340120

Figure 1 By Lemma 10, any prefix w of a Lyndon word ¢ can be represented as w = 2*2’. For
instance, ababbababba = (ababb)?a. Thus, we store (|z|, k, |z|) = (5,2,1) for this prefix of £.

» Lemma 10. For any string w which is a prefix of some Lyndon word, there exists a unique

k

Lyndon word x s.t. w = x~z’ where x’ is a proper prefiz of x and an integer k > 1. Moreover,

LFw = xk,LFz/.

» Lemma 11. We can compute LF 1, for any 1 < e <n in O(logn) time after O(n) time
and space preprocessing.

Proof. Let LFp = £}, ... (. Assume that Ifbp(i) + |05 < e < Ufby(i) + |€F], i.e., the
edited position e is in the k-th decomposed Lyndon factor of the i-th Lyndon factor. Then,
T, = " ~-€§4€71£; where ¢, is a (possibly empty) proper prefix of ¢;. It is easy to see
that the Lyndon factorization of (&' ... ¥~ i ¢t . (-t ¢*=1 On the other hand, from
Lemma 10, LF v = 27,z for some integer j > 1 and some Lyndon word z. Since 2’ is also a
prefix of Lyndon word z, we can consider LF, in the same way. Because ' must be shorter
than half of £;, it follows that LF consists of at most log |¢;| Lyndon factors. It is easy to
see that LFq, = &", ... ({™" LFy.

Based on this observation, we show our data structure for computing LFr,. We can
compute LFr in O(n) time and store it in O(|LFr|) space. Let ¢ be a decomposed Lyndon
factor of T. For each prefix of ¢, we store a triple (|z/, k, |2’|) based on Lemma 10. An
example is shown in Figure 1. We note that all the triples for T' can be computed in O(n)
time by using Duval’s Lyndon factorization algorithm [13] (we can compute them together
with the Lyndon factorization of T').

Now we explain how to compute LF' 7, by using above data structures. The first (i — 1)
Lyndon factors of LF 1, are in LFr. The i-th Lyndon factor of LF 1, is Ef_l (changed only
the exponent of ¢;). Finally, we have to compute LFy . The form of LFy =/, u' is stored
as the |f;|-th triple of ¢;. If v/ = ¢ (i.e., the third entry of the triple is 0), then u/ is a
Lyndon factor of LF r,. Otherwise, since u’ is a prefix of £;, the form of LF is stored as
the |u/|-th triple of ¢;. By repeating this recursively at most log|¢}| times, we can obtain
LFy;. Therefore, we can compute LF'r, in O(logn) time. <

3.3 The Lyndon factorization of 7'; by Lyndon tree

In the previous subsection, we have computed the Lyndon factorization of a prefix of some
Lyndon word, since the number of Lyndon factors of 7}, which are not in LFr is bounded
by logn. We also want to compute LF 7, but the size of the factorization can be large.
Hence, we cannot compute LF 1, explicitly for each query in order to achieve an O(logn)
time bound. To overcome this problem, we use the Lyndon tree of T', which can represent
the Lyndon factorization of each suffix of T

Let LEp = (', ... (Pm. Assume that Ifby(i) + [(F7 < e < Ifbp(i) + |€¥], ie., the

edited position e is in the k-th decomposed factor of the i-th Lyndon factor. Then, T =
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S abaabalbl/blablablaabla
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2 This figure shows the Lyndon tree of $abaababbababaaba and the path
Ps = wi,...,wio. P} is the sequence of internal nodes on Ps which are drawn by
circles, namely, P§ = wi, w2, ws,ws,ws,wy. For this example, Lemma 12 shows that
Rstr(wy), Rstr(ws), Rstr(ws), Rstr(wa), Rstr(wz), Rstr(w1) = b, b, ab, ab, aab, a is the decomposed
Lyndon factorization of T'[7..16].

e i=k . -¢Pm where ¢} is a (possibly empty) proper suffix of ¢;. For convenience, we

introduce a special character $ which is lexicographically smaller than any other characters.
It is easy to see that the string $7 is a Lyndon word for any 7. We consider LTree($T).

Let P; = wy,...,wy be the path from the root to the leaf which corresponds to T'[j] in
LTree($T) (wy is the root and wy, is the leaf), and P = wj,...,w}, be the sequence of
internal nodes on path P such that the right child of any node on P]( is not on P;. For any
node w, Rstr(w) denotes the string which is represented by the rightchild of w (see also
Figure 2). The following lemma shows that the Lyndon tree of $T" represents the Lyndon
factorization of any of its suffixes.

» Lemma 12. Rstr(wy,),. .., Rstr(w)) is the decomposed Lyndon factorization of LF (1. p-

Proof. For any 1 <i < h’, Rstr(wj, ) is a suffix of the string which is represented by the
leftchild of wj. Since Rstr(wj, ;) is the longest Lyndon word which begins at that position by

Lemma 2, then Rstr(wj,,) = Rstr(wj). It is clear that Rstr(wy,)--- Rstr(w}) = T[j + 1..n].

Thus Rstr(wy,), ..., Rstr(w}) is the decomposed Lyndon factorization of T'[j + 1..n]. <

It is known that the Lyndon tree of a string can be computed in linear time [17, 3]. We
can compute LTree($7T) in O(n) time and space. In addition, for our algorithm, we process
the Lyndon tree so as to be able to answer Level Ancestor Query (shortly LAQ).

» Lemma 13 (Level Ancestor Query [5]). We can pre-process a given rooted tree in linear
time and space so that the i-th node in the path from any node to the root can be found in
O(1) time for any i > 0, if such exists.

For any node w, we also compute na(w) which is the nearest ancestor of w that has w in
the left subtree. This preprocessing can also be done in O(n) time and space.

19:7
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3.4 Computing the longest Lyndon substring

In the rest of this section, we summarize our method.

Firstly, we compute LF 7, based on Lemma 11 in O(logn) time. From LF 7, and «, we
compute LF1,.o by O(log|LF 7,|) lexicographic string comparisons by using Lemma 6 and 7.
After that, we compute LFr: from LF 1, ., and LFr,. Let z be the medial decomposed
Lyndon factor in this step. Since we know LFr,., and T, we can compute the beginning
position of z by O(log|LF 1,.|) lexicographic string comparisons on 7. Then we compute
the ending position of z, by using Lemmas 7 and 9.

In order to compute the ending position, we access the necessary suffixes by considering
the path P., defined in Section 3.3, in the LTree($T). The key idea is that we can conduct a
binary search on P,, and obtain z by O(log h) lexicographic string comparisons on 7’. For
any range of depths on P,, we can choose the middle node w in the range in constant time
using Lemma 13. If the rightchild of w is on P., we choose na(w) as w. We then compare
the suffix of T which begins at the beginning position of Rstr(w) and the suffix of 7" which
begins at the beginning position of z, and recurse on the upper or lower half of the range
depending on the result of the comparison.

Thus we can get LFp: by O(logn) string comparisons in total. The number of Lyndon
factors of T” such that we should have explicitly is O(logn) (new logn factors in T}, and a
new factor by concatenations). It is easy to see that we can compare lexicographic order
between any substrings of 7" by constant number of LCE queries on T. Thus, we can
compute LF7 in O(logn) time.

We have three candidates as the longest Lyndon substrings.

Unchanged Lyndon factors at prefix.

O(logn) new Lyndon factors.

Unchanged Lyndon factors at suffix.

Since we store O(logn) new Lyndon factors explicitly, we can get the longest Lyndon factor
in this part in O(logn) time. To get the longest decomposed Lyndon factor in the first
candidate, we precompute the rightmost longest Lyndon factor for each prefix of T which is
a concatenation of Lyndon factors (i.e., for each ¢}*,...,¢¥"). This can be computed in O(n)
time and space. By using this information, we can see the length of longest Lyndon factor in
the first part in constant time. For suffixes of T', we precompute the same data structure as
prefixes. Therefore, we obtain Theorem 5.

It is easy to see that we can return all the longest Lyndon substrings in unchanged part
at prefix and at suffix in linear time w.r.t. the number of such factors. Then, we can get all
the longest Lyndon substrings in T".

» Corollary 14. After constructing an O(n)-space data structure of a given string T in O(n)
time, we can compute all the longest Lyndon substrings of T' in O(logn + occ) time for each
1-edit query where occ is the number of outputs.

4 Longest Lyndon substring after block edit

Here, we consider more general problem called 1-block-edit longest Lyndon substring query
(1-block-edit LLS). Namely, a substring of T" is replaced by a given string of length [.

» Example 15 (1-block-edit LLS). Let T' = acbabcabcabac. The longest Lyndon substring
of T is abac since LF7 = acb, (abc)?, abac. When we are given an interval [2,3] of T and a
string bac, the longest Lyndon substring of 7" is abacabcabc since LF 1+ = abacabcabc, abac.
When we are given [8,10] and an empty string, thte longest Lyndon substring of 7" is abac
since LFr» = acb, abc, abac.
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» Theorem 16. After constructing an O(n)-space data structure of a given string T in O(n)
time, we can compute LLS(T") in O(llogo + logn) time for each 1-block-edit query.

This algorithm is almost similar to the 1-edit version. Let o be a given string of length .
Firstly, we need to compute LF, in O(l) time. After that we can concatenate three parts
in the similar way. The key difference is that we conduct an additional O(llog o) time and
O(l) space processing in order to compare any two substrings in 7’ in constant time. Any
comparisons on T” can be separated to constant number of comparisons between

a substring in 7" and a substring in T,

a substring in o and a substring in «,

a substring in 7" and a substring in a.

The first one can be done by an LCE query on T'. The second one can be done in constant
time after constructing an LCE data structure for v in O(1) time and space. Now we explain
the last case. Assume that we have computed the suffix tree of T' in O(n) time preprocessing.
For each of suffixes a; of o, we compute the lowest node in the suffix tree which corresponds
to some prefix of «;. This can be done in O(llogo) time by using Ukkonen’s suffix tree
construction algorithm [25]. Then we can compare a substring in 7" and a substring in «
by using LCA queries. Thus we can do any substring comparisons in constant time after
constructing O(llog o) time and space data structures. Therefore, we obtain Theorem 16.

In the similar way to Section 3, we can get the following.

» Corollary 17. After constructing an O(n)-space data structure of a given string T in O(n)
time, we can compute all the longest Lyndon substrings of T' in O(llogo + logn + occ) time
for each 1-block-edit query where occ is the number of outputs.

» Remark. If [ is constant, we can compare the lexicographic order of any two substrings
in 77 in constant time (by using constant number of LCE queries and constant number of
character comparisons) without using suffix trees. Then the querying time of Theorem 16
turns out to be O(logn) time. Thus, this result includes Theorem 5.

5 Conclusion

We considered the problem of computing the longest Lyndon substring after 1-edit operation.
We proposed an algorithm which uses O(n) time and space so that for any single block edit
query, the longest Lyndon substring can be answered in O(llog o + logn) time where [ is the
length of a given query string and o is the number of distinct characters in T.

Our algorithm in this paper is almost the same for single characters edits and single block
edits, and one of our interests is whether there is a more efficient solution at least for the
case of single character edits.
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