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Abstract
A Boolean function f : {0, 1}n → {0, 1} is called a dictator if it depends on exactly one variable
i.e f(x1, x2, . . . , xn) = xi for some i ∈ [n]. In this work, we study a k-query dictatorship
test. Dictatorship tests are central in proving many hardness results for constraint satisfaction
problems.

The dictatorship test is said to have perfect completeness if it accepts any dictator function.
The soundness of a test is the maximum probability with which it accepts any function far
from a dictator. Our main result is a k-query dictatorship test with perfect completeness and
soundness 2k+1

2k , where k is of the form 2t − 1 for any integer t > 2. This improves upon the
result of [25] which gave a dictatorship test with soundness 2k+3

2k .
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1 Introduction

Boolean functions are the most basic objects in the field of theoretical computer science.
Studying different properties of Boolean functions has found applications in many areas
including hardness of approximation, communication complexity, circuit complexity etc. In
this paper, we are interested in studying Boolean functions from a property testing point of
view.

In property testing, one has given access to a function f : {0, 1}n → {0, 1} and the
task is to decide if a given function has a particular property or whether it is far from it.
One natural notion of farness is what fraction of f ’s output we need to change so that the
modified function has the required property. A verifier can have an access to random bits.
This task of property testing seems trivial if we do not have restrictions on how many queries
one can make and also on the computation. One of the main questions in this area is can we
still decide if f is very far from having the property by looking at a very few locations with
high probability.

There are few different parameters which are of interests while designing such tests
including the amount of randomness, the number of locations queried, the amount of
computation the verifier is allowed to do etc. The test can either be adaptive or non-
adaptive. In an adaptive test, the verifier is allowed to query a function at a few locations
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and based on the answers that it gets, the verifier can decide the next locations to query
whereas a non-adaptive verifier queries the function in one shot and once the answers are
received makes a decision whether the function has the given property. In terms of how good
the prediction is we want the test to satisfy the following two properties:

Completeness: If a given function has the property then the test should accept with
high probability
Soundness: If the function is far from the property then the test should accept with
very tiny probability.

A test is said to have perfect completeness if in the completeness case the test always accepts.
A test with imperfect completeness (or almost perfect completeness) accepts a dictator
function with probability arbitrarily close to 1. Let us define the soundness parameter of the
test as how small we can make the acceptance probability in the soundness case.

A function is called a dictator if it depends on exactly one variable i.e f(x1, x2, . . . , xn) =
xi for some i ∈ [n]. In this work, we are interested in a non-adaptive test with perfect
completeness which decides whether a given function is a dictator or far from it. This was
first studied in [4, 20] under the name of Dictatorship test and Long Code test. Apart
from a natural property, dictatorship test has been used extensively in the construction of
probabilistically checkable proofs (PCPs) and hardness of approximation.

An instance of a Label Cover is a bipartite graph G((A,B), E) where each edge e ∈ E is
labeled by a projection constraint πe : [L]→ [R]. The goal is to assign labels from [L] and
[R] to vertices in A and B respectivels so that the number of edge constraints satisfied is
maximized. Let GapLC(1, ε) is a promise gap problem where the task is to distinguish between
the case when all the edges can be satisfied and at most ε fraction of edges are satisfied by
any assignment. As a consequence of the PCP Theorem [1, 2] and the Parallel Repetition
Theorem[22], GapLC(1, ε) is NP-hard for any constant ε > 0. In [7], Håstad used various
dictatorship tests along with the hardness of Label Cover to prove optimal inapproximability
results for many constraint satisfaction problems. Since then dictatorship test has been
central in proving hardness of approximation.

A dictatorship test with k queries and P as an accepting predicate is usually useful in
showing hardness of approximating Max-P problem. Although this is true for many CSPs,
there is no black-box reduction from such dictatorship test to getting inapproximability result.
One of the main obstacles in converting dictatorship test to NP-hardness result is that the
constraints in Label Cover are d-to-1 where the the parameter d depends on ε in GapLC(1, ε).
To remedy this, Khot in [12] conjectured that a Label Cover where the constraints are 1-to-1,
called Unique Games, is also hard to approximate within any constant. More specifically,
Khot conjectured that GapUG(1 − ε, ε), an analogous promise problem for Unique Games,
is NP-hard for any constant ε > 0. One of the significance of this conjecture is that many
dictatorship tests can be composed easily with GapUG(1−ε, ε) to get inapproximability results.
However, since the Unique Games problem lacks perfect completeness it cannot be used to
show hardness of approximating satisfying instances.

From the PCP point of view, in order to get k-bit PCP with perfect completeness, the
first step is to analyze k-query dictatorship test with perfect completeness. For its application
to construction PCPs there are two important things we need to study about the dictatorship
test. First one is how to compose the dictatorship test with the known PCPs and second
is how sound we can make the dictatorship test. In this work, we make a progress in
understanding the answer to the later question. To make a remark on the first question,
there is a dictatorship test with perfect completeness and soundness 2Õ(k1/3)

2k and also a way
to compose it with GapLC(1, ε) to get a k-bit PCP with perfect completeness and the same
soundness that of the dictatorship test. This was done in [11] and is currently the best know
k-bit non-adaptive PCP with perfect completeness.
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Distance from a dictator function

There are multiple notion of closeness to a dictator function. One natural definition is the
minimum fraction of values we need to change such that the function becomes a dictator.
There are other relaxed notions such as how close the function is to juntas - functions that
depend on constantly many variables. Since our main motivation is the use of dictatorship
test in the construction of PCP, we can work with even more relaxed notion which we describe
next: For a Boolean function f : {0, 1}n → {0, 1} an influence of ith variable is the probability
that for a random input x ∈ {0, 1}n flipping the ith coordinate flips the value of the function.
Note that a dictator function has a variable whose influence is 1. The influence of ith variable
can be expressed in terms of the fourier coefficients of f as infi[f ] =

∑
S⊆[n]|i∈S f̂(S)2.

Using this, a degree d influence of f is inf≤di [f ] =
∑
S⊆[n]|i∈S,|S|≤d f̂(S)2. We say that f is

far from any dictator if for a constant d all its degree d influences are upper bounded by
some small constant.

In this paper, we investigate the trade-off between the number of queries and the soundness
parameter of a dictatorship test with perfect completeness w.r.t to the above defined distance
to a dictator function. A random function is far from any dictator but still it passes any
(non-trivial) k-query test with probability at least 1/2k. Thus, we cannot expect the test to
have soundness parameter less than 1/2k. The main theorem in this paper is to show there
exists a dictatorship test with perfect completeness and soundness at most 2k+1

2k .

I Theorem 1. Given a Boolean function f : {0, 1}n → {0, 1}, for every k of the form 2m− 1
for any m > 2, there is a k query dictatorship test with perfect completeness and soundness
2k+1

2k .

Our theorem improves a result of Tamaki-Yoshida[25] which had a soundness of 2k+3
2k .

I Remark. Tamaki-Yoshida [25] studied a k functions test where if a given set of k functions
are all the same dictator then the test accepts with probability 1. They use low degree cross
influence (Definition 2.4 in [25]) as a criteria to decide closeness to a dictator function. Our
whole analysis also goes through under the same setting as that of [25], but we stick to single
function version for a cleaner presentation.

1.1 Previous Work
The notion of Dictatorship Test was introduced by Bellare et al. [4] in the context of
Probabilistically Checkable Proofs and also studied by Parnas et al. [20]. As our focus is
on non-adpative test, for an adaptive k-bit dictatorship test, we refer interested readers to
[24, 10, 9, 6]. Throughout this section, we use k to denote the number of queries and ε > 0
an arbitrary small constant.

Getting the soundness parameter for a specific values of k had been studied earlier. For
instance, for k = 3 Håstad [7] gave a 3-bit PCP with completeness 1−ε and soundness 1/2+ε.
It was earlier shown by Zwick [27] that any 3-bit dictator test with perfect completeness must
have soundness at at least 5/8. For a 3-bit dictatorship test with perfect completeness, Khot-
Saket [13] acheived a soundness parameter 20/27 and they were also able to compose their
test with Label Cover towards getting 3-bit PCP with similar completeness and soundness
parameters. The dictatorship test of Khot-Saket [13] was later improved by O’Donnell-
Wu [17] to the optimal value of 5/8. The dictatorship test of O’Donnell-Wu [17] was used in
O’Donnell-Wu [18] to get a conditional (based on Khot’s d-to-1 conjecture) 3-bit PCP with
perfect completeness and soundness 5/8 which was later made unconditional by Håstad [8].
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For a general k, Samorodensky-Trevisan [23] constructed a k-bit PCP with imperfect com-
pleteness and soundness 22

√
k/2k. This was improved later by Engebretsen and Holmerin [6]

to 2
√

2k/2k and by Håstad-Khot [9] to 24
√
k/2k with perfect completeness. To break the

2O(
√
k)/2k Samorodensky-Trevisan [24] introduced the relaxed notion of soundness (based

on the low degree influences) and gave a dictatorship test (called Hypergraph dictatorship
test) with almost perfect completeness and soundness 2k/2k for every k and also (k + 1)/2k
for infinitely many k. They combined this test with Khot’s Unique Games Conjecture [12]
to get a conditional k-bit PCP with similar completeness and soundness guarantees. This
result was improved by Austrin-Mossel [3] and they achieved k + o(k)/2k soundness.

For any k-bit CSP for which there is an instance with an integrality gap of c/s for a certain
SDP, using a result of Raghavendra [21] one can get a dictatorship test with completeness
c − ε and soundness s + ε. Getting the explicit values of c and s for a given value of k is
not clear from this result and also it cannot be used to get a dictatorship test with perfect
completeness. Similarly, using the characterization of strong approximation restance of Khot
et. al [14] one can get a dictatorship test but it also lacks peferct completeness. Recently,
Chan [5] significantly improved the parameters for a k-bit PCP which achieves soundness
2k/2k albeit losing perfect completeness. Later Huang [11] gave a k-bit PCP with perfect
completeness and soundness 2Õ(k1/3)/2k.

As noted earlier, the previously best known result for a k-bit dictatorship test with perfect
completeness is by Tamaki-Yoshida [25]. They gave a test with soundness 2k+3

2k for infinitely
many k.

1.2 Proof Overview

Let f : {−1,+1}n → {−1,+1} be a given balanced Boolean function 1. Any non-adaptive
k-query dictatorship test queries the function f at k locations and receives k bits which
are the function output on these queries inputs. The verifier then applies some predicate,
let’s call it P : {0, 1}k → {0, 1}, to the received bits and based on the outcome decides
whether the function is a dictator or far from it. Since we are interested in a test with
perfect completeness this puts some restriction on the set of k queried locations. If we denote
x1,x2, . . . ,xk as the set of queried locations then the ith bit from (x1,x2, . . . ,xk) should
satisfy the predicate P. This is because, the test should always accept no matter which
dictator f is.

Let µ denotes a distribution on P−1(1). One natural way to sample (x1,x2, . . . ,xk) such
that the test has a perfect completeness guarantee is for each coordinate i ∈ [n] independently
sample (x1,x2, . . . ,xk)i from distribution µ. This is what we do in our dictatorship test for
a specific distribution µ supported on P−1(1). It is now easy to see that the test accepts
with probability 1 of f is an ith dictator for any i ∈ [n].

Analyzing the soundness of a test is the main technical task. First note that the soundness
parameter of the test depends on P−1(1) as it can be easily verified that if f is a random
function, which is far from any dictator function, then the test accepts with probability at
least |P

−1(1)|
2k . Thus, for a better soundness guarantee we want P to have as small support

1 Here we switch from 0/1 to +1/ − 1 for convenience. With this notation switch, balanced function
means E[f(x)] = 0
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as possible. The acceptance probability of the test is given by the following expression:

Pr[Test accepts f ] = E[P(f(x1), f(x2), · · · , f(xk))]

= |P
−1(1)|
2k + E

 ∑
S⊆[k],S 6=∅

P̂(S)
∏
i∈S

f(xi)


Thus, in order to show that the test accepts with probability at most |P

−1(1)|
2k + ε it is

enough to show that all the expectations ES := |E[
∏
i∈S f(xi)]| are small if f is far from

any dictator function. Recall that at this point, we can have any predicate P on k bits which
the verifier uses. As we will see later, for the soundness analysis we need the predicate P to
satisfy certain properties.

For the rest of the section, assume that the given function f is such that the low degree
influence of every variable i ∈ [n] is very small constant τ . If f is a constant degree function
(independent of n) then the usual analysis goes by invoking invariance principle to claim that
the quantity ES does not change by much if we replace the distribution µ to a distribution
ξ over Gaussian random variable with the same first and second moments. An advantage
of moving to a Gaussian distribution is that if µ was a uniform and pairwise independent
distribution then so is ξ and using the fact that a pairwise independence implies a total
independence in the Gaussian setting, we have ES ≈ |

∏
i∈S E[f(gi)]|. Since we assumed

that f was a balanced function we have E[f(gi)]| = 0 and hence we can say that the quantity
ES is very small.

There are two main things we need to take care in the above argument. 1) We assumed
that f is a low degree function and in general it may not be true. 2) The argument crucially
needed µ to satisfy pairwise independence condition and hence it puts some restriction on
the size of P−1(1) (Ideally, we would like |P−1(1)| to be as small as possible for a better
soundness guarantee). We take care of (1), as in the previous works [25, 17, 3] etc., by
requiring the distribution µ to have correlation bounded away from 1. This can be achieved
by making sure the support of µ is connected - for every coordinate i ∈ [k] there exists
a, b ∈ P−1(1) which differ at the ith location. For such distribution, we can add independent
noise to each co-ordinate without changing the quantity ES by much. Adding independent
noise has the effect that it damps the higher order fourier coefficients of f and the function
behaves as a low degree function. We can now apply invariance principle to claim that
ES ≈ 0. This was the approach in [25] and they could find a distribution µ whose support
size is 2k + 3 which is connected and pairwise independent.

In order to get an improvement in the soundness guarantee, our main technical contribution
is that we can still get the overall soundness analysis to go through even if µ does not support
pairwise independence condition. To this end, we start with a distribution µ whose support
size is 2k + 1 and has the property that it is almost pairwise independent. Since we lack
pairwise independence, it introduces few obstacles in the above mentioned analysis. First, the
amount of noise we can add to each co-ordinate has some limitations. Second, because of the
limited amount of independent noise, we can no longer say that the function f behaves as a
low degree function after adding the noise. With the limited amount of noise, we can say that
f behaves as a low degree function as long as it does not have a large fourier mass in some
interval i.e the fourier mass corresponding to f̂(T )2 such that |T | ∈ (s, S) for some constant
sized interval (s, S) independent of n. We handle this obstacle by designing a family of
distributions µ1, µ2, . . . , µr for large enough r such that the intervals that we cannot handle
for different µi’s are disjoint. Also, each µi has the same support and is almost pairwise
independent. We then let our final test distribution as first selecting i ∈ [r] u.a.r and then
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doing the test with the corresponding distribution µi. Since the total fourier mass of a
−1/+ 1 function is bounded by 1 and f was fixed before running the test it is very unlikely
that f has a large fourier mass in the interval corresponding to the selected distribution µi.
Hence, we can conclude that for this overall distribution, f behaves as a low degree function.
We note that this approach of using family of distributions was used in [8] to construct a
3-bit PCP with perfect completeness. There it was used in the composition step.

To finish the soundness analysis, let f̃ be the low degree part of f . The argument in the
previous paragraph concludes that ES ≈ |E[

∏
i∈S f̃(xi)]|. As in the previous work, we can

now apply invariance principle to claim that ES ≈ |E[
∏
i∈S f̃(gi)]| where the ith coordinate

(g1, g2, . . . , gk)i is distributed according to ξ which is almost pairwise independent. We
can no longer bring the expectation inside as our distribution lacks independence. To our
rescue, we have that the degree of f̃ is bounded by some constant independent of n. We
then prove that low degree functions are robust w.r.t slight perturbation in the inputs on
average. This lets us conclude E[

∏
i∈S f̃(gi)] ≈ E[

∏
i∈S f̃(hi)] where (h1,h2, . . . ,hk)i is

pairwise independent. We now use the property of independence of Gaussian distribution and
bring the expectation inside to conclude that ES ≈ |E[

∏
i∈S f̃(hi)]| = |

∏
i∈S E[f̃(hi)]| = 0.

2 Organization

We start with some preliminaries in Section 3. In Section 4 we describe our dictatorship test.
Finally, in Section 5 we prove the analysis of the described dictatorship test.

3 Preliminaries

For a positive integer k, we will denote the set {1, 2, . . . , k} by [k]. For a distribution µ, let
µ⊗n denotes the n-wise product distribution.

3.1 Analysis of Boolean Function over Probability Spaces
For a function f : {0, 1}n → R, the Fourier decomposition of f is given by

f(x) =
∑
T⊆[n]

f̂(T )χT (x) where χT (x) :=
∏
i∈T

(−1)xi and f̂(T ) := E
x∈{0,1}n

f(x)χT (x).

The Efron-Stein decomposition is a generalization of the Fourier decomposition to product
distributions of arbitrary probability spaces.

I Definition 2. Let (Ω, µ) be a probability space and (Ωn, µ⊗n) be the corresponding product
space. For a function f : Ωn → R, the Efron-Stein decomposition of f with respect to the
product space is given by

f(x1, · · · , xn) =
∑
β⊆[n]

fβ(x),

where fβ depends only on xi for i ∈ β and for all β′ 6⊇ β, a ∈ Ωβ′ , Ex∈µ⊗n [fβ(x) | xβ′ = a] =
0.

Let ‖f‖p := Ex∈µ⊗n [|f(x)|p]1/p for 1 ≤ p <∞ and ‖f‖∞ := maxx∈Ω⊗n |f(x)| .

I Definition 3. For a multilinear polynomial f : Rn → R and any D ∈ [n] define

f≤D :=
∑

T⊆[n],|T |≤D

f̂(T )χT
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i.e. f≤D is degree D part of f . Also define f>D := f − f≤D.

I Definition 4. For i ∈ [n], the influence of the ith coordinate on f is defined as follows.

Infi[f ] := E
x1,··· ,xi−1,xi+1,··· ,xn

Varxi [f(x1, · · · , xn)] =
∑
β:i∈β

‖fβ‖22.

For an integer d, the degree d influence is defined as

Inf≤di [f ] :=
∑

β:i∈β,|β|≤d

‖fβ‖22.

It is easy to see that for Boolean functions, the sum of all the degree d influences is at most
d. A dictator is a function which depends on one variable. Thus, the degree 1 influence
of any dictator function is 1 for some i ∈ [n]. We call a function far from any dictator if
for every i ∈ [n], the degree d influence is very small for some large d. This motivates the
following definition.

I Definition 5 ((d, τ)-quasirandom function). A multilinear function f : Rn → R is said to
be (d, τ)-quasirandom if for every i ∈ [n] it holds that∑

i∈S⊆[n],|S|≤d

f̂(S)2 ≤ τ

We recall the Bonami-Beckner operator on Boolean functions.

IDefinition 6. For γ ∈ [0, 1], the Bonami-Beckner operator T1−γ is a linear operator mapping
functions f : {0, 1}n → R to functions T1−γf : {0, 1}n → R as T1−γf(x) = Ey[f(y)] where
y is sampled by setting yi = xi with probability 1− γ and yi to be uniformly random bit
with probability γ for each i ∈ [n] independently.

We have the following relation between the fourier decomposition of T1−γf and f .

I Fact 7. T1−γf =
∑
T⊆[n](1− γ)|T |f̂(T )χT .

4 Query efficient Dictatorship Test

We are now ready to describe our dictatorship test. The test queries a function at k locations
and based on the k bits received decides if the function is a dictator or far from it. The check
on the received k bits is based on a predicate with few accepting inputs which we describe
next.

4.1 The Predicate
Let k = 2m − 1 for some m > 2. Let the coordinates of the predicate is indexed by elements
of Fm2 \ 0 =: {w1, w2, . . . , w2m−1}. The Hadamard predicate Hk has following satisfying
assignments:

Hk = {x ∈ {0, 1}k|∃a ∈ Fm2 \ 0 s.t ∀i ∈ [k], xi = a · wi}

We will identify the set of satisfying assignments in Hk with the variables h1, h2, . . . , hk.
Our final predicate Pk is the above predicate along with few more satisfying assignments.

More precisely, we add all the assignments which are at a hamming distance at most 1 from
0k i.e. Pk = Hk ∪ki=1 ei ∪ 0k.

FSTTCS 2017



15:8 An Improved Dictatorship Test with Perfect Completeness

4.2 The Distribution Dk,ε

For 0 < ε ≤ 1
k2 , consider the following distribution Dk,ε on the set of satisfying assignments

of Pk where α := (k − 1)ε.

Probabilities Assignments
Dk,ε ←

{
x1 x2 · · · · · · xk

1
1− α

(
1

k + 1 − α
)
←
{

0 0 · · · · · · 0

1
1− α

(
1

k + 1 − ε
)
←


h1
h2
...
hk

ε

1− α ←


1 0 · · · · · · 0
0 1 · · · · · · 0

...
0 0 · · · · · · 1,

where each hi gets a probability mass 1
1−α ( 1

k+1 − ε) and each ei gets weight ε
1−α . The

reasoning behind choosing this distribution is as follows: An uniform distribution on Hk ∪ 0k
has a property that it is uniform on every single co-ordinate and also pairwise independent.
These two properties are very useful proving the soundness guarantee. One more property
which we require is that the distribution has to be connected. In order to achieve this, we
add k extra assignment {e1, e2, . . . , ek} and force the distribution to be supported on all
Hk ∪ki=1 ei∪0k. Even though by adding extra assignments, we loose the pairwise independent
property we make sure that the final distribution is almost pairwise independent.

We now list down the properties of this distribution which we will use in analyzing the
dictatorship test. This is proved in Section B.

I Observation 8. The distribution Dk,ε above has the following properties:
1. Dk,ε is supported on Pk.
2. Marginal on every single coordinate is uniform.
3. For i 6= j, covariance of two variables xi, xj sampled form above distribution is:

Cov[xi, xj ] = − ε
2(1−α) .

4. If we view Dk,ε as a joint distribution on space
∏k
i=1 X (i) where each X (i) = {0, 1}, then

for all i ∈ [k], ρ
(
X (i),

∏
j∈[k]\{i} X (j);Dk,ε

)
≤ 1 − ε2

2(1−α)2 . (See Definition 14 for the
definition of ρ.)

4.3 Dictatorship Test
We will switch the notations from {0, 1} to {+1,−1} where we identify +1 as 0 and −1
as 1. Let f : {−1,+1}n → {−1,+1} be a given boolean function. We also assume that
f is folded i.e. for every x ∈ {−1,+1}n, f(x) = −f(−x). We think of Pk as a function
Pk : {−1,+1}k → {0, 1} such that Pk(z) = 1 iff z ∈ Pk. Consider the following dictatorship
test:

Test Tk,δ
1. Sample x1,x2, · · · ,xk ∈ {−1,+1}n as follows:
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a. For each i ∈ [n], independently sample ((x1)i, (x2)i, · · · , (xk)i) according to the
distribution Dk,δ.

2. Check if (f(x1), f(x2), · · · , f(xk)) ∈ Pk.

The final test distribution is basically the above test where the parameter δ is chosen from
an appropriate distribution. For a given 1

k2 ≥ ε > 0, let err = ε/5
2k and define the following

quantities : ε0 = ε and for j ≥ 0, εj+1 = err · 2
−
(

k10
err3εj

)k
.

Test T ′
k,ε

1. Set r =
(
k

err
)2

2. Select j from {1, 2, . . . , r} uniformly at random.
3. Set δ = εj

4. Run test Tk,δ.

We would like to make a remark that this particular setting of εj+1 is not very important.
For our analysis, we need a sequence of εj ’s such that each subsequent εj is sufficiently small
compared to εj−1.

5 Analysis of the Dictatorship Test

Notation:

We can view f : {−1,+1}n → {−1,+1} as a function over n-fold product set X1×X2×· · ·×Xn
where each Xi = {−1,+1}{i}. In the test distribution Tk,δ, we can think of xi sampled from
the product distribution on X (i)

1 ×X
(i)
2 ×· · ·×X

(i)
n . With these notations in hand, the overall

distribution on (x1,x2, · · · ,xk), from the test Tk,δ, is a n-fold product distribution from the
space

n∏
j=1

(
k∏
i=1
X (i)
j

)
.

where we think of
∏k
i=1 X

(i)
j as correlated space. We define the parameters for the sake of

notational convenience:
1. βj := εj

1−(k−1)εj be the minimum probability of an atom in the distribution Dk,εj .
2. sj+1 := log( kerr )

1
ε2
j
and Sj = sj+1 for 0 ≤ j ≤ r.

3. αj := (k − 1)εj for j ∈ [r],

5.1 Completeness
Completeness is trivial, if f is say ith dictator then the test will be checking the following
condition

((x1)i, (x2)i, · · · , (xk)i) ∈ Pk

Using Observation 8(1), the distribution is supported on only strings in Pk. Therefore, the
test accepts with probability 1.
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5.2 Soundness
I Lemma 9. For every 1

k2 ≥ ε > 0 there exists 0 < τ < 1, d ∈ N+ such that the following
holds: Suppose f is such that for all i ∈ [n], inf≤di (f) ≤ τ , then the test T ′k,ε accepts with
probability at most 2k+1

2k + ε. (Note: One can take τ such that τΩk(err/10sr log(1/βr)) ≤ err and
d = log(1/τ)

log(1/βr) .)

Proof. The acceptance probability of the test is given by the following expression:

Pr[Test accepts f ] = E
T ′
k,ε

[Pk(f(x1), f(x2), · · · , f(xk))]

After expanding Pk in terms of its Fourier expansion, we get

Pr[Test accepts f ] = 2k + 1
2k + E

T ′
k,ε

 ∑
S⊆[k],S 6=∅

P̂k(S)
∏
i∈S

f(xi)


= 2k + 1

2k +
∑

S⊆[k],S 6=∅

P̂k(S) E
T ′
k,ε

[∏
i∈S

f(xi)
]

≤ 2k + 1
2k +

∑
S⊆[k],S 6=∅

∣∣∣∣∣ E
T ′
k,ε

[∏
i∈S

f(xi)
]∣∣∣∣∣ (|P̂k(S)| ≤ 1)

= 2k + 1
2k +

∑
S⊆[k],|S|≥2

∣∣∣∣∣ E
T ′
k,ε

[∏
i∈S

f(xi)
]∣∣∣∣∣ .

In the last equality, we used the fact that each xi is distributed uniformly in {−1,+1}n
and hence when S = {i}, E[f(xi)] = f̂(∅) = 0. Thus, to prove the lemma it is enough
to show that for all S ⊆ [k] such that |S| ≥ 2, E

[∏
i∈S f(xi)

]
≤ ε

2k . This follows from
Lemma 10. J

I Lemma 10. For any S ⊆ [k] such that |S| ≥ 2,

∣∣∣∣∣∣ E
j∈[r]

 E
D⊗n
k,εj

[∏
i∈S

f(xi)
]∣∣∣∣∣∣ ≤ ε

2k

The proof of this follows from the following Lemmas 11 , 12, 13.

I Lemma 11. For any j ∈ [r] and for any S ⊆ [k], |S| ≥ 2 such that S = {`1, `2, . . . , `t},

∣∣∣∣∣∣ E
D⊗n
k,εj

[∏
`i∈S

f(x`i)
]
− E
D⊗n
k,εj

[∏
`i∈S

(T1−γjf)≤dj,i(x`i)
]∣∣∣∣∣∣ ≤ 2 · err + k

√ ∑
sj≤|T |≤Sj

f̂(T )2.

where γj = err
ksj

and dj,i is a sequence given by dj,1 = 2k2·sj
err log

(
k

err
)
and dj,i = (dj,1)i for

1 < i ≤ t.

I Lemma 12. Let j ∈ [r] and νj be a distribution on jointly distributed standard Gaussian
variables with same covariance matrix as that of Dk,εj . Then for any S ⊆ [k], |S| ≥ 2 such
that S = {`1, `2, . . . , `t},
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∣∣∣∣∣∣ E
D⊗n
k,εj

[∏
`i∈S

(T1−γjf)≤dj,i(x`i)
]
− E

(g1,g2,...,gk)∼ν⊗n
j

[∏
`i∈S

(T1−γjf)≤dj,i(gi)
]∣∣∣∣∣∣ ≤ err2

where dj,i from Lemma 11 and err2 = τΩk(γj/ log(1/βj)) (Note: Ω(.) hides a constant depending
on k).

I Lemma 13. Let k ≥ 2 and S ⊆ [k] such that |S| ≥ 2 and let f : Rn → R be a multilinear
polynomial of degree D ≥ 1 such that ‖f‖2 ≤ 1. If G be a joint distribution on k standard
gaussian random variable with a covariance matrix (1 + δ) I− δ J and H be a distribution
on k independent standard gaussian then it holds that∣∣∣∣∣ E

G⊗n

[∏
i∈S

f(gi)
]
− E
H⊗n

[∏
i∈S

f(hi)
]∣∣∣∣∣ ≤ δ · (2k)2kD

Proofs of Lemma 11 , 12, 13 appear in Section A. We now prove Lemma 10 using the above
three claims.

Proof of Lemma 10: Let S = {`1, `2, . . . , `t}. We are interested in getting an upper bound
for the following expectation:∣∣∣∣∣∣ E

j∈[r]

 E
D⊗n
k,εj

[∏
`i∈S

f(x`i)
]∣∣∣∣∣∣ ≤ E

j∈[r]

∣∣∣∣∣∣ E
D⊗n
k,εj

[∏
`i∈S

f(x`i)
]∣∣∣∣∣∣
 .

Let us look at the inner expectation first. Let γj = err
ksj

and the sequence dj,i be from
Lemma 11. We can upper bound the inner expectation as follows:∣∣∣∣∣∣ E

D⊗n
k,εj

[∏
`i∈S

f(x`i)
]∣∣∣∣∣∣ ≤

∣∣∣∣∣∣ E
D⊗n
k,εj

[∏
`i∈S

(T1−γjf)≤dj,i(x`i)
]∣∣∣∣∣∣+ 2 · err + k

√ ∑
sj≤|T |≤Sj

f̂(T )2

(by Lemma 11)

(by Lemma 12) ≤

∣∣∣∣∣ E
(g1,g2,...,gk)∼ν⊗n

j

[∏
`i∈S

(T1−γjf)≤dj,i(gi)
]∣∣∣∣∣+ err2+

2 · err + k

√ ∑
sj≤|T |≤Sj

f̂(T )2, (1)

where err2 = τΩk(γj/ log(1/βj)) and νj has the same covariance matrix as Dk,εj . If we let
δj = 2εj

1−αj then using Observation 8(3), the covariance matrix is precisely (1 + δj) I− δj J
(note that we switched from 0/1 to −1/+ 1 which changes the covaraince by a factor of 4).
Each of the functions (T1−γjf)≤dj,i has `2 norm upper bounded by 1 and degree at most
dj,t. We can now apply Lemma 13 to conclude that∣∣∣∣∣ E

(g1,g2,...,gk)∼ν⊗n
j

[∏
`i∈S

(T1−γjf)≤dj,i(gi)
]∣∣∣∣∣ ≤

∣∣∣∣∣ E
(h1,h2,...,hk)

[∏
`i∈S

(T1−γjf)≤dj,i(hi)
]∣∣∣∣∣+

δj · (2k)2kdj,t , (2)
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where hi’s are independent and each hi is distributed according to N (0, 1)n. Thus,

E
(h1,h2,...,hk)

[∏
`i∈S

(T1−γjf)≤dj,i(hi)
]

=
∏
`i∈S

E
hi

[
(T1−γjf)≤dj,i(hi)

]
=
(

̂(T1−γjf)≤dj,i(∅)
)t

= (f̂(∅))t = 0, (3)

where we used the fact that f is a folded function in the last step. Combining (1), (2) and
(3), we get∣∣∣∣∣∣ E

D⊗n
k,εj

[∏
`i∈S

f(x`i)

]∣∣∣∣∣∣ ≤
(
δj · (2k)2kdj,t

)
+
(
τΩk(γj/ log(1/βj))

)
+ 2 · err + k

√ ∑
sj≤|T |≤Sj

f̂(T )2 (4)

We now upper bound the first term. For this, we use a very generous upper bounds
dj,1 ≤ k5

err3
1

ε2
j−1

and δj ≤ 4εj .

δj · (2k)2kdj,t ≤
(
4εj · (2k)2dj,kk

)
≤ εj · 2

(
k10

err3εj−1

)k
≤ err.

(
using εj = err · 2

−
(

k10
err3εj−1

)k)

The second term in (4) can also be upper bounded by err by choosing small enough τ .

max
j
{
(
τΩk(γj/ log(1/βj))

)
} ≤

(
τΩk(γr/ log(1/βr))

)
≤ err.

Finally, taking the outer expectation of (4), we get

E
j∈[r]

∣∣∣∣∣∣ E
D⊗n
k,εj

[∏
`i∈S

f(x`i)
]∣∣∣∣∣∣
 ≤ 4 · err + k E

j∈r

√ ∑
sj≤|T |≤Sj

f̂(T )2

 .
Using Cauchy-Schwartz inequality,

E
j∈[r]

√ ∑
sj<|T |<Sj

f̂(T )2

 ≤
√√√√√ E
j∈[r]

 ∑
sj<|T |<Sj

f̂(T )2

 ≤ 1√
r
,

where the last inequality uses the fact that the intervals (sj , Sj) are disjoint for j ∈ [r] and
‖f‖22 =

∑
T f̂(T )2 ≤ 1. The final bound we get is∣∣∣∣∣∣ E

j∈[r]

 E
D⊗n
k,εj

[∏
`i∈S

f(x`i)
]∣∣∣∣∣∣ ≤ E

j∈[r]

∣∣∣∣∣∣ E
D⊗n
k,εj

[∏
`i∈S

f(x`i)
]∣∣∣∣∣∣
 ≤ 4 · err + k√

r
≤ 5.err ≤ ε

2k ,

as required. J
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A Proofs of Lemma 11, 12 & 13

In this section, we provide proofs of three crucial lemmas which we used in proving the
soundness analysis of our dictatorship test. We start with some more preliminaries.

A.1 Correlated Spaces
Let Ω1 × Ω2 be two correlated spaces and µ denotes the joint distribution. Let µ1 and µ2
denote the marginal of µ on space Ω1 and Ω2 respectively. The correlated space ρ(Ω1×Ω2;µ)
can be represented as a bipartite graph on (Ω1,Ω2) where x ∈ Ω1 is connected to y ∈ Ω2
iff µ(x, y) > 0. We say that the correlated spaces is connected if this underlying graph is
connected.

We need a few definitions and lemmas related to correlated spaces defined by Mossel [15].

I Definition 14. Let (Ω1 × Ω2, µ) be a finite correlated space, the correlation between Ω1
and Ω2 with respect to µ us defined as

ρ(Ω1,Ω2;µ) := max
f :Ω1→R,E[f ]=0,E[f2]≤1
g:Ω2→R,E[g]=0,E[g2]≤1

E
(x,y)∼µ

[|f(x)g(y)|].

The following result (from [15]) provides a way to upper bound correlation of a correlated
spaces.

I Lemma 15. Let (Ω1 × Ω2, µ) be a finite correlated space such that the probability of the
smallest atom in Ω1 × Ω2 is at least α > 0 and the correlated space is connected then

ρ(Ω1,Ω2;µ) ≤ 1− α2/2

I Definition 16 (Markov Operator). Let (Ω1×Ω2, µ) be a finite correlated space, the Markov
operator, associated with this space, denoted by U , maps a function g : Ω2 → R to functions
Ug : Ω1 → R by the following map:

(Ug)(x) := E
(X,Y )∼µ

[g(Y ) | X = x].

http://dx.doi.org/10.1137/S0097539795280895
http://dx.doi.org/10.1137/S0097539795280895
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In the soundness analysis of our dictatorship test, we will need to understand the Efron-Stein
decomposition of Ug in terms of the decomposition of g. The following proposition gives a
way to relate these two decompositions.

I Proposition 17 ([15, Proposition 2.11]). Let (
∏n
i=1 Ω(1)

i ×
∏n
i=1 Ω(2)

i ,
∏n
i=1 µi) be a product

correlated spaces. Let g :
∏n
i=1 Ω(2)

i → R be a function and U be the Markov operator mapping
functions form space

∏n
i=1 Ω(2)

i to the functions on space
∏n
i=1 Ω(1)

i . If g =
∑
S⊆[n] gS and

Ug =
∑
S⊆[n](Ug)S be the Efron-Stein decomposition of g and Ug respectively then,

(Ug)S = U(gS)

i.e. the Efron-Stein decomposition commutes with Markov operators.

Finally, the following proposition says that if the correlation between two spaces is bounded
away from 1 then higher order terms in the Efron-Stein decomposition of Ug has a very
small `2 norm compared to the `2 norm of the corresponding higher order terms in the
Efron-Stein decomposition of g.

I Proposition 18 ([15, Proposition 2.12]). Assume the setting of Proposition 17 and further-
more assume that ρ(Ω(1)

i ,Ω(2)
i ;µi) ≤ ρ for all i ∈ [n], then for all g it holds that

‖U(gS)‖2 ≤ ρ|S|‖gS‖2.

A.2 Hypercontractivity
I Definition 19. A random variable r is said to be (p, q, η)-hypercontractive if it satisfies

‖a+ ηr‖q ≤ ‖a+ r‖p

for all a ∈ R.

We note down the hypercontractive parameters for Rademacher random variable (uniform
over ±1) and standard gaussian random variable.

I Theorem 20 ([26][19]). Let X denote either a uniformly random ±1 bit, a standard
one-dimensional Gaussian. Then X is

(
2, q, 1√

q−1

)
-hypercontractive.

The following proposition says that the higher norm of a low degree function w.r.t
hypercontractive sequence of ensembles is bounded above by its second norm.

I Proposition 21 ([16]). Let x be a (2, q, η)-hypercontractive sequence of ensembles and Q
be a multilinear polynomial of degree d. Then

‖Q(x)‖q ≤ η−d‖Q(x)‖2

A.3 Invariance Principle
Let µ be any distribution on {−1,+1}k. Consider the following distribution on x1,x2, . . . ,xk
∈ {−1,+1}n such that independently for each i ∈ [n], ((x1)i, (x2)i, . . . , (xk)i) is sampled
from µ. We will denote this distribution as µ⊗n. We are interested in evaluation of a
multilinear polynomial f : Rn → R on (x1,x2, . . . ,xk) sampled as above.
Invariance principle shows the closeness between two different distributions w.r.t some
quantity of interest. We are now ready to state the version of the invariance principle from
[15] that we need.
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I Theorem 22 ([15]). For any α > 0, ε > 0, k ∈ N+ there are d, τ > 0 such that the following
holds: Let µ be the distribution on {+1,−1}k satisfying
1. Ex∼µ[xi] = 0 for every i ∈ [k]
2. µ(x) ≥ α for every x ∈ {−1,+1}k such that µ(x) 6= 0
Let ν be a distribution on standard jointly distributed Gaussian variables with the same
covariance matrix as distribution µ. Then, for every set of k (d, τ)-quasirandom multilinear
polynomials fi : Rn → R, and suppose Var[f>di ] ≤ (1− γ)2d for 0 < γ < 1 it holds that∣∣∣∣∣ E

(x1,x2,...,xk)∼µ⊗n

[
k∏
i=1

fi(xi)
]
− E

(g1,g2,...,gk)∼ν⊗n

[
k∏
i=1

fi(gi)
]∣∣∣∣∣ ≤ ε

(Note: one can take d = log(1/τ)
log(1/α) and τ such that ε = τΩ(γ/ log(1/α)), where Ω(.) hides constant

depending only on k.)

A.4 Moving to a low degree function
The following lemma, at a very high level, says that if change f to its low degree noisy
version then the loss we incur in the expected quantity is small.

I Lemma 23 (Restatement of Lemma 11). For any j ∈ [r] and for any S ⊆ [k], |S| ≥ 2 such
that S = {`1, `2, . . . , `t},

∣∣∣∣∣∣ E
D⊗n
k,εj

[∏
`i∈S

f(x`i)
]
− E
D⊗n
k,εj

[∏
`i∈S

(T1−γjf)≤dj,i(x`i)
]∣∣∣∣∣∣ ≤ 2 · err + k

√ ∑
sj≤|T |≤Sj

f̂(T )2.

where γj = err
ksj

and dj,i is a sequence given by dj,1 = 2k2·sj
err log

(
k

err
)
and dj,i = (dj,1)i for

1 < i ≤ t.

Proof. The proof is presented in two parts. We first prove an upper bound on

Γ1 :=

∣∣∣∣∣∣ E
D⊗n
k,εj

[∏
`i∈S

f(x`i)
]
− E
D⊗n
k,εj

[∏
`i∈S

(T1−γjf)(x`i)
]∣∣∣∣∣∣ ≤ err + k

√ ∑
sj≤|T |≤Sj

f̂(T )2 (5)

and then an upper bound on

Γ2 :=

∣∣∣∣∣∣ E
D⊗n
k,εj

[∏
`i∈S

(T1−γjf)(x`i)
]
− E
D⊗n
k,εj

[∏
`i∈S

(T1−γjf)≤dj,i(x`i)
]∣∣∣∣∣∣ ≤ err. (6)

Note that both these upper bounds are enough to prove the lemma.

Upper Bounding Γ1: The following analysis is very similar to the one in [25], we reproduce
it here for the sake of completeness. The first upper bound is obtained by getting the upper
bound for the following, for every a ∈ [t].

Γ1,a :=

∣∣∣∣∣∣ E
D⊗n
k,εj

∏
i≥a

f(x`i)
∏
i<a

(T1−γjf)(x`i)

− E
D⊗n
k,εj

∏
i>a

f(x`i)
∏
i≤a

(T1−γjf)(x`i)

∣∣∣∣∣∣ (7)



A. Bhangale, S. Khot, and D. Thiruvenkatachari 15:17

Note that by triangle inequality, Γ1 ≤
∑
a∈[t] Γ1,a.

(7) =

∣∣∣∣∣∣ E
D⊗n
k,εj

[(
f(x`a)− T1−γjf(x`a)

)∏
i>a

f(x`i)
∏
i<a

(T1−γjf)(x`i)
]∣∣∣∣∣∣

=

∣∣∣∣∣∣ E
D⊗n
k,εj

[(
id− T1−γj

)
f(x`a)

∏
i>a

f(x`i)
∏
i<a

(T1−γjf)(x`i)
]∣∣∣∣∣∣

=

∣∣∣∣∣∣ E
D⊗n
k,εj

[
U
(
(id− T1−γj

)
f)(x{`i:i∈[t]\{a}})

∏
i>a

f(x`i)
∏
i<a

(T1−γjf)(x`i)
]∣∣∣∣∣∣ (8)

where U is the Markov operator for the correlated probability space which maps functions
from the space X (`a) to the space

∏
i∈[t]\{a} X (`i). We can look at the above expression as

a product of two functions, F =
∏
i>a f

∏
i<a(T1−γjf) and G = U(id − T1−γj )f). From

Observation 8( 4), the correlation between spaces
(
X (`a),

∏
i∈[t]\{a} X (`i)

)
is upper bounded

by 1 −
(

εj
1−αj

)2
≤ 1 − ε2j =: ρj . Taking the Efron-Stein decomposition with respect to

the product distribution, we have the following because of orthogonality of the Efron-Stein
decomposition,

(8) =

∣∣∣∣∣∣ E
D⊗n
k,εj

[G× F ]

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
T⊆[n]

E
D⊗n
k,εj

[GT × FT ]

∣∣∣∣∣∣
(by Cauchy-Schwartz) ≤

√∑
T⊆[n]

‖FT ‖22
√∑
T⊆[n]

‖GT ‖22 (9)

where the norms are with respect to D⊗nk,εj ’s marginal distribution on the product distribution∏
i∈[t]\{a} X (`i). By orthogonality, the quantity

√∑
T⊆[n] ‖FT ‖22 is just ‖F‖2. As F is

product of function whose range is [−1,+1], rane of F is also [−1,+1] and hence ‖F‖2 is at
most 1. Therefore,

(9) ≤
√∑
T⊆[n]

‖GT ‖22 (10)

We have GT = (UG′)T , where G′ = (id−T1−γj )f . In G′T , the Efron-Stein decomposition
is with respect to the marginal distribution of D⊗nk,εj on X (`a), which is just uniform (by Ob-
servation 8(2)). Using Proposition 17, we have GT = UG′T = U(id− T1−γj )fT . Substituting
in (10), we get

(10) =
√∑
T⊆[n]

‖U(if − T1−γj )fT )‖22 (11)

We also have that the correlation is upper bounded by ρj . We can therefore apply
Proposition 18, and conclude that for each T ⊆ [n],

‖U(id− T1−γj )fT ‖2 ≤ ρ
|T |
j ‖(id− T1−γj )fT ‖2

where the norm on the right is with respect to the uniform distribution. Observe that

‖(id− T1−γj )fT ‖22 = (1− (1− γj)|T |)2f̂(T )2
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Substituting back into (11), we get

(11) ≤
√√√√∑
T⊆[n]

ρ
2|T |
j (1− (1− γj)|T |)2f̂(T )2︸ ︷︷ ︸

Term(εj ,γj ,T )

(12)

We will now break the above summation into three different parts and bound each part
separately.

Θ1 :=
∑
T⊆[n],
|T |≤sj

Term(εj , γj , T ) Θ2 :=
∑
T⊆[n],

sj<|T |<Sj

Term(εj , γj , T )

Θ3 :=
∑
T⊆[n],
|T |≥Sj

Term(εj , γj , T )

Upper bounding Θ1:

Θ1 =
∑
T⊆[n],
|T |≤sj

Term(εj , γj , T ) =
∑
T⊆[n],
|T |≤sj

ρ
2|T |
j (1− (1− γj)|T |)2f̂(T )2

≤
∑
T⊆[n],
|T |≤sj

(1− (1− γj)|T |)2f̂(T )2.

For every |T | ≤ sj we have 1− (1− γj)|T | ≤ err1/k. Thus,

Θ1 ≤
(err1

k

)2 ∑
T⊆[n],
|T |≤sj

f̂(T )2.

Upper bounding Θ3:

Θ3 =
∑
T⊆[n],
|T |≥Sj

Term(εj , γj , T ) =
∑
T⊆[n],
|T |≥Sj

ρ
2|T |
j (1− (1− γj)|T |)2f̂(T )2 ≤

∑
T⊆[n],
|T |≥Sj

ρ
2|T |
j f̂(T )2.

For every |T | ≥ Sj we have ρ|T |j ≤ (1− ε2j )|T | ≤ err1/k. Thus,

Θ3 ≤
(err1

k

)2 ∑
T⊆[n],
|T |≥Sj

f̂(T )2.

Substituting these upper bounds in (12),

Γ1,a ≤
√√√√√(err1

k

)2 ∑
T⊆[n],

|T |≤sjor|T |≥Sj

f̂(T )2 +
∑
T⊆[n],

sj<|T |<Sj

f̂(T )2

≤

√√√√(err1

k

)2
+

∑
sj<|T |<Sj

f̂(T )2 (since
∑
T f̂(T )2 ≤ 1)

≤ err1

k
+
√ ∑
sj<|T |<Sj

f̂(T )2. (using concavity)

The required upper bound on Γ1 follows by using Γ1 ≤
∑
a∈[t] Γ1,a and the above bound.
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Upper Bounding Γ2 : We will now show an upper bound on Γ2. The approach is similar
to the previous case, we upper bound the following quantity for every a ∈ [t]

Γ2,a :=

∣∣∣∣∣∣ E
D⊗n
k,εj

∏
i≥a

(T1−γjf)(x`i)
∏
i<a

(T1−γjf
≤dj,i)(x`i)


− E
D⊗n
k,εj

∏
i>a

(T1−γjf)(x`i)
∏
i≤a

(T1−γjf
≤dj,i)(x`i)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
D⊗n
k,εj

[(
T1−γjf(x`a)− T1−γjf

≤dj,a(x`a)
)∏
i>a

T1−γjf(x`i)
∏
i<a

(T1−γjf
≤dj,i)(x`i)

]∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
D⊗n
k,εj

[(
T1−γjf

>dj,a(x`a)
)∏
i>a

T1−γjf(x`i)
∏
i<a

(T1−γjf
≤dj,i)(x`i)

]∣∣∣∣∣∣ (13)

By using Holder’s inequality we can upper bound (13) as:

(13) ≤ ‖T1−γjf
>dj,a‖2

∏
i>a

‖T1−γjf‖2(t−1)
∏
i<a

‖T1−γjf
≤dj,i‖2(t−1), (14)

where each norm is w.r.t the uniform distribution as marginal of each x`i is uniform in
{+1,−1}n. Now, ‖T1−γjf‖2(t−1) ≤ 1 as the range if T1−γjf is in [−1,+1]. To upper bound
‖T1−γjf

≤dj,i‖2(t−1), we use Proposition 21 and using the fact that {−1,+1} uniform random
variable is (2, q, 1/

√
q − 1) hypercontractive (Theorem 20) to get

‖T1−γjf
≤dj,i‖2(t−1) ≤ (2t− 3)dj,i‖T1−γjf

≤dj,i‖2 ≤ (2t)dj,i .

Plugging this in (14), we get

(14) ≤ ‖T1−γjf
>dj,a‖2

∏
i<a

(2t)dj,i ≤ (1− γj)dj,a ·
∏
i<a

(2t)dj,i

≤ e−γjdj,a · (2k)k·dj,a−1

≤ e−
err
ksj
·dj,a · (2k)k·dj,a−1 (15)

Now,

dj,1 · dj,a−1 = dj,a

2k2 · sj
err log

(
k

err

)
· dj,a−1 = dj,a

k2 · sj
err log

(
k

err

)
+ k2 · sj

err log
(
k

err

)
· dj,a−1 ≤ dj,a

k · sj
err log

(
k

err

)
+ k2 · sj

err · log(2k) · dj,a−1 ≤ dj,a

k · sj
err ·

(
log
(
k

err

)
+ k · dj,a−1 log(2k)

)
= dj,a

k · sj
err · log

(
k

err (2k)k·dj,a−1

)
= dj,a
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This implies

log
(
k

err (2k)k·dj,a−1

)
= err
ksj
· dj,a

=⇒ k

err (2k)k·dj,a−1 = e
err
ksj
·dj,a

=⇒ e
− err
ksj
·dj,a · (2k)k·dj,a−1 = err

k
.

Thus from (15), we have Γ2,a ≤ err
k . To conclude the proof, by triangle inequality we have

Γ2 ≤
∑
a∈[t] Γ2,a ≤ err. J

A.5 Moving to the Gaussian setting
We are now in the setting of low degree polynomials because of Lemma 11. The following
lemma let us switch from our test distribution to a Gaussian distribution with the same first
two moments.

I Lemma 24 (Restatement of Lemma 12). Let j ∈ [r] and νj be a distribution on jointly
distributed standard Gaussian variables with same covariance matrix as that of Dk,εj . Then
for any S ⊆ [k], |S| ≥ 2 such that S = {`1, `2, . . . , `t},

∣∣∣∣∣∣ E
D⊗n
k,εj

[∏
`i∈S

(T1−γjf)≤dj,i(x`i)
]
− E

(g1,g2,...,gk)∼ν⊗n
j

[∏
`i∈S

(T1−γjf)≤dj,i(gi)
]∣∣∣∣∣∣ ≤ err2

where dj,i from Lemma 11 and err2 = τΩk(γj/ log(1/βj)) (Note: Ω(.) hides a constant depending
on k).

Proof. Using the definition of (d, τ)-quasirandom function and Fact 7, if f is (d, τ)- quasir-
andom then so is T1−γf for any 0 ≤ γ ≤ 1. Also, T1−γf satisfies

Var[T1−γf
>d] =

∑
T⊆[n]
|T |>d

(1− γ)2|T |f̂(T )2 ≤ (1− γ)2d ·
∑
T⊆[n]
|T |>d

f̂(T )2 ≤ (1− γ)2d.

The lemma follows from a direct application of Theorem 22. J

A.6 Making Gaussian variables independent
Our final lemma allows us to make the Gaussian variables independent. Here we crucially
need the property that the polynomials we are dealing with are low degree polynomials.
Before proving Lemma 13, we need the following lemma which says that low degree functions
are robust to small perturbations in the input on average.

I Lemma 25. Let f : Rn → R be a multilinear polynomial of degree d such that ‖f‖2 ≤ 1
suppose x, z ∼ N (0, 1)n be n-dimensional standard gaussian vectors such that E[xizi] ≥ 1− δ
for all i ∈ [n]. Then

E[(f(x)− f(z))2] ≤ 2δd.

Proof. For T ⊆ [n], we have

E[χT (x)χT (z)] =
∏
i∈T

E[xizi] ≥
∏
i∈T

(1− δ) ≥ (1− δ)|T |
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We now bound the following expression,

E[(f(x)− f(z))2] = E[f(x)2 + f(z)2 − 2f(x)z(x)]

=
∑

T⊆[n],|T |≤d

f̂(T )2(2− 2 E[χT (x)χT (z)])

≤ 2 ·
∑

T⊆[n],|T |≤d

f̂(T )2(1− (1− δ)|T |)

≤ 2 ·
∑

T⊆[n],|T |≤d

f̂(T )2δ|T |

≤ 2δd ·
∑

T⊆[n],|T |≤d

f̂(T )2 ≤ 2δd,

where the last inequality uses ‖f‖2 ≤ 1. J

We are now ready to prove Lemma 13.

I Lemma 26 (Restatement of Lemma 13). Let k ≥ 2 and 2 ≤ t ≤ k and let f : Rn → R be
a multilinear polynomial of degree D ≥ 1 such that ‖f‖2 ≤ 1. If G be a joint distribution
on k standard gaussian random variable with covariance matrix (1 + δ) I− δ J and H be a
distribution on k independent standard gaussian then it holds that∣∣∣∣∣∣ E

G⊗n

∏
i∈[t]

f(gi)

− E
H⊗n

∏
i∈[t]

f(hi)

∣∣∣∣∣∣ ≤ δ · (2k)2Dk.

Proof. Let Σ = (1 + δ) I− δ J be the covariance matrix. Let M = (1− δ′)((1 +β) I−β J)
be a matrix such that M2 = Σ. There are multiple M which satisfy M2 = Σ. We chose
the M stated above to make the analysis simpler. From the way we chose M and using
the condition M2 = Σ, it is easy to observe that β and δ′ should satisfy the following two
conditions:

1− δ′ = 1√
1 + (k − 1)β2

and (k − 2)β2 − 2β
1 + (k − 1)β2 = −δ.

SinceH is a distribution of k independent standard gaussians, we can generate a sample x ∼ G
by sampling y ∼ H and setting x = My. In what follows, we stick to the following notation:
(h1,h2, . . . ,hk) ∼ H⊗n and (g1, g2, . . . , gk)j = M(h1,h2, . . . ,hk)j for each j ∈ [n].

Because of the way we chose to generate g′is, we have for all i ∈ [k] and j ∈ [n],
E[(gi)j(hi)j ] = 1 − δ′ ≥ 1 − kβ2. To get an upper bound on β, notice that β is a root of
the quadratic equation (k + δk − δ − 2)β2 − 2β + δ = 0. Let k′ = (k + δk − δ − 2), if β1, β2
are the roots of the equation then they satisfy: k′β1 + k′β2 = 2 and (k′β1)(k′β2) = δk′ and
β1, β2 > 0. Thus, we have min{k′β1, k

′β2} ≤ δk′ and hence, we can take β such that β ≤ δ.
We wish to upper bound the following expression:

Γ :=

∣∣∣∣∣∣ E
H⊗n

∏
i∈[t]

f(gi)−
∏
i∈[t]

f(hi)

∣∣∣∣∣∣ .
Define the following quantity

Γi :=

∣∣∣∣∣∣ E
H⊗n

i−1∏
j=1

f(hj)
t∏
j=i

f(gj)−
i∏

j=1
f(hj)

t∏
j=i+1

f(gj)

∣∣∣∣∣∣ .
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By triangle inequality, we have Γ ≤
∑
i∈[t] Γi. We now proceed with upper bounding Γi for

a given i ∈ [t].

Γi =

∣∣∣∣∣∣ E
H⊗n

i−1∏
j=1

f(hj)
t∏
j=i

f(gj)−
i∏

j=1
f(hj)

t∏
j=i+1

f(gj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
H⊗n

(f(gi)− f(hi)) ·
i−1∏
j=1

f(hj)
t∏

j=i+1
f(gj)

∣∣∣∣∣∣
≤
√

E
H⊗n

[(f(gi)− f(hi))2] ·
i−1∏
j=1

E
H⊗n

[f(hj)2(t−1)]
1

2(t−1)

t∏
j=i+1

E
H⊗n

[f(gj)2(t−1)]
1

2(t−1) ,

where the last step uses Holder’s Inequality. Now, the marginal distribution on each hj and
gj is identical which is N (0, 1)n, we have

Γi ≤
√

E
H⊗n

[(f(gi)− f(hi))2] ·
i−1∏
j=1
‖f‖2(t−1)

t∏
j=i+1

‖f‖2(t−1)

≤
√

E
H⊗n

[(f(gi)− f(hi))2] · (‖f‖2(t−1))t−1

Since a standard one dimensional Gaussian is (2, q, 1/
√
q − 1)-hypercontractive (Theorem 20),

from Proposition 21 , ‖f‖2(t−1) ≤ (
√

2t− 3)D‖f‖2 ≤ (
√

2t− 3)D < (2t)D/2. Thus,

Γi ≤ (2t)D(t−1)/2 ·
√

E
H⊗n

[(f(gi)− f(hi))2]

Now, each gi,hi are such that such that E[(gi)j · (hi)j ] = 1− δ′ ≥ 1− kδ2 for every j ∈ [n].
We can apply Lemma 25 to get EH⊗n [(f(gi)−f(hi))2] ≤ 2kδ2D. Hence, we can safely upper
bound Γi as

Γi ≤ (2t)D(t−1)/2 · 2kδD.

Therefore, Γ ≤
∑
i Γi ≤ t · (2t)D(t−1)/2 ·2kδD which is at most 2k2δD · (2k)Dk/2 ≤ δ · (2k)2Dk

as required. J

B Proof of Observation 8

I Observation 27. (Restatement of Observation 8) The distribution Dk,ε above has the
following properties:
1. Dk,ε is supported on Pk.
2. Marginal on every single coordinate is uniform.
3. For i 6= j, covariance of two variables xi, xj sampled form above distribution is:

Cov[xi, xj ] = − ε

2(1− α) .

4. If we view Dk,ε as a joint distribution on space
∏k
i=1 X (i) where each X (i) = {0, 1}, then

for all i ∈ [k], ρ
(
X (i),

∏
j∈[k]\{i} X (j);Dk,ε

)
≤ 1 − ε2

2(1−α)2 . (See Definition 14 for the
definition of ρ.)
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Proof. We prove each of the observations about the distribution. The first property is
straight-forward. To prove (2), we compute E[xi] as follows.

E[xi] = (k + 1) · 1
1− α

(
1

k + 1 − ε
)
· 1

2 + ε

1− α

= 1− ε(k + 1) + 2ε
2(1− α)

= 1
2

Consider the quantity E
Dk,ε

[xixj ]. If x is sampled from 0’s or ei’s, the value is 0. Moreover,

we know that if it is sampled uniformly fromHk∪0k, it is 1/4 because of pairwise independence
and the above fact. Therefore, we can write

E
Dk,ε

[xixj ] = (k + 1) 1
1− α

(
1

k + 1 − ε
)

1
4

We know that E
Dk,ε

[xi] = E
Dk,ε

[xj ] = 1/2. Therefore,

Cov[xi, xj ] = E
Dk,ε

[xixj ]− E
Dk,ε

[xi] E
Dk,ε

[xj ]

= 1
4(1− α) −

ε(k + 1)
4(1− α) −

1
4

= −ε
2(1− α)

To prove the last item, we first show that the bi-partite graph G
(
X (i),

∏
j∈[k]\{i} X (j), E

)
where (a, b) ∈ X (i) ×

∏
j∈[k]\{i} X (j) is an edge iff Pr(a, b) > 0, is connected. To see that

the graph is connected, note that for both 0 and 1 on the left hand side, 0k−1 is a neighbor
on the right hand side as the distribution’s support includes ei for all i, and 0k. From the
distribution, we see that the smallest atom is at least ε

1−α , since ε ≤ 1/k2. We now use
Lemma 15 to get the required result. J
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