
Satisfiability for SCULPT-Schemas for CSV-Like
Data
Johannes Doleschal
Universität Bayreuth, Bayreuth, Germany

Wim Martens
Universität Bayreuth, Bayreuth, Germany

Frank Neven
Hasselt University and transnational University of Limburg, Hasselt, Belgium

Adam Witkowski
University of Warsaw, Warsaw, Poland

Abstract
SCULPT is a simple schema language inspired by the recent working effort towards a recom-
mendation by the World Wide Web Consortium (W3C) for tabular data and metadata on the
Web. In its core, a SCULPT schema consists of a set of rules where left-hand sides select sets of
regions in the tabular data and the right-hand sides describe the contents of these regions. A
document (divided in cells by row- and column-delimiters) then satisfies a schema if it satisfies
every rule. In this paper, we study the satisfiability problem for SCULPT schemas. As SCULPT
describes grid-like structures, satisfiability obviously becomes undecidable rather quickly even
for very restricted schemas. We define a schema language called L-SCULPT (Lego SCULPT) that
restricts the walking power of SCULPT by selecting rectangular shaped areas and only considers
tables for which selected regions do not intersect. Depending on the axes used by L-SCULPT,
we show that satisfiability is PTIME-complete or undecidable. One of the tractable fragments is
practically useful as it extends the structural core of the current W3C proposal for schemas over
tabular data. We therefore see how the navigational power of the W3C proposal can be extended
while still retaining tractable satisfiability tests.

2012 ACM Subject Classification Information systems→ Semi-structured data, Theory of com-
putation → Formal languages and automata theory, Theory of computation → Logic

Keywords and phrases CSV, Schema languages, Semi-structured data

Digital Object Identifier 10.4230/LIPIcs.ICDT.2018.14

Funding This work is supported by grant number MA 4938/2–1 from the Deutsche Forschungs-
gemeinschaft.

1 Introduction

Despite the availability of numerous standardized formats for semi-structured and semantic
web data such as XML, RDF, and JSON, a very large percentage of data and open data
published on the web remains tabular in nature.1 Tabular data is most commonly published
in the form of comma separated values (CSV) files because such files are open and therefore
processable by numerous tools, and tailored for all sizes of files ranging from a number of KBs

1 Jeni Tennison, one of the two co-chairs of the W3C CSV on the Web working group claims that over
90% of the data published on data.gov.uk is tabular data [14].

© Johannes Doleschal, Wim Martens, Frank Neven, and Adam Witkowski;
licensed under Creative Commons License CC-BY

21st International Conference on Database Theory (ICDT 2018).
Editors: Benny Kimelfeld and Yael Amsterdamer; Article No. 14; pp. 14:1–14:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Satisfiability for SCULPT-Schemas for CSV-Like Data

1 2 3 4 5 6 7 8 9 10

1 subject predicate object provenance
2 :e4 type PER
3 :e4 mention "Bart" D00124 283-286
4 :e4 mention "JoJo" D00124 145-149 0.9
5 :e4 per:sibling :e7 D00124 283-286 173-179 274-281
6 :e4 per:age "10" D00124 180-181 173-179 182-191 0.9
7 :e4 per:parent :e9 D00124 180-181 381-380 399-406 D00101 220-225 230-233

Figure 1 Fragment of a CSV-like file (added row and column numbers), inspired by use case 13
in [13].

1 2 3 4 5 6 7 8 9 10
1 subj pred obj prov
2 iri pred-type ent-type
3 iri pred-type literal doc-id position
4 iri pred-type literal doc-id position certainty
5 iri iri iri doc-id position position position
6 iri iri literal doc-id position position position certainty
7 iri iri iri doc-id position position position doc-id position position

Figure 2 Tokenized version of Figure 1, with added row and column numbers.

to several TBs. Despite these advantages, working with CSV files is often cumbersome [14]
since they are typically not accompanied by a schema that describes the file’s structure (i.e.,
“the second column is of integer datatype”, “columns are delimited by tabs”, . . .) and captures
its intended meaning. In fact, without schema information, already converting CSV-like
data into a relational database is a challenging engineering problem [14]. In recognition of
this problem, the CSV on the Web Working Group of the World Wide Web Consortium
(W3C) [17] argues for the introduction of a schema language for tabular data to ensure higher
interoperability when working with datasets using the CSV or similar formats. Inspired by
the recent W3C effort towards a recommendation for tabular data and metadata on the Web,
Martens et al. proposed the tabular schema language SCULPT [11]. At its core, SCULPT
is a rule-based language with rules of the form ϕ → ρ where ϕ selects a set of regions2
of the input table and ρ constrains the allowed structure and content of each such region.
The region selection expressions ϕ are not limited to selecting columns but can navigate
through a table, much like XPath expressions can navigate the nodes of an XML tree. This
generalization beyond columns is necessary since there are natural cases in practice in which
CSV-like data is not rectangular [2, 13] (see also Figure 1). In this paper, we address static
optimization of SCULPT schemas, but first we present the main ideas behind the language
by means of an example.

SCULPT schemas operate on tabular documents which are text files describing tabular
data. Figure 1, coming from use case 13 in [13], shows an example CSV file, to which we added
row numbers 1–7 on the left and column numbers 1–10 at the top. The original file uses tab
(\t) as a column delimiter and newline (\n) as row delimiter. The rows and columns divide
the document into cells. In this example, rows can have different numbers of cells, e.g., row
two has three cells, whereas row three has five. The W3C describes the data as coming from
a text extraction scenario, where “facts [are extracted] from text and [represented] as [RDF]
triples along with associated metadata that include provenance and certainty values” [13].
Furthermore, “a single row in the table comprises a triple (subject-predicate-object), one
or more provenance references and an optional certainty measure” [13]. In Figure 1, we see

2 A region is a set of cells.

J. Doleschal, W. Martens, F. Neven, and A. Witkowski 14:3

that the provenance information includes a document ID (e.g., the value D00124), pairs
of string offsets within the document (e.g., 283–286), and an optional float representing a
certainty measure (e.g., 0.9). This information can be repeated for several documents as is
the case in row seven. There may not be an a priori bound on the number of columns that
are needed for representing the provenance information. As we can infer from the W3C’s
textual description of the data, the logical organization of the data from column four to the
right is in rows rather than in columns. The current W3C proposal for schemas [12, Section
5.5] does not deal with row-wise organization (and not even with different types of data in
the same column) and therefore cannot adequately describe the data in their own use case
13. As we will see, SCULPT can capture the logic inherent in this example by describing the
structure of the rectangle starting at cell (3,4) in the rule (†).3

Figure 3 shows an example SCULPT schema for CSV files of the form as depicted in
Figure 1. It consists of two parts. The first part concerns parsing information – it defines the
row and column delimiters and describes how cells should be tokenized. This allows to parse
the text file and build a table-like structure consisting of rows and columns. Tokenization
then proceeds as follows. The content of each cell is matched against the regexes in the
schema’s token rules. To each cell the first token is assigned for which the corresponding regex
matches.4 For instance, cell (4,3) in Figure 1 gets the token literal because it matches
its regex "[a-zA-Z0-9]*" and none of the earlier regexes. Figure 2 depicts the tokenized
CSV resulting from Figure 1, using the schema in Figure 3. The second part of the schema
consists of structural rules. Left-hand sides select a set of regions, whereas right-hand sides
are regular expressions that the tokens in each region should match. Consider the rule

row((1,1)) -> subj, pred, obj, prov

whose left-hand side selects one region (the row of the tokenized table starting at (1,1))
and requires it to match the regular expression subj, pred, obj, prov where the comma
stands for concatenation. In our example, the right-hand side expressions always describe
what each row in the selected region should look like. This is mostly important for the rule

rectangle(prov +(1,0)) -> (doc-id, position*, certainty?)*. (†)

where the left-hand side selects an unbounded rectangular region for which the top left corner
is the node matching the token prov, plus an offset (1, 0), i.e., one row, zero columns. Each
row in the selected rectangle should then match the expression

(doc-id, position*, certainty?)*

which it does in the example, as we can see in Figure 2. The language SCULPT is formally
defined in Section 3.

In this paper, we study static optimization of SCULPT schemas. In particular, we
address the satisfiability problem that asks whether for a given a SCULPT schema there is
a CSV file that satisfies it. Not only is satisfiability a core problem in the foundations of
database management field that has been studied in depth for a variety of formalisms, it
is also particularly relevant for schema design as it allows to detect schemas that are not
well-defined.

3 We use coordinate (x, y) to refer to the cell in row x, column y.
4 There are other options to assign tokens, e.g., as in [11], but tokenization is not our present focus.

ICDT 2018

14:4 Satisfiability for SCULPT-Schemas for CSV-Like Data

% Parsing information; Delimiters
Col Delim = \t Row Delim = \n

% Token rules of the form <token name> = <regex>
subj = subject pred = predicate
obj = object prov = provenance
iri = [a-zA-Z0-9]*:[a-zA-Z0-9]* pred-type = type + mention
doc-id = D[0-9]{5} position = [0-9]{3}-[0-9]{3}
certainty = 0.[0-9] + 1.0 literal = "[a-zA-Z0-9]*"
ent-type = PER + ORG + GPE

% Structural rules
row((1,1)) -> subj, pred, obj, prov col(subj) -> iri*
col(obj) -> (literal + iri + entity-type)* col(pred) -> (pred-type + iri)*
rectangle(prov +(1,0)) -> (doc-id, position*, certainty?)*

Figure 3 Schema for files of the type in Figure 1. (Syntax uses two columns to save space.)

Unsurprisingly, satisfiability of SCULPT quickly turns out to be undecidable, which we
show by an easy reduction from the domino tiling problem [16]. Indeed, using only one
rule, a region selection expression can be used to ‘walk’ over a grid testing all horizontal
and vertical constraints, or alternatively many much simpler rules can be used to test all
horizontal and vertical constraints in parallel for every domino type (cf. Section 4 for more
details). Even though these observations are valid to demonstrate undecidability they use
rather artificial constructions.

For this reason, we introduce a restricted variant of SCULPT called Lego SCULPT
(L-SCULPT) that not only suffices to express the W3C use cases but also admits tractable
satisfiability. In brief, L-SCULPT restricts region selection expressions to only select rectan-
gular shaped areas, that is (parts of) rows, columns, and rectangles, thereby constraining
the structural power of the language. A second restriction is that L-SCULPT only considers
tables on which no two selected regions intersect. Specifically, in this paper, we make the
following contributions:
1. We show that the safisfiability problem for the structural core of SCULPT is undecidable.
2. We define a fragment of SCULPT called L-SCULPT that is powerful enough to capture

the structural core of the schemas for tabular data in the current W3C recommendation
[12, Section 5.5]. Intuitively, L-SCULPT allows selections of rows, columns, and rectangles
and bounded-size regions in the directions up, left, down, and right, whereas the W3C’s
recommendation only allows column selection.5 As Figure 1 shows, column selection
alone is too limited to describe schemas for the data fragments in the W3C’s use cases,
because the number of columns that the schema can describe is bounded by the number
of rules in the schema. In the example, the number of columns can grow arbitrarily large.
L-SCULPT strictly extends the structural core of the W3C recommendation.

3. Depending on which axes are used, we show that satisfiability of L-SCULPT is PTIME-
complete or undecidable. Our main technical result shows that for L-SCULPT using only
row, column, right, and rectangle selections satisfiability is in PTIME. The proof is an
intricate reduction to the emptiness problem of nondeterministic tree automata where
tables are encoded as trees.

5 We only focus on the structural core of the languages. The W3C’s proposal also supports key and
foreign key constraints, which are out of scope here but easy to add to the language. (In fact, we
implemented them in [3].)

J. Doleschal, W. Martens, F. Neven, and A. Witkowski 14:5

4. Even the tractable fragments of L-SCULPT extend the structural core of the current
W3C schema recommendation and are expressive enough to define a natural schema for
Figure 1, one example is the schema in Figure 3. As such, our result shows how the W3C
recommendation can be extended without making satisfiability intractable.

Related Work

Tabular or CSV-like data is one of many popular models for semi-structured data [1]. The
schema language SCULPT was introduced in [11]. This work provides an initial formal model
and considers efficient evaluation. In addition, several extensions like region semantics, token
types, and transformations are considered. We implemented the system Chisel for specifying,
validating, analyzing, and debugging of SCULPT schemas and data transformations based
on schema information [3]. Arenas et al. [2] propose a simple and expressive framework for
adding metadata to CSV documents. They focus in particular on noisy CSV-like documents
and consider the problem of annotating different elements of CSV-like files such as, for
instance, cells, rows and columns. Documents are viewed as strings and regular expressions
are used to select intervals. Navigation is restricted to moving to the next delimiter (any
delimiter or one of a specific kind). They consider satisfiability as well as efficient evaluation.
As the setting is considerably different from the one considered in this paper (grids versus
strings), their and our results do not imply each other.

Labeled grids have been studied in the context of two-dimensional languages, also referred
to as picture languages (cf., e.g., [5]). The bulk of the research in this area has focused on
formalisms that could capture natural counterparts of string language theory, like regular
languages, context-free languages, closure properties, etc. For instance, the equivalence
of existential monadic-second order logic, complementation-free regular expressions, tiling
systems (as projections of local languages) and two-dimensional online tessallation automata,
provided enough motivation to refer to the latter class as the recognizable two-dimensional
languages. Satisfiability for this class is shown to be undecidable through a direct simulation
of Turing Machines [5]. Proposition 4 uses essentially the same idea but employs tiling
systems. Although the proofs of Proposition 4 and Proposition 5 are rather straightforward
and their novelty is limited, they do provide the necessary motivation for the introduction of
L-SCULPT.

In Section 2, we introduce the necessary preliminaries. In Section 3, we formalize the
structural core of SCULPT and show that the satisfiability problem is undecidable. In
Section 4, we define L-SCULPT. In Section 5, we present our main technical result showing
that satisfiability for L-SCULPT using only row, col, right and rectangle selections is PTIME-
complete. In addition, we show that various extensions are undecidable. We conclude in
Section 6.

2 Preliminaries

For numbers n,m ∈ N, with n < m, we denote the sets {1, . . . , n} and {n, . . . ,m} by [n] and
[n,m], respectively. By ∆ we denote an alphabet, that is, a finite, non-empty set of symbols.
A language is a set of words over ∆. We assume familiarity with regular expressions but
briefly describe their notation. The regular expressions over ∆ are inductively defined as
follows. Every symbol a ∈ ∆ is a regular expression, and so is the special symbol ε, which
denotes the empty word and which we assume not to be in ∆. If e1 and e2 are regular
expressions, then so are e1 · e2, e1 + e2, and e∗1. We assume the usual precedence of operators.

ICDT 2018

14:6 Satisfiability for SCULPT-Schemas for CSV-Like Data

The language L(e) of e is defined as usual. We sometimes omit the concatenation symbol
“·”, write e+ to abbreviate ee∗, and write e? to abbreviate e+ ε.

Tables

CSV-like data consists of a text file with row and column delimiters (often newline and
comma, respectively). These delimiters uniquely determine a tabular structure that can be
given to the data, as we describe next. The main idea is very simple: if the file has n row
delimiters, the table has n+ 1 rows (a row delimiter is a separator between two consecutive
rows). Likewise, if the file has m column delimiters in row i, then row i in the table has
m+ 1 cells. The main idea is visualised in Figure 4, which we revisit later.

We use a set e = {t, /} of special symbols that do not appear in any other set unless
explicitly mentioned otherwise. We use t to denote empty cells in the CSV file and / to
denote cells that do not exist in the CSV file.6

If we denote a set by a single symbol (say, V), we always assume that it does not contain
any symbol from e. We use the following notation: Ve = V ∪ {t, /} and Vx = V ∪ {x} for
every symbol x ∈ e.

Let V be a set and n,m ∈ N. A matrix M over Ve is a mapping from [n] × [m] to
Ve. We say that M has n rows and m columns. A cell is determined by its coordinate
(k, `) ∈ [n]× [m] and its content is the value M(k, `). We usually denote the later value as
Mk,`. We denote the set [n]× [m] of all coordinates of M by Coords(M). A region in M is a
set of coordinates, that is, a subset of [n]× [m].

I Definition 1 (Core Tabular Data Model, [11, 15]). A table T over Ve is a matrix over Ve

that satisfies the requirement that whenever Ti,j = / then Ti,j′ = / for all j′ > j (i.e., / is
only used for padding to the right).

The purpose of the / symbol is just to indicate how many cells there are in a row in the
underlying CSV-like text file. The text file in Figure 4 has two row separators (←↩), so the
corresponding table has three rows. The number of columns in the table is the maximal
number of column separators (comma) in a row of the text file, plus one. The first row
of the CSV-like file has three cells, for which the first two are empty (do not even contain
whitespace). We use t to denote this in the table. Furthermore, the last cell in the first row
in the table is labeled / to indicate that this cell does not exist in the underlying text file on
the left. (Since rows are left-aligned in CSV-like files, there can only be / to the right of /.)
The second row in the text file on the left has one cell, which is empty. The third and final
row has four cells. The last cell contains t since the column separator is the last symbol of
the CSV-like text file.

We assume the natural table order on coordinates. That is, we say that coordinate (k, `)
precedes coordinate (k′, `′) (denoted (k, `) < (k′, `′)) if (k, `) precedes (k′, `′) lexicographically,
that is: either (1) k < k′ or (2) k = k′ and ` < `′. When depicting tables, we always put cell
(1,1) on the top left.

6 These symbols play a similar role as the “end of tape” marker and the blank symbol in some definitions
of Turing Machines. Here we only focus on t and / and their correspondence to the underlying CSV-like
text files.

J. Doleschal, W. Martens, F. Neven, and A. Witkowski 14:7

,,abc←↩

←↩

a,,bcd,

t t abc /

t / / /

a t bcd t

Figure 4 A CSV-like text file (left) and its corresponding tabular representation (right).

3 A Structural Core of SCULPT

We present a formal model for the structural core of SCULPT. In our formalization, we will
work with tables corresponding to tokenized CSV files as exemplified in Figure 2. Formally,
a SCULPT schema is a tuple S = (∆e, R) where

∆e is a finite set of elements which we call tokens, and
R is a set of structural rules of the form s→ ρ that constrain the admissible table content:
s is a region selection expression that maps every table over ∆e to a set of regions;
and,
ρ is a content expression that defines the permitted content of regions selected by s.

The schema in Figure 3 has, in addition to the structural rules R, a set of token rules that
associate tokens to cell contents. We omitted these here because we focus on the structural
core of the language. In what follows we just use the term rules to refer to structural rules.

In brief, a SCULPT schema defines a set of tables over ∆e. Intuitively, such tables should
satisfy all rules s→ ρ in the schema. Let T be a table over ∆e and z be a region of T . In
the different versions of SCULPT that we consider, we will define when z satisfies ρ, which
we denote by z |= ρ. The region selection expressions s, when applied to a table T , returns a
set of regions, i.e., JsKT is a subset of 2Coords(T).

I Definition 2. A table T over ∆e satisfies a SCULPT schema S = (∆e, R), denoted T |= S,
if z |= ρ for every rule s→ ρ in R and z ∈ JsKT .

We now define the region selection and content expressions for SCULPT. The full
language SCULPT will only be used in this section, where the main goal is to understand
which properties of SCULPT make satisfiability undecidable. In Section 4, we introduce
L-SCULPT which avoids these properties and for which satisfiability becomes tractable for
some fragments.

Region Selection Expressions

We now define region selection expressions for the most general schemas we consider. Intu-
itively, a region selection expression is of the form f(ϕ) where ϕ is a formula that returns a
region z and f is an operator in {region, rows} that maps regions to sets of regions.7 The
formulas ϕ in SCULPT are formulas in propositional dynamic logic (PDL for short) [4],
tweaked for navigation over grids. We refer to Appendix A for details. Then, for a re-
gion z, we define region(z) as {z} and rows(z) as the set of rows in z, more specifically
rows(z) = {{(i, j) ∈ z | j ∈ N} | i ∈ N}.8

7 In [11, 3], this operator is encoded in rules by using different arrows: rules with => use f = region and
rules with -> use f = rows. We use the same convention in Figure 3, where f = row for every rule.

8 SCULPT as defined in [11] only uses regions and rows. We also implemented cols [3], that cuts z into
its set of columns (and can be defined analogously), but do not use it in the present paper.

ICDT 2018

14:8 Satisfiability for SCULPT-Schemas for CSV-Like Data

Content Expressions

As content expressions, we simply use regular expressions over ∆e. Let T be a table, let z be
a region of T , and let ρ be a content expression. Then z satisfies ρ (denoted z |= ρ) if there
exist tokens a1, . . . , an ∈ ∆e such that a1 · · · an ∈ L(ρ) and a1 · · · an is the enumeration of
all tokens in z in table order. Recall that Definition 2 now implies that T |= (∆e, R) if, for
every rule f(ϕ) → ρ in R, we have that z |= ρ for every z ∈ f(Z), where Z is the region
selected by ϕ in T .

Decision Problems

We recall that validation of SCULPT schemas is in linear time:

I Theorem 3 ([11]). Given a table T and SCULPT schema S, testing if T |= S can be done
in time O(|T | · |S|).

In this paper, we study satisfiability problems for SCULPT. The most straightforward
variant is defined as follows:

Problem: SAT
Input: A SCULPT schema S.
Question: Is there a table T such that T |= S?

In its full generality, SAT is easily seen to be undecidable. The proof is a simple reduction
from Domino Tiling where only one region selection expression is used to ‘walk’ over the
grid checking all horizontal and vertical constraints.

I Proposition 4. SAT is undecidable for SCULPT, even if schemas use only one rule that
selects only one cell.

We note that a similar result was obtained by Göller et al. [7, Theorem 4.11], where
satisfiability of PDL with restricted negation was shown to be undecidable. The main
difference is that Göller et al. consider infinite satisfiability whereas we consider finite
satisfiability. Göller et al. encode the grid structure in their formula but, from there on, their
proof and ours use a similar main idea.

Restricting the ‘walking’ power of region selection expression does not suffice for decid-
ability as the next proposition shows. Again, a reduction from Domino Tiling is used but
now the schema needs to select ‘intersecting’ regions: every cell containing a certain domino
is in a selected region that checks the horizontal constraints and another region that tests
the vertical constraints for this domino.

I Proposition 5. SAT is undecidable for SCULPT, even if rules only use left-hand-sides
that select “the row of cell (1,1)”, “the column of cell (1,1)”, “the cell(s) to the immediate
right of a given token”, and “the cell(s) immediately below a given token”.

4 Lego SCULPT

The use cases put forward by W3C [13] do not use powerful ‘walking’ expressions or select
‘intersecting’ regions as is done in the proofs of Propositions 4 and 5. As in addition
the schemas used in the proofs of the mentioned propositions are rather artificial, we
introduce a restricted variant of SCULPT called Lego SCULPT (L-SCULPT). From a structural
perspective, this language is still more powerful than the W3C’s proposal for a schema

J. Doleschal, W. Martens, F. Neven, and A. Witkowski 14:9

language, can more accurately describe the data in the W3C use cases (see Figures 1–3), and
admits tractable satisfiability. In brief, L-SCULPT restricts region selection expressions to
select rows, columns, and rectangles. A second restriction is that L-SCULPT only considers
tables on which no two selected regions intersect.9 Formally, an L-SCULPT schema S =
(∆e, R) is a pair as before but with some restrictions that we explain next.

Region Selection Expressions

We first discuss the region selection expressions occurring as left-hand sides of rules in R:

s := c | up(d) | down(d) | left(d) | right(d) | row•(d) | col•(d) | rect(d+ o)

Here, • ∈ {∗,+}, c is a coordinate, d is a coordinate or a token (different from / or t), and
o ∈ {0, 1} × {0, 1} is an offset. We allow offsets in rectangles for flexibility. In Figure 3, it is
convenient to use the offset (1,0), for example. For the definition of JsKT , we use the following
shorthand: If c is a coordinate and a is a token, we write c |= a if Tc = a. Additionally, we
define c |= c for each coordinate c of T . Furthermore, we denote by RT the region consisting
of all cells of T . Then, JsKT defines a set of regions as follows:10

JcKT := {{c}}
Jrect(d+ o)KT := {{c+ o+ (k, `) | k, ` ∈ N} ∩RT | c |= d}

Jup(d)KT := {{(i− 1, j)} ∩RT | (i, j) |= d}
Jdown(d)KT := {{(i+ 1, j)} ∩RT | (i, j) |= d}

Jleft(d)KT := {{(i, j − 1)} ∩RT | (i, j) |= d}
Jright(d)KT := {{(i, j + 1)} ∩RT | (i, j) |= d}

Jrow∗(d)KT := {{c+ (0, k) | k ∈ N} ∩RT | c |= d}
Jrow+(d)KT := {{c+ (0, k + 1) | k ∈ N} ∩RT | c |= d}

Jcol∗(d)KT := {{c+ (k, 0) | k ∈ N} ∩RT | c |= d}
Jcol+(d)KT := {{c+ (k + 1, 0) | k ∈ N} ∩RT | c |= d}

Again, c is a coordinate, d is a coordinate or token, and o an offset. We give some intuition.
Rule col∗(c) selects a singleton region consisting of c and all cells below c. Rule row+(a)
selects a set of regions, namely, for each cell c with token a, the region having all cells to
the right of c. The rule right(a) contains, for each cell c with token a, the region {c+ (0, 1)}.
Finally, rect(c+ (1, 0)) contains the set of rows starting in coordinates below c.

We refer to rules with a coordinate in their left-hand side as coordinate rules and to
the other rules as token rules. We say that the expressions of the form rect are rectangular.
Although rect selects sets of rows, the terminological intuition is the following: since the
rows we select are consecutive and all start in the same column, their union in T is always
rectangular.

Observe that, in the case of coordinate rules, row+((x, y)) is syntactic sugar for row∗((x,
y + 1)), whereas row∗((1, 1)) (“select the first row”) cannot be expressed with row+. In the

9 The restriction to brick-like regions together with the disjointness requirement explains why we refer to
this fragment as Lego SCULPT.

10For simplicity, we do not make use of a ‘slice’ operator f as in Section 3, but rather defined the set of
regions directly.

ICDT 2018

14:10 Satisfiability for SCULPT-Schemas for CSV-Like Data

case of token rules, although one can use row∗(a), it introduces redundancy: its content
expression will have to repeat that the first cell in the region contains a. In the remainder
of the paper, we therefore do not consider row+(c) or row∗(a). Furthermore, we just write
row(c) for row∗(c) and row(a) for row+(a) and follow the same conventions for columns. The
rules in Figure 3 are all in L-SCULPT, with the semantics as define here.

We assume in the sequel that the coordinates c are encoded in unary. We feel that
this assumption is reasonable because we have not yet encountered data for which large
coordinates are needed. In W3C schemas for tabular data, such numbers (the number of
columns of the data) are encoded in unary as well.

Content Expressions

Content expressions define the allowed content of cells but can no longer force cells in the
underlying CSV-file to be missing. We therefore restrict content expressions in L-SCULPT,
by disallowing the explicit use of /, i.e., content expressions are now regular expressions over
∆t. In addition, when matching a region against a content expression, we allow arbitrarily
long padding at the end. Formally, for a content expression ρ, denote by Le(ρ) the language
L(ρ · t∗ · /∗). We say that a region z satisfies ρ (denoted z |= ρ) if a1 · · · an ∈ Le(ρ), where
a1, . . . , an are the tokens in z, in table order.

Padding with / allows us to take non-rectangular CSV-like files into account. Padding
with t ensures that content expressions cannot “force” a row in a CSV-file to be short.
Indeed, consider the following contrived example with a rule right(a)→ ε. If we would define
Le(ρ) = L(ρ · /∗) then the content of the cell to the right of a would need to be /, therefore
forcing the cell in the underlying CSV data to be missing. In our definition, we allow the cell
to be missing or empty.

Region Disjointness

Let S = (∆e, R) be an L-SCULPT schema and T a table. Intuitively, we say that S is region-
disjoint on T if all regions selected by S are pairwise disjoint. Formally, S is region-disjoint
on T if, for every pair of rules r1 = s1 → ρ1 and r2 = s2 → ρ2 and every pair of regions
z1 ∈ Js1KT and z2 ∈ Js2KT , if z1 ∩ z2 6= ∅, then r1 = r2 and z1 = z2. Finally, we say that
T |= S if S is region-disjoint on T and r |= ρ for every rule s→ ρ in R and for every region
r ∈ JsKT .

Notice that, given a table T and schema S, it is easy to check whether T is region-disjoint
on S. This can be checked during evaluation, which is in in time O(|T | · |S|), even for full
SCULPT (Theorem 3).

Recall that we introduced region-disjointness to avoid the undecidability problems in
Proposition 5. An alternative, more restrictive way of introducing region-disjointness would
be to require that a schema is in L-SCULPT only if it is region-disjoint on every table for
which the rules match. But as we discuss next, this severely limits the power of L-SCULPT
and makes schemas more difficult to design. For instance, already the schema consisting of
the two rules row(a1)→ b∗ and col(a2)→ b∗ would be disallowed, because there exist tables
(say, with a1 in cell (2,1) and a2 in cell (1,2)) in which the row and column intersect. (In our
semantics, the schema for instance is satisfied by putting a1 in (1,1), a2 in (2,1), and no b at
all.) Furthermore, the alternative semantics would introduce strange behavior. While the
schema with the rule row(a)→ b∗ is clearly satisfiable, the rule row(a)→ b∗ + c∗(ac+ d)∗c∗
would not be allowed due to the occurrence of a in the content expression. The burden then
lies with the user to rewrite the rule to row(a)→ b∗+ c∗d∗c∗ to become allowed again. In the
semantics we propose, the last two rules are both allowed and define the same set of tables.

J. Doleschal, W. Martens, F. Neven, and A. Witkowski 14:11

Finally, notice that the problem of testing whether there is a table T such that S is
region-disjoint on T and all rules of S match is precisely SAT for L-SCULPT, which we study
in Section 5.

Comparison With W3C Schemas for Tabular Data

The W3C proposes a schema language for tabular data in [12, Section 5.5]. From a structural
perspective, this language is a strict subset of L-SCULPT, since it can be expressed as
L-SCULPT using only rules of the form col(c) → a∗, where c is a coordinate and a is a
token. Furthermore, the W3C schemas also do not admit selection of intersecting regions.
Concerning our example in the introduction, although it is possible to define a schema using
only rules of the form col(c)→ a∗ for the data in Figure 1, we feel that such an approach
leads to a much less accurate description of the data than our example in Figure 3.

I Example 6. The set of rules in Figure 3 are written in L-SCULPT. Furthermore, the
schema is region-disjoint on the table T corresponding to the CSV file of Figure 2. (Therefore,
T witnesses that the schema is satisfiable.) Recall that it is impossible to describe the
data in such CSV files using column navigation only, as is currently the case in the W3C
recommendation.

5 Satisfiability for L-SCULPT

In this section, we discuss the complexity of the satisfiability problem for L-SCULPT schemas.
We distinguish between L-SCULPT fragments by explicitly listing the allowed operators in
region selection expressions. For instance, L-SCULPT(row, col, right) denotes the fragment of
L-SCULPT that only uses the operators row, col and right as region selection expressions.

In Section 5.1, we obtain the main technical result of the paper by delineating a relevant
L-SCULPT fragment for which SAT is tractable, namely L-SCULPT(row, col, rect, right). In
Section 5.2, we show that various extensions of this fragment become undecidable.

5.1 Polynomial-Time Fragments
We first show that satisfiability is in polynomial time for L-SCULPT(row, col, rect, right):

I Theorem 7. SAT for L-SCULPT(row, col, rect, right) is PTIME-complete.

The lower bound is a straightforward reduction from the emptiness problem of context-free
grammars. The upper bound is significantly more challenging and is a reduction to the
emptiness problem of nondeterministic tree automata where we represent tables T satisfying
L-SCULPT schemas S as trees and use tree automata to match the rules of S on T and to
test for region-disjointness.

We start by introducing the necessary terminology concerning trees, tree automata and
the embedding of trees into tables in Section 5.1.1. When a schema has no coordinate rule,
it is trivally satisfiable as it is satisfied by any table containing only /-entries. So, we prove
in Section 5.1.2 the upper bound for Theorem 7 for the special case where schemas consist of
exactly one coordinate rule and do not make use of rectangular regions. Hereafter, we extend
the proof to multiple coordinate rules and rectangles in Section 5.1.3 thereby completing
the proof of Theorem 7. Finally, we discuss at the end of Section 5.1 how to obtain PTIME
satisfiability for other L-SCULPT fragments.

ICDT 2018

14:12 Satisfiability for SCULPT-Schemas for CSV-Like Data

(1, 1)

(1, 2)

(2, 2)

(3, 2)

(4, 2) (3, 3)

(1, 3)

(1, 4)

(2, 4)

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 2) (2, 4)

(3, 2) (3, 3)

(4, 2)

(1, 1)

(2, 1)

(3, 1) (2, 2)

(1, 2)

(2, 2) (1, 4)

Figure 5 A binary tree (left), a table embedding for the tree on the left (middle), and a tree that
does not have a table injection (right).

5.1.1 Preliminaries regarding trees

A (rooted, ordered, finite, labeled) binary tree is a finite tree where every node has at most
two children (left child and right child). We allow nodes to have a left (resp., right) child
only. We denote the empty tree by ε. Non-empty trees are denoted as a(t1, t2). Here, the
root carries the label a, has left subtree t1, and right subtree t2. Notice that t1 or t2 can be
empty. For instance, a(ε, ε) is a tree that consists of a single node, labeled a. We denote by
Nodes(t) the set of nodes in the tree t. Every node u in the tree has a single label from ∆.
For a formal introduction into tree automata we refer to Appendix B.1.

Table Embeddings and Table Trees

As we want to use tree automata to reason about tables, we define a correspondence
between tables and trees. A table embedding of a binary tree t in a table T is a mapping
µ : Nodes(t)→ Coords(T) such that, for each node v of t,

the left child v1 is mapped directly below its parent, that is, µ(v1) = µ(v) + (1, 0), and

the right child v2 is mapped directly to the right of its parent, that is, µ(v2) = µ(v)+(0, 1).
A table injection is an injective table embedding.

Notice that a table embedding is always completely determined by the cell on which the
root of t is mapped. We illustrate table embeddings in Figure 5. The tree on the left has a
table injection which is depicted in the middle. The tree on the right does not have a table
injection: its canonical embedding is not injective on the nodes labeled (2, 2).

In the remainder, we use the term table tree for a tree that has a table injection. Since
we use trees to reason about tables, it will be more natural to speak of the downward and
the right child of nodes in trees (as opposed to the left and the right child). Similarly, a right
path (resp., downward path) is a path consisting only of right (resp., downward) children.

We note that other variants of table (or grid) embeddings have been studied in the
literature (see, e.g., [8, 9]). These works allow children of nodes to be mapped to neighboring
cells in the table, but they leave freedom as to which neighboring cells can be chosen. Under
this alternative definition of embeddings, it is NP-complete to decide if an injective embedding
exists for a given tree [8]. For table injections, however, this question is trivially in PTIME
because it only amounts to testing if the canonical table embedding is injective.

J. Doleschal, W. Martens, F. Neven, and A. Witkowski 14:13

(1, 1) → r

col(r) → an−1 · · · a1a

right(r) → an

right(ai) → ai + bi

(for all i = 1, . . . , n)
col(bi) → ai−1ai−2 · · · a1a

(for all i = 1, . . . , n)

(a) SCULPT schema consisting of 2n + 1 rules,
each of size O(n).

r an an an an an an · · · bn

...
...
a3 a3 a3 a3 b3

a2 a2 b2

a1 b1

aa

a1 b1

aa

a2 a2 b2

a1 b1

aa

a1 b1

aa

(b) Smallest table tree satisfying the schema in
Figure 6a in a region disjoint manner. The path
at the top contains 2n nodes labeled an.

Figure 6 Schema for which the smallest region-disjoint table has an exponentially long path.

5.1.2 One Coordinate and No Rectangles
We assume that an L-SCULPT schema has at least one coordinate rule. As already mentioned
above, when a schema has no coordinate rule, it is trivially satisfiable. We first prove that
SAT is in PTIME for schemas with a single coordinate rule and that uses no rectangular
regions.

Given an L-SCULPT(row, col, right) schema S, we construct a tree automaton AS of size
polynomial in S such that L(AS) 6= ∅ ⇔ S ∈ SAT. Ideally, AS would accept precisely
those trees whose table injection satisfies S. But as the following example shows the latter
condition could require AS to be of size exponential in S. Indeed, consider the class of
schemas in Figure 6a (which depends on a number n). Figure 6b shows that the smallest
trees corresponding to tables satisfying S in a region-disjoint manner have an exponentially
long path. Therefore, we construct AS to accept precisely those trees that can be pumped to
a tree that has a table injection satisfying S.

Pumping trees

We describe how trees are pumped, but first we need some terminology. We say that a token
a is a col token if col(a) is a left-hand side of a rule in S. We define row tokens and right
tokens analogously. A horizontal token is a row token or a right token. We sometimes also
call col tokens vertical tokens for consistency in terminology.

Consider a tree t with a long right path containing node u1 and, further right, u2.
Moreover, u1 and u2 have col tokens and no node between them has a col token. (One can
think of u1 being the root node in Figure 6b and u2 the bn-labeled node.) Furthermore,
assume that t has a long downward path rooted at u2. In any table embedding e, nodes u1
and u2 would be mapped to cells on the same row, i.e., with coordinates (i, j1) and (i, j2)
for some i and j1 < j2. So, for e to be injective, the entire subtree rooted at u1’s downward
child must be mapped into the region {(x, y) | x > i and j1 ≤ y < j2}, in order to avoid
intersection with downward path below u2.

A crucial observation is that we do not need to check this for very long paths. Since
content expressions are regular, if j2 − j1 exceeds the size of the largest content expression
in S, then the gap between u1 and u2 can be made arbitrarily large by pumping, avoiding
the use of any column tokens. This means that, in this case, the size of the subtree at u1’s
downward child does not matter for testing if the embedding e can be made injective. This

ICDT 2018

14:14 Satisfiability for SCULPT-Schemas for CSV-Like Data

will later help us to ensure region-disjointness. The tree automaton will therefore count
the distance between such branches up to a certain length, exceeding the size of the largest
content expression in S. Beyond that, it classifies the distance as ‘arbitrarily large’.

We also need to reason about the width of a tree t, which intuitively corresponds to
the number of columns that will be used in its table embedding. Formally, if t = ε then
width(t) = 0. If t = a(t↓, t→), then width(t) = max{width(t↓), 1 + width(t→)}.

As we only consider row, col, and right axes, testing if a schema is region-disjoint on a
table that corresponds to a table tree t amounts to the following. We need to test if, for
every subtree a(t↓, t→) with width(t↓) = k, the tree t→ starts with a right path of length at
least k before we see the first node with a col token or a downward child. We formalize this
as follows. For a tree t = a(t↓, t→), we define path-length(t) to be the number of nodes on
the right path starting at the root, before we reach a node with a col token or a downward
child. We set the value to ∞ if such a node does not exist. Formally, taking ∞+ 1 =∞, we
define path-length as follows:

if t↓ 6= ε or a is a col token, then path-length(t) = 0,
else, if t→ = ε, then path-length(t) =∞, and
otherwise, path-length(t) = 1 + path-length(t→).

Main Construction

We construct a tree automaton AS from a given L-SCULPT(row, col, right) schema S, such
that L(AS) 6= ∅ ⇔ S ∈ SAT. We need one more technicality. We call a token a forbidden if
there are either two rules right(a) → ρ1 and row(a) → ρ2, two distinct rules right(a) → ρ1
and right(a)→ ρ2, or two distinct rules s1(a)→ ρ1 and s2(a)→ ρ2 where s1 = s2. Notice
that forbidden tokens can never appear in a table satisfying S. Observe that the set of
forbidden tokens can be trivially computed in PTIME.

The tree automaton AS is the intersection of the following automata:
Aforbidden, which accepts the trees without forbidden tokens;
Acontent, which checks conformity w.r.t. the content expressions and for region disjointness
in the same dimension. More precisely, Acontent checks
1. whether the table induced by the tree matches the rules in the schema, and
2. whether two row rules, a row and a right rule or two col rules select a common cell;11
Arow/col, which checks that there are no row and col rules that select a common cell; and
Aright/col, which checks that the input tree can be pumped to a tree where no right and
col rule select a common cell.

Formally, the invariants of the automata are captured by the four Lemmas 12, 13, 14,
15, which can be found in Appendix B.2. Using these lemmas, it can be proved that the
product automaton AS accepts a tree if and only if it can be pumped to a table tree that
satisfies S. By construction, in L(AS), we will only be able to pump paths that are longer
than |Acontent|.

I Theorem 8. Let S be an L-SCULPT(row, col, right) schema that contains exactly one
coordinate rule and no rectangular regions. Then we can construct in time polynomial in |S|
a tree automaton AS such that L(AS) 6= ∅ ⇔ S ∈ SAT.

As testing for non-emptiness of tree automata is in PTIME, SAT for L-SCULPT(row, col, right)
is in PTIME for schemas that contain at most one coordinate rule.

11A col rule is a rule with col(d) as a left-hand side. Similar for row and right rule.

J. Doleschal, W. Martens, F. Neven, and A. Witkowski 14:15

(a) Example structure of a
model for a schema with
multiple coordinates.

(b) How the tree automaton
sees it similar to one coordi-
nate case.

c

ds

d

(c) Area of responsibility
of a state (c, ds, d) in the
automaton.

Figure 7 Dealing with the multiple coordinate case.

5.1.3 Multiple Coordinate Rules and Rectangles
We now show how to extend the result from Theorem 8 to the case where the schema may
contain multiple coordinate rules. The main idea is summarized in Figure 7. Figure 7a
depicts an instance of a region-disjoint forest with four roots. To turn it into a tree, we
compute an equisatisfiable L-SCULPT schema, where every coordinate is shifted one cell to
the right, add a new coordinate at (1,1) and select its entire column; see the dashed line in
Figure 7b. Since all coordinates in the new L-SCULPT schema are at column two or higher,
every coordinate in Figure 7a now has at least one selected cell somewhere to its left. We
then allow the tree automaton to read a branch to the right at every node, provided this
branch ends in a coordinate. (These are the dotted lines in Figure 7b.) The tree automaton
then tests if it finds every coordinate in the tree.

Naïvely, the latter test requires an exponential number of states (see Example 11 in
Appendix B.1), since it seems that the tree automaton needs a state for every subset of C,
the set of coordinates occurring in the schema. However, let n ∈ N be the smallest number
such that C ⊆ [n]2. We can do the test with a polynomial number of states if we exploit
that the schema is in L-SCULPT(row, col, right). We prove that an automaton for finding
all coordinates in C can use states (c, ds, d), where c is a coordinate in [n]2, and ds and d
are in [n] ∪ {0}. Formally, if a state (c, ds, d) is assigned to a node u in an accepting run,
it means that the automaton finds in the subtree at u all coordinates in (a, b) ∈ C of the
form (1) x = a and y ≤ b ≤ y + d and (2) a ≥ x and y + ds ≤ b ≤ y + d. See Figure 7c for
an illustration. Furthermore, we can also deal with rectangular regions:

I Theorem 9. Let S be an L-SCULPT(row, col, rect, right) schema. Then we can construct
in time polynomial in |S| a tree automaton AS such that L(AS) 6= ∅ ⇔ S ∈ SAT.

5.2 Undecidable Fragments
L-SCULPT(row, col, rect, right) is asymmetric in that it only allows bounded navigation in one
direction (i.e., the right operator). Next, we show that bounded navigation in two directions
makes SAT undecidable. The first cases in the following theorem are the most natural ones.
Here, we need at most one direction for unbounded navigation. The last case needs two
unbounded directions, but we only need them once in the proof, for navigating to the bottom
right corner of the data and start the tiling encoding from there. The undecidability results
follow by reductions from Domino Tiling.

I Theorem 10. SAT is undecidable for L-SCULPT(row, up, down), L-SCULPT(right, down),
L-SCULPT(col, left, right), and L-SCULPT(row, col, up, left).

ICDT 2018

14:16 Satisfiability for SCULPT-Schemas for CSV-Like Data

6 Discussion

In this paper, we considered static optimization of SCULPT. As the satisfiability problem for
SCULPT becomes undecidable rather quickly, we defined the restriction L-SCULPT and show
that it admits a PTIME satisfiability test for the fragment L-SCULPT(row, col, rect, right).
This fragment contains selection of rows, columns, and rectangular regions, starting from a
given cell, plus bounded regions to the right (i.e., it can simulate “select three cells to the right
of coordinate (5,2)” or “select the five cells to the right of each a”). Although SAT is still in
PTIME if we replace right with down (by symmetry), we show that it becomes undecidable
when we extend this fragment with bounded navigation in two directions. Interestingly, the
just mentioned PTIME fragments contain the structural core of the W3C recommendation [12,
Section 5.5] and, in addition, extend it with features allowing to deal with cases like, for
instance, Use Case 13 in [13] that can not be addressed with the current recommendation.
To summarize, even though L-SCULPT(row, col, rect, right) seems to be very restrictive when
one starts from the full language SCULPT, it still extends the current W3C recommendation
and seems powerful enough to describe many data sets in practice.

Our result is still useful if one would omit the region disjointness condition in the semantics
of L-SCULPT. The PTIME algorithm would still be sound but incomplete. The only case
where the algorithm would return ‘no’, although the schema would be satisfiable is when it
can only be satisfied using tables in which selected regions are not disjoint.

References

1 Serge Abiteboul, Marcelo Arenas, Pablo Barceló, Meghyn Bienvenu, Diego Calvanese,
Claire David, Richard Hull, Eyke Hüllermeier, Benny Kimelfeld, Leonid Libkin, Wim
Martens, Tova Milo, Filip Murlak, Frank Neven, Magdalena Ortiz, Thomas Schwentick,
Julia Stoyanovich, Jianwen Su, Dan Suciu, Victor Vianu, and Ke Yi. Research directions
for principles of data management (abridged). SIGMOD Record, 45(4):5–17, 2016.

2 Marcelo Arenas, Francisco Maturana, Cristian Riveros, and Domagoj Vrgoč. A framework
for annotating csv-like data. Proceedings of the VLDB Endownment (PVLDB), 9, 2016.

3 Johannes Doleschal, Nico Höllerich, Martens, and Frank Neven. CHISEL: Sculpting tabular
and non-tabular data on the Web. In World Wide Web Conference (WWW), 2018. To
appear.

4 Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18(2):194–211, 1979.

5 Dora Giammarresi and Antonio Restivo. Two-dimensional languages. In Handbook of
Formal Languages: Volume 3 Beyond Words, chapter 4. Springer, 1997.

6 Ian Glaister and Jeffrey Shallit. A lower bound technique for the size of nondeterministic
finite automata. Information Processing Letters, 59(2):75–77, 1996.

7 Stefan Göller, Markus Lohrey, and Carsten Lutz. PDL with intersection and converse:
satisfiability and infinite-state model checking. The Journal of Symbolic Logic, 74(1):279–
314, 2009.

8 Angelo Gregori. Unit-length embedding of binary trees on a square grid. Information
Processing Letters, 31:167–173, 1989.

9 Ralf Heckmann, Ralf Klasing, Burkhard Monien, and Walter Unger. Optimal embedding
of complete binary trees into lines and grid. Journal of Parallel and Distributed Computing,
49(1):40–56, 1998.

10 Leonid Libkin, Wim Martens, and Domagoj Vrgoč. Querying graphs with data. Journal
of the ACM, 63(2):14:1–14:53, 2016.

J. Doleschal, W. Martens, F. Neven, and A. Witkowski 14:17

11 Wim Martens, Frank Neven, and Stijn Vansummeren. SCULPT: A schema language for
tabular data on the web. In World Wide Web Conference (WWW), pages 702–712, 2015.

12 Rufus Pollock, Jeni Tennison, Gregg Kellogg, and Ivan Herman. Metadata vocabulary
for tabular data. Technical report, World Wide Web Consortium (W3C), December 2015.
https://www.w3.org/TR/2015/REC-tabular-metadata-20151217/.

13 Jeremy Tandy, Davide Ceolin, and Eric Stephan. CSV on the Web: Use cases and
requirements. Technical report, World Wide Web Consortium (W3C), Februrary 2016.
http://www.w3.org/TR/2016/NOTE-csvw-ucr-20160225/.

14 Jeni Tennison. 2014: The year of CSV. http://theodi.org/blog/
2014-the-year-of-csv. Visited on Sept. 18, 2017.

15 Jeni Tennison and Gregg Kellogg. Model for tabular data and metadata on the web.
Technical report, World Wide Web Consortium (W3C), July 2014. https://www.w3.org/
TR/2015/REC-tabular-data-model-20151217/.

16 Peter van Emde Boas. The convenience of tilings. In Complexity, Logic and Recursion
Theory, volume 187 of Lecture Notes in Pure and Applied Mathematics, pages 331–363.
Marcel Dekker Inc., 1997.

17 World Wide Web Consortium (W3C). CSV on the web working group charter. https:
//www.w3.org/2013/05/lcsv-charter.html. Visited on Sept. 18, 2017.

A SCULPT Region Selection Expressions

SCULPT node expressions are formulas ϕ in propositional dynamic logic (PDL for short) [4],
tweaked for navigation over grids:

ϕ,ψ := a | root | true | 〈α〉 | ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ | α(ϕ)
α, β := ε | up | down | left | right | [ψ] | (α · β) | (α+ β) | (α∗)

Here, ϕ and ψ are node expressions and α and β are navigational expressions. Furthermore,
a ranges over tokens in ∆e and root is a constant referring to the cell at coordinate (1, 1).
Node expressions map a table to a region, whereas navigational expressions are mappings
from regions to regions.

When evaluated over a table T , a node expression ϕ defines a region LϕMT ⊆ Coords(T),
as follows:

LaMT := {(i, j) ∈ Coords(T) | a ∈ Ti,j}
L〈α〉MT := {c ∈ Coords(T) | Lα({c})MT 6= ∅}

L(ϕ ∨ ψ)MT := LϕMT ∪ LψMT

L(¬ϕ)MT := Coords(T) \ LϕMT

LrootMT := {(1, 1)}
LtrueMT := Coords(T)

L(ϕ ∧ ψ)MT := LϕMT ∩ LψMT

We define Lα(ϕ)MT as Lα(z)MT , where z = LϕMT and Lα(z)MT is recursively defined as follows
(for an arbitrary region z ⊆ Coords(T)):

Lε(z)MT := z

L(α · β)(z)MT := Lβ(Lα(z)MT)MT

L(α+ β)(z)MT := Lα(z)MT ∪ Lβ(z)MT

L(α∗)(z)MT :=
⋃

i≥0Lα
i(z)MT

L[ψ](z)MT := LψMT ∩ z

Lup(z)MT := {(i− 1, j) | i > 1, (i, j) ∈ z}
Ldown(z)MT := {(i+ 1, j) | i < n, (i, j) ∈ z}

Lleft(z)MT := {(i, j − 1) | j > 1, (i, j) ∈ z}
Lright(z)MT := {(i, j + 1) | j < m, (i, j) ∈ z}

ICDT 2018

https://www.w3.org/TR/2015/REC-tabular-metadata-20151217/
http://www.w3.org/TR/2016/NOTE-csvw-ucr-20160225/
http://theodi.org/blog/2014-the-year-of-csv
http://theodi.org/blog/2014-the-year-of-csv
https://www.w3.org/TR/2015/REC-tabular-data-model-20151217/
https://www.w3.org/TR/2015/REC-tabular-data-model-20151217/
https://www.w3.org/2013/05/lcsv-charter.html
https://www.w3.org/2013/05/lcsv-charter.html

14:18 Satisfiability for SCULPT-Schemas for CSV-Like Data

Here, αi abbreviates the i-fold composition α · · ·α. We also use this abbreviation in the
remainder. Notice that every coordinate (k, `) of T can be expressed as downk−1right`−1(root).
Henceforth, we therefore use coordinates (k, `) as syntactic sugar. Due to the close connection
to PDL, region selection expressions are also very close to some fragments of Graph XPath [10].

To sum up, f(ϕ) on a table T defines the set of regions region(LϕMT) and rows(LϕMT) when
f is region or rows, respectively.

B Polynomial-Time Fragments

B.1 Trees and Tree Automata
A nondeterministic tree automaton (over alphabet ∆) or NTA is a tuple N = (Q,∆, δ, F, e)
where Q is a finite set of states, F ⊆ Q is the set of accepting states, e is a bit indicating if
N accepts the empty tree or not, and δ is a set of transition rules of the form [q1, q2] a→ q,
where a ∈ ∆ and q1, q2 ∈ Q] {ε}. A run of N on a labeled binary tree t is an assignment of
nodes to states λ : Nodes(t)→ Q such that for every v ∈ Nodes(t) the following holds. Let
`v be the label of v. If v is a leaf, then [ε, ε] `v→ λ(v) ∈ δ; if v only has a left child v1 then
[λ(v1), ε] `v→ λ(v) ∈ δ; if v only has a right child v2 then [ε, λ(v2)] `v→ λ(v) ∈ δ and, finally, if
v has left child v1 and right child v2 then [λ(v1), λ(v2)] `v→ λ(v) ∈ δ. A run is accepting if
λ(r) ∈ F for the root r of t. A non-empty tree t is accepted if there exists an accepting run
on t. The empty tree is accepted if e = true. The set of all accepted trees is denoted by
L(N).

Transition rules suggest that NTAs read trees in a bottom-up manner. For this reason,
NTAs are usually referred to as bottom-up nondeterministic tree automata. However, the
semantics of NTAs does not depend on whether we write rules “bottom-up” as [q1, q2] a→ q

or “top-down” as q a→ [q1, q2]. In our proofs, we mix notation depending on the situation at
hand.

I Example 11. We give an example of a tree automaton (that is useful in Section 5.1.3).
Let C ⊆ ∆. The tree automaton NC = (Q,∆, δ, C, false) accepts precisely those trees in
which every symbol from C occurs. Define Q = 2C . We define δ as follows:

[ε, ε] a→ {a} ∩ C [C1, ε] a→ (C1 ∪ {a}) ∩ C

[C1, C2] a→ (C1 ∪ C2 ∪ {a}) ∩ C [ε, C2] a→ (C2 ∪ {a}) ∩ C

In an accepting run, NC visits a node u in a state C ′ ⊆ C iff C ′ is the largest subset from
C such that the subtree rooted at u contains every symbol from C ′. We note that NC is
exponentially larger than |C|. This exponential size in C cannot be avoided as even on words,
the smallest NFA recognizing the words in which all symbols from C occur has exponential
size. The latter can be easily proved using Glaister and Shallit’s lower bound technique for
the size of NFAs [6]. Intuitively, the blow-up is due to the fact that the symbols from C may
occur in any order and therefore the automaton needs to remember which symbols have been
already encountered.

B.2 Invariants for the Main Construction
The invariants of the four tree automata used in Theorem 8 are captured by the following
four Lemmas.

I Lemma 12. An NTA Aforbidden can be constructed in time polynomial in |S| such that
L(Aforbidden) is the set of trees containing no forbidden token.

J. Doleschal, W. Martens, F. Neven, and A. Witkowski 14:19

For a node u in t we define its set of triggering rules in S as follows:
if lab(u) = a, then its triggering rules are all rules of the form row(a)→ ρ, col(a)→ ρ, or
right(a)→ ρ in S and
if u is the root of t, then, additionally, the unique coordinate rule of S is also triggering.

I Lemma 13. An NTA Acontent can be constructed in time polynomial in |S| such that
L(Acontent) ∩ L(Aforbidden) is the set of trees t such that for every node u all the following
hold:
1. If u has a triggering rule row(d)→ ρ then the right path of t rooted at u forms a word in

L(ρ) that does not contain any horizontal tokens.
2. If u has a triggering rule col(d) → ρ then the downward path of t rooted at u forms a

word in L(ρ) that does not contain any vertical tokens.
3. If u has a triggering rule right(d)→ ρ then the label of the right child of u either is t, or

a word in L(ρ).
4. u lies on a path described in cases 1-3.
In the above, d can be a coordinate or a token. For the unique rule where d is a coordinate,
node u is included in the respective path. In all other cases it is excluded.

We note that property 4 ensures that a tree accepted by Acontent is minimal in the sense
that it only contains nodes required to match the schema.

I Lemma 14. An NTA Arow/col can be constructed in time polynomial in |S| such that
t ∈ L(Arow/col) if and only if, for every subtree a(t↓, t→) of t, there is no row token in t↓ or
there is no col token in t→.

I Lemma 15. An NTA Aright/col can be constructed in time polynomial in |S| such that
t ∈ L(Aright/col) if and only if, for every node u of t, path-length(t→) ≤ |Acontent| implies
that

width(t↓) ≤ path-length(t→) + 1,

where a(t↓, t→) is the subtree of t rooted in u.

ICDT 2018

	Introduction
	Preliminaries
	A Structural Core of SCULPT
	Lego SCULPT
	Satisfiability for L-SCULPT
	Polynomial-Time Fragments
	Preliminaries regarding trees
	One Coordinate and No Rectangles
	Multiple Coordinate Rules and Rectangles

	Undecidable Fragments

	Discussion
	SCULPT Region Selection Expressions
	Polynomial-Time Fragments
	Trees and Tree Automata
	Invariants for the Main Construction

