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Abstract
We consider the techniques behind the current best algorithms for matrix multiplication. Our
results are threefold.

(1) We provide a unifying framework, showing that all known matrix multiplication running
times since 1986 can be achieved from a single very natural tensor - the structural tensor Tq of
addition modulo an integer q.

(2) We show that if one applies a generalization of the known techniques (arbitrary zeroing
out of tensor powers to obtain independent matrix products in order to use the asymptotic sum
inequality of Schönhage) to an arbitrary monomial degeneration of Tq, then there is an explicit
lower bound, depending on q, on the bound on the matrix multiplication exponent ω that one
can achieve. We also show upper bounds on the value α that one can achieve, where α is such
that n× nα × n matrix multiplication can be computed in n2+o(1) time.

(3) We show that our lower bound on ω approaches 2 as q goes to infinity. This suggests a
promising approach to improving the bound on ω: for variable q, find a monomial degeneration
of Tq which, using the known techniques, produces an upper bound on ω as a function of q. Then,
take q to infinity. It is not ruled out, and hence possible, that one can obtain ω = 2 in this way.
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1 Introduction

One of the most fundamental questions in computer science asks how quickly one can multiply
two matrices. Since the surprising subcubic algorithm for n× n× n matrix multiplication
by Strassen in 1969 [26], there has been a long line of work on improving and refining
the techniques and speeding up matrix multiplication algorithms (e.g. [19, 20, 2, 24, 8, 23,
25, 10, 11, 27, 16]). Progress on this problem is typically measured in terms of ω, the
smallest constant such that, for any δ > 0, one can design an algorithm for n× n× n matrix
multiplication running in time O(nω+δ). The biggest open question is whether one can
achieve ω = 2. The best bound we currently know, due to Le Gall [16], is ω ≤ 2.3728639.
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A related line of work [10, 9, 15, 13] focuses on rectangular matrix multiplication instead
of square matrix multiplication. Here, progress is measured in terms of α, the largest constant
such that for any δ > 0, one can design an algorithm for n× nα × n matrix multiplication
running in time O(n2+δ). Recent work [13] improved the best known bound to α > 0.31389.
The two values ω and α are very related, as ω = 2 if and only if α = 1.

All of the aforementioned bounds on ω and α follow a particular approach, which works
as follows.1 The key is to cleverly select a trilinear form (third-order tensor) T which needs
to have two properties. First, there must be an efficient way to compute large tensor powers
T⊗n of T. This is done by finding a low border rank expression for T, which implies (via
Schönhage’s asymptotic sum inequality) that for sufficiently large n, the power T⊗n has low
rank. Second, T must be useful for actually performing matrix multiplication. Multiplying
matrices corresponds in a precise way to evaluating a certain matrix multiplication tensor,
and so to use T for this task, one needs to show that there is a ‘degeneration’ transforming
T into a disjoint sum of matrix multiplication tensors. Combining these two properties of T
yields an algorithm for matrix multiplication (see Lemma 4 below for the precise formula).

Of course, the resulting runtime depends on the choice of the tensor T as well as the
bounds one can prove for the two desired properties. Strassen’s original algorithm picked T
to be the tensor for 2× 2× 2 matrix multiplication itself. Later work used more and more
elaborate tensors and corresponding border rank expressions, culminating with the most
recent algorithms using the now-famous Coppersmith-Winograd tensor. All these tensors
seem to come ‘out of nowhere’, and in particular, come up with seemingly ‘magical’ border
rank identities to show that they have low border rank. We make some progress demystifying
the tensors and their border rank expressions below.

1.1 The best known bounds on ω are actually from Tq

Our first result is a unifying approach to achieving all known bounds of ω ([24, 10, 11, 16])
since Strassen’s 1986 proof that ω < 2.48.

A simple remark first pointed out to us by Michalek [17] is that the so called Coppersmith-
Winograd tensor used in the papers on matrix multiplication since 1990 [10, 11, 16], can be
replaced with an equivalent tensor, rotating the original slightly in a certain way (see the
Preliminaries), without changing any of the proofs, and thus yielding the same bounds on ω.

With this in mind, we consider a tensor Tq, the structural tensor of Zq, and give a very
simple low rank expression for it based on roots of unity (this expression is natural and likely
well-known). We then show that the tensor in [24] and the rotated Coppersmith-Winograd
tensors that can be used in [10, 11, 16, 27], are all actually straightforward monomial
degenerations of Tq. Since a monomial degeneration of a rank expression gives a border rank
expression, this (for example) yields a straightforward border rank expression for the (rotated)
Coppersmith-Winograd tensor, which is more intuitive than the border rank expressions
from past work.

Another way to view this fact is that all the bounds on ω since [10] can be viewed as
using Tq (in fact for q = 7 or 8) as the underlying tensor T! This also suggests a potential
way to improve the known bounds on ω: study other monomial degenerations of Tq.

1 We give a very high level overview here. More precise definitions are given in Section 2. For a more
gentle introduction, we recommend the notes by Markus Bläser [3].
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(a) Lower bound on ω that one can achieve
using Tq when q is a power of a prime.
The bound approaches 2 as q → ∞.

(b) Upper bound on α that one can achieve
using Tq when q is a power of a prime.
The bound approaches 1 as q → ∞.

Figure 1 Bounds on ω and α that follow from Theorem 1 when q is a prime power

1.2 Limitations on monomial degenerations of Tp

Our second and main result is a lower bound on how fast a matrix multiplication algorithm
designed in this way can be whenever T is a monomial degeneration of Tp:

I Theorem 1 (Informal). For every p, and for every ε ∈ (0, 1], there is an explicit constant
νp,ε > 1 such that any algorithm for n× nε × n matrix multiplication designed in the above
way using Tp, or a monomial degeneration of Tp, runs in time Ω(n(1+ε)νp,ε). (See Theorem 7
below for the precise statement).

The constant νp,ε is defined as follows. Consider first when p is a fixed prime or power of
a prime. Let z be the unique real number in (0, 1) such that 3

∑p−1
j=1 z

j = (p− 1)(1− 2zp);
then

νp,ε := (1 + ε) ln
[

1− zp

(1− z)z(p−1)/3

]
.

There is also a variant of Theorem 1 that holds for Tp when p is not necessarily a prime
power, but the constant νp,ε > 1 is slightly different.

In particular, this shows that:
This approach yields a square matrix multiplication algorithm with runtime at best
Ω(n2νp,1), with exponent 2νp,1 > 2. Hence, this approach for a fixed p cannot yield ω = 2.
Let εp ∈ (0, 1) be such that (1 + εp)νp,ε = 2. Then, this approach for a fixed p cannot
yield a value of α bigger than εp.

For modest values of p, the value νp := νp,1 is a fair bit larger than 1. For instance,
ν7 ≈ 1.07065. As we will show shortly, the best known algorithms for matrix multiplications
use the approach above with a (rotated) Coppersmith-Winograd tensor which is a monomial
degeneration of T7. Our theorem implies among other things that using the approach with
T7 as the starting tensor cannot yield a bound on ω better than 2.14, no matter how one
zeroes out the tensor powers of T7 or its monomial degenerations. We plot the resulting
bounds on ω and α for varying p, in Figures 1 and 2 (for technical reasons we discuss below,
we get different bounds depending on whether q is a power of a prime).

1.3 A potential idea for improving ω

It should be noted that, despite our lower bounds, not all hope is lost for achieving ω = 2
using Tq tensors. Indeed, in the limit as q →∞, our ω lower bound approaches 2, and our
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(a) Lower bound on ω that one can achieve
using Tq.
The bound approaches 2 as q → ∞.

(b) Upper bound on α that one can achieve
using Tq.
The bound approaches 1 as q → ∞.

Figure 2 Bounds on ω and α that follow from Theorem 1 for any q

α upper bound approaches 1 (see Lemma 9 in Appendix A for a proof). Hence, our lower
bound does not rule out achieving a runtime for n× n× n matrix multiplication of O(n2+δ)
for all δ > 0 by using bigger and bigger values of q. We find this approach very exciting.

1.4 Tri-Colored Sum-Free Sets

A key component of our lower bound proof is a recent upper bound proved on the asymptotic
size of a family of combinatorial objects called tri-colored sum-free sets. For an abelian
group G, a tri-colored sum-free set in Gn is a set of triples (ai, bi, ci) ∈ (Gn)3 such that
ai + bj + ck = 0 if and only if i = j = k. In this paper we are especially interested in
tri-colored sum-free sets over Znq .

Recent work [12, 14, 4, 18, 21] has proved upper bounds on how large tri-colored sum-free
sets in Znq can be. The bound is originally given in terms of the entropy of certain symmetric
distributions, but we give a more explicit form written out by [18, 21] here.

For any integer q ≥ 2 which is a power of a prime, let ρ be the unique number in (0, 1)
satisfying

ρ+ ρ2 + · · ·+ ρq−1 = q − 1
3 (1 + 2ρq).

Then, define γq ∈ R by γq := ln(1− ρq)− ln(1− ρ)− q−1
3 ln(ρ).

I Theorem 2 ([14]). Let q be any prime or power of a prime. Then, any tri-colored sum-free
set in Znq has size at most eγqn. Moreover, there exists a tri-colored sum-free set in Znq with
size eγqn−o(n).

One can verify (see Lemma 9 in Appendix A) that eγq < q, meaning in particular that
there is no tri-colored sum-free set in Znq of size qn−o(n). When q is not a prime power, one
can also prove this, although the upper bound is not known to be as strong:

I Theorem 3 ([4]). Let q ≥ 2 be any positive integer, and let κ := 1
2 log((2/3)23/2) ≈ 0.02831.

Then, any tri-colored sum-free set in Znq has size at most qn(1−κ/q+o(1)).

For notational simplicity in our main results in Section 6, define γq := (1− κ/q) log(q)
when q ≥ 2 is not a power of a prime.
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1.5 Proof Outline

In Section 2 we formally define all the notions related to tensors which are necessary for
the rest of the paper, and in Section 3 we give our simple rank expression for Tq and
straightforward monomial degenerations of Tq+2 into CWq as well as other tensors T from
past work on matrix multiplication algorithms. The remainder of the paper gives the proof
of Theorem 1, which proceeds in four main steps:

In Section 3, we give a simple rank expression for Tq, and show that the rotated
Coppersmith-Winograd tensor can be found as a simple monomial degeneration of
Tq.
In Section 4, we show that every matrix multiplication tensor has a zeroing out into
a large number of independent triples. This generalizes a classical result that matrix
multiplication tensors have monomial degenerations into a large number of independent
triples.
In Section 5, we show that if tensor A is a monomial degeneration of tensor B, and large
powers of A can be zeroed out into many independent triples, then large powers of B can
as well.
Finally, in Section 6, we combine the above to show that if any tensor T is a monomial
degeneration of Tq, and yields a fast matrix multiplication algorithm (meaning it can
be zeroed out into many independent triples), then Tq can be zeroed out into many
independent triples as well. By noticing that independent triples in Tq correspond to
tri-colored sum-free sets, and combining with the upper bounds on the size of such a set,
we get our lower bound.

1.6 Comparison with Past Work

There are two papers which have proved lower bounds on the value of ω that one can achieve
using certain techniques.

The first is a work by Ambainis et al. [1]. They show a lower bound of Ω(n2.3078) for
any algorithm for n× n× n matrix multiplication one can design using the ‘laser method
with merging’ using the Coppersmith-Winograd tensor and its relatives. The laser method
is a technique proposed by Strassen [24] and used by all recent work [10, 11, 27, 16, 13]
in order to show that the Coppersmith-Winograd tensor has a zeroing out into many big
disjoint matrix multiplication tensors (the second property of the two properties of a tensor
T we described earlier). While the bound that Ambainis et al. get is better than ours,
our result is much more general: First, the Ambainis et al. bound is for algorithms which
use the Coppersmith-Winograd tensor and some tensors like it, whereas ours applies to
any tensor which is an arbitrary monomial degeneration of Tq. Second, their bound only
applies when the laser method with merging is used to zero out the tensor into matrix
multiplication tensors, whereas ours applies to any possible monomial degeneration into
matrix multiplication tensors.

The second prior work is by Blasiak et al. [4]. Like us, the authors also use recent bounds
on the size of certain tri-colored sum-free sets in order to prove lower bounds. However,
rather than the tensor-based approach to matrix multiplication algorithms which we have
been discussing, and which has been used in all of the improvements to ω and α to date, they
instead focus on the ‘group-theoretic approach’ to matrix multiplication [7, 6]. This approach
has been designed around formulating approaches that would imply ω = 2 rather than on
attempting any small improvement to the bounds on ω, and this paper refutes some earlier

ITCS 2018



25:6 Further Limitations of the Known Approaches for Matrix Multiplication

conjectures along these lines. The work of Blasiak et al. implies that certain approaches to
achieving ω = 2 are impossible, similar to our work here.

In personal communication, Cohn [5] stated that the Coppersmith-Winograd tensor CWq

leads to a STPP (simultaneous triple product property) construction in Znm with m = q and
n tending to infinity. Blasiak et al. present lower bounds on what can be proved about ω
using the group theoretic approach using STPP constructions in Znm for any fixed m, and
hence their results imply that the group-theoretic variant of the Coppersmith-Winograd
approach cannot yield ω = 2 using a fixed q. It is not clear exactly what lower bounds this
result implies for the original laser method approach, or for arbitrary monomial degenerations
of Tq. Thus, we consider our results complementary to those of Blasiak et al. Furthermore,
our results include limitations for rectangular matrix multiplication, which the prior work
does not mention.

2 Preliminaries

In this section we introduce all the notions related to tensors which are used in the rest of
the paper.

2.1 Tensor Definitions
Let X = {x1, . . . , xn}, Y = {y1, . . . , ym}, and Z = {z1, . . . , zp} be three sets of formal
variables. A tensor over X,Y, Z is a trilinear form

T =
n∑
i=1

m∑
j=1

p∑
k=1

Tijkxiyjzk,

where the Tijk terms are elements of a field F. The size of a tensor A, denoted |A|, is the
number of nonzero coefficients Aijk. There are three particular tensors we will focus on in
this paper. The matrix multiplication tensor 〈n,m, p〉 is given by

〈n,m, p〉 =
n∑
i=1

m∑
j=1

p∑
k=1

xijyjkzki.

For a positive integer q, the structural tensor of Zq, denoted Tq, is given by

Tq =
q−1∑
i=0

q−1∑
j=0

xiyjz−i−j (mod q).

For any positive integer q, the qth Coppersmith-Winograd tensor Cq [10] is given by
x0y0zq+1 + x0yq+1z0 + xq+1y0z0 +

∑q
i=1(x0yizi + xiy0zi + xiyiz0). It is not hard to verify

that using the Coppersmith-Winograd approach, one can obtain exactly the same values for
ω from the following rotated Coppersmith-Winograd tensor CWq, given by

CWq = x0y0zq+1 +x0yq+1z0 +xq+1y0z0 +
q∑

k=1
(x0ykzq+1−k + xky0zq+1−k + xkyq+1−kz0) .

The main reason why CWq works just as well as the original Coppersmith-Winograd
tensor Cq is because they both have border rank q + 2 and because of the following other
structural reason which is what is used in the prior work on fast matrix multiplication:
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Let X0 = {x0}, X1 = {x1, . . . , xq}, X2 = {xq+2}. Similarly, let Y0 = {y0}, Y1 =
{y1, . . . , yq}, Y2 = {yq+2}, and Z0 = {z0}, Z1 = {z1, . . . , zq}, Z2 = {zq+2}. When you
restrict Cq and CWq to X0 × Y2 × Z0, or X2 × Y0 × Z0, or X0 × Y0 × Z2, both of them
are isomorphic to 〈1, 1, 1〉. When you restrict them to X0 × Y1 × Z1, both are isomorphic
to 〈1, 1, q〉, when you restrict them to X1 × Y0 × Z1, both are isomorphic to 〈q, 1, 1〉, and
when you restrict them to X1 × Y1 × Z0, both are isomorphic to 〈1, q, 1〉. The Coppersmith-
Winograd approach only looks at products of these blocks in higher tensor powers, which are
hence isomorphic to the same matrix multiplication tensors and give the same bounds on ω.

2.2 Subsets and Degenerations
For two tensors A,B, we say that A ⊆ B if Aijk is always either Bijk or 0. For instance, we
can see that CWq ⊆ Tq+2. We furthermore say that A is a monomial degeneration of B if
A ⊆ B and there are functions a : X → Z, b : Y → Z, and c : Z → Z such that whenever
Bijk 6= 0,

we have a(xi) + b(yj) + c(zk) ≥ 0, and
furthermore, a(xi) + b(yj) + c(zk) = 0 if and only if Aijk 6= 0 as well.

We note that in prior work, degenerations are defined via polynomials in a variable ε,
however when the degenerations are single monomials, the above definition is equivalent,
where a, b, c give the corresponding exponents of ε.

Finally, we say that A is a zeroing out of B if A is a monomial degeneration of B such
that a(x) ≥ 0 for all x ∈ X, b(y) ≥ 0 for all y ∈ Y , and c(z) ≥ 0 for all z ∈ Z. One can think
of this as substituting 0 for any variable which a, b, or c maps to a positive value.

2.3 Tensor Product
Let X,X ′, Y, Y ′, Z, Z ′ be sets of formal variables. If A is a tensor over X,Y, Z, and B is a
tensor over X ′, Y ′, Z ′, then the tensor product of A and B, denoted A⊗B, is a tensor over
X ×X ′, Y × Y ′, Z × Z ′ given by

A⊗B =
∑

(xi,x′
i′ )∈X×X′

(yj ,y′
j′ )∈Y×Y ′

(zk,z′
k′ )∈Z×Z′

AijkBi′j′k′(xi, x′i′)(yj , y′j′)(zk, z′k′).

The nth tensor power of a tensor A, denoted A⊗n, is the result of tensoring n copies of A
together. In other words, A⊗1 = A, and A⊗n = A⊗A⊗n−1.

Tensor products preserve many key properties of tensors. For instance, if A ⊆ C and
B ⊆ D, then A ⊗ B ⊆ C ⊗ D, and this is also true if subset is replaced by monomial
degeneration, or by zeroing out.

For a nonnegative integer k, if A is a tensor over X,Y, Z, and if X1, . . . , Xk are k disjoint
copies of X, and similar for Y and Z, then k�A denotes the (disjoint) sum of k copies of A,
one over Xi, Yi, Zi for each 1 ≤ i ≤ k.

2.4 Independent Triples
Two triples (x, y, z), (x′, y′, z′) ∈ X × Y × Z are independent if x 6= x′, y 6= y′, and z 6= z′. A
tensor A is independent if, whenever Aijk 6= 0 and Ai′j′k′ 6= 0, and (i, j, k) 6= (i′, j′, k′), then
the triples (xi, yj , zk) and (xi′ , yj′ , zk′) are independent.
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2.5 Tensor Rank

A tensor T over X,Y, Z is a rank-one tensor if there are coefficients ax for each x ∈ X, by
for each y ∈ Y , and cz for each z ∈ Z in the underlying field F such that

T =
(∑
x∈X

ax · x

)∑
y∈Y

by · y

(∑
z∈Z

cz · z

)
=

∑
(x,y,z)∈X×Y×Z

axbycz · xyz.

More generally, T is a rank-k tensor if it can be written as the sum of k rank-one tensors.
The rank of T , denoted R(T ), is the smallest k such that R is a rank-k tensor.

We can generalize this notion slightly to define the border rank of a tensor. We will now
allow the ax, by, and cz coefficients to be elements of the polynomial ring F[ε] for a formal
variable ε. We say that T is a border rank-one tensor if there are coefficients ax, by, cz in
F[ε] and an integer h ≥ 0 such that when

(∑
x∈X

ax · x

)∑
y∈Y

by · y

(∑
z∈Z

cz · z

)
(1)

is expanded as a polynomial in ε whose coefficients are tensors over X,Y, Z, then T is the
coefficient of εh, and the coefficient of εh′ is 0 for all 0 ≤ h′ < h. Similarly, the border rank
R(T ) of T is the smallest number of expressions of the form (1) whose sum, when written as
a polynomial in ε, has T as its lowest order coefficient.

It is not hard to see that if A is a monomial degeneration of B, then R(B) ≤ R(A) ≤ R(A).

2.6 Matrix Multiplication Tensor and Algorithms

Now that we have defined tensor rank, we can define ω as the infimum over all reals so that
R(〈n, n, n〉) ≤ O(nω+ε) for all ε > 0. Similarly, for any ε ∈ (0, 1), define ωε to be the smallest
real such that an n× nε matrix can be multiplied by an nε × n matrix in nωε+o(1) time.

We present a useful Lemma that follows from the work of Schönhage, which shows how
the tensor rank notions we have been discussing can give bounds on ωε.

I Lemma 4. If R(f � 〈n, nε, n〉) ≤ g, then ωε ≤ logn(dg/fe).

Proof. By Schönhage [23] (see also [3, Lemma 7.7]), we have that R(f � 〈n, nε, n〉) ≤ g

implies that for all integers s ≥ 1, R(f � 〈ns, nsε, ns〉) ≤ fdg/fes. Hence, multiplying
an ns × (ns)ε by an (n/s)ε × ns matrix can be done in O(fdg/fes) time. Thus ωε ≤
lims→∞ log(fdg/fes)/ log(ns) = logn(dg/fe). J

We can also define α as the largest real such that R(〈n, nα, n〉) ≤ n2+o(1). It is known
that α ∈ [0.31, 1], and clearly α = 1 if and only if ω = 2.

3 The mod-p tensor and its degenerations

In this section, we give a rank expression for Tp, and then a monomial degeneration of Tq+2
into CWq.
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3.1 The rank of Tp

Let us consider the tensor Tp of addition modulo p for any integer p ≥ 2; recall that in
trilinear notation, Tp is defined as

Tp =
∑

i,j,k∈{0,...,p−1}
i+j+k≡0 (mod p)

xiyjzk.

The rank of Tp is p, as can be seen by the expression below. Let w1, . . . , wp ∈ C be the
pth roots of unity, meaning that

∑p
i=1 wi = 0, and that for each i, wpi = 1. Then,

Tp = 1
p

p∑
`=1

(
p−1∑
i=0

wi`xi

)p−1∑
j=0

wj`yj

(p−1∑
k=0

wk` zk

)
.

The above gives a rank expression for Tq over C, which is sufficient for the approaches
for matrix multiplication algorithms discussed above. That said, one can easily modify it
to get an expression over some other fields as well. For instance, suppose p+ 1 is an odd
prime. Then, we know that

∑p
a=1 a ≡ 0 (mod p+ 1), and that ap ≡ 1 (mod p+ 1) for any

1 ≤ a ≤ p, so we similarly get the following rank expression over GF (p+ 1):

Tp = −
p∑
a=1

(
p−1∑
i=0

aixi

)p−1∑
j=0

ajyj

(p−1∑
k=0

akzk

)
.

3.2 Monomial degeneration of Tq+2 into CWq

Here we will show that the rotated CW tensor CWq for integer q ≥ 1 is a degeneration of
Tq+2. Recall that

CWq = x0y0zq+1 + x0yq+1z0 + xq+1y0z0

+
q∑

k=1
(x0ykzq+1−k + xky0zq+1−k + xkyq+1−kz0) . (2)

For ease of notation, we will change the indexing of the z variables in Tq+2 (i.e. rename the
variables) from our original definition2 to write

Tq+2 =
∑

i,j,k∈{0,...,q+1}
i+j+k≡q+1 (mod q+2)

xiyjzk. (3)

In this form, one can see that CWq is the subset of Tq+2 consisting of all the terms
containing at least one of x0, y0, or z0. With this in mind, our degeneration of Tq+2 is as
follows. We will pick:

a(x0) = 0, a(xq+1) = 2, and a(xi) = 1 for 1 ≤ i ≤ q, similarly,
b(y0) = 0, b(yq+1) = 2, and b(yj) = 1 for 1 ≤ j ≤ q, and,
c(z0) = −2, c(zq+1) = 0, and c(zk) = −1 for 1 ≤ k ≤ q.

We need to verify that for every term xiyjzk in (3) we have a(xi) + b(yj) + c(zk) ≥ 0, and
moreover that for such xiyjzk, a(xi) + b(yj) + c(zk) = 0 if and only if xiyjzk also appears in
(2). This is quite straightforward, but we do it here for completeness. Consider any term
xiyjzk in (3). We consider three cases based on k:

2 For every index k ∈ {0, 1, . . . , q + 1}, we will rename zk to zk−1 (mod q+2).
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If k = 0, then our term is of the form xiyq+2−iz0 for 0 ≤ i ≤ q + 2. This term always
appears in (2) as well, and we can see that we always have a(xi) = 2− b(yq+2−i), and so
a(xi) + b(yq+2−i) + c(z0) = 0.
If k = q + 1, then c(zq+1) = 0, and we always have a, b ≥ 0, so we definitely have that
a(xi) + b(yj) + c(zk) ≥ 0. Moreover, we can only achieve 0 when a = b = 0, with the
term x0y0zq+1, which is the only term with zq+1 which appears in (2).
If 1 ≤ k ≤ q, then since x0y0zk is not a term in (3), we must have that a(xi) + b(yj) ≥ 1,
and so a(xi) + b(yj) + c(zk) ≥ 0. Moreover, we only achieve a(xi) + b(yj) + c(zk) = 0
when (a, b) = (0, 1) or (1, 0), which correspond to the terms of the form x0ykzq+1−k or
xky0zq+1−k in (2).

3.3 Monomial degeneration of Tq+1 into Strassen’s 1986 tensor.

Strassen’s 1986 tensor is defined for any integer q ≥ 1 and is given by Sq :=
∑q
i=1 x0yizq+1−i+

xiy0zq+1−i.
Similar to before, we will show that Sq is a degeneration of Tq+1, which we can write as

Tq+1 =
∑

i,j,k∈{0,...,q}
i+j+k≡q (mod q+1)

xiyjzk. (4)

Our degeneration is as follows: a(x0) = b(x0) = 0, a(xi) = b(yi) = 1 for all i ≥ 1,
c(zq) = 0 and c(zk) = −1 for all k ≥ 1. Simple casework shows again that the possible values
for a(xi) + b(yj) + c(zk) are 0, 1, 2, and that 0 is only achieved for the terms in Sq. Among
other things, this degeneration gives a simple proof that the border rank of Sq is q + 1.

Since a monomial degeneration of a rank expression gives a border rank expression, this
shows in particular that the border rank of CWq is q + 2. Furthermore, it shows that the
best known bounds for ω [10, 27, 16] can be obtained from T7. Finally, since we only used
monomial degenerations, we will be able to obtain lower bounds on what bounds on ω one
can achieve via zeroing out powers of the CWq tensor.

4 Independent Triples in Matrix Multiplication Tensors

In this section we show that there is a zeroing out of any matrix multiplication tensor into a
fairly large independent tensor. This strengthens a classic result (see eg. [3, Lemma 8.6]) that
any matrix multiplication tensor has a monomial degeneration into a fairly large independent
tensor.

I Lemma 5. For every positive integer q, and ε ∈ (0, 1], there is a zeroing out of 〈q, qε, q〉⊗n
into q(1+ε)n−o(n) independent triples.

Proof. Recall that 〈q, qε, q〉 =
∑q
i=1
∑qε

j=1
∑q
k=1 xijyjkzki. Hence,

〈q, qε, q〉⊗n =
∑

~i,~k∈[q]n, ~j∈[qε]n
x~i~jy~j~kz~k~i.

We will zero out variables in three phases, and after the third phase we will have a sufficiently
large independent tensor as desired.
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4.1 Phase one
For vectors ~i,~k ∈ [q]n, and values a, b ∈ [q], let tab(~i~k) denote the number of 1 ≤ α ≤ n

such that ~iα = a and ~kα = b. We say that ~i~k is balanced if, for all a, b, c, d ∈ [q], we have
tab(~i~k) = tcd(~i~k). We similarly say that ~i~j is balanced if tab(~i~j) = tcd(~i~j) for every a, c ∈ [q]
and b, d ∈ [qε], and say that ~j~k is balanced similarly. In the first phase, we zero out every
variable x~i~j such that ~i~j is not balanced. We similarly zero out y~j~k such that ~j~k is not
balanced, and z~k~i such that ~k~i is not balanced.

Note that if ~i~k is balanced, then for each a, b ∈ [q], we have (~iα,~kα) = (a, b) for exactly
n/q2 choices of α ∈ [n]. Hence, the number of choices of ~i,~k ∈ [q]n such that ~i~k is balanced
is exactly L2 :=

(
n

n
q2 ,

n
q2 ,...,

n
q2

)
= q2n−o(n). If ~i~k is balanced, then notice that the number Kε

of choices of ~j ∈ [qε]n such that ~i~j and ~j~k are also balanced is independent of what ~i and ~k
are, and satisfies Kε = qO(n).

Similarly, the number of choices of ~i ∈ [q]n and ~j ∈ [qε]n such that ~i~j is balanced is
L1+ε :=

(
n

n
q1+ε ,

n
q1+ε ,...,

n
q1+ε

)
= q(1+ε)n−o(n). Moreover, when~i~j is balanced, the number K1 of

choices of ~k such that~i~k and ~j~k are balanced satisfiesK1 = qO(n). Note that L2Kε = L1+εK1,
since both count the number of triples remaining after phase one, and in particular, K1 ≥ Kε.

4.2 Phase two
Let M be an odd prime number to be determined. Pick w0, w1, . . . , wn ∈ [M ] independently
and uniformly at random, then define the hash functions hX : X → [M ], hY : Y → [M ], and
hZ : Z → [M ], by:

hX(x~i~j) = 2
n∑
α=1

wα · (~iα −~jα) (mod M),

hY (y~j~k) = 2w0 + 2
n∑
α=1

wα · (~jα − ~kα) (mod M),

hZ(z~k~i) = w0 +
n∑
α=1

wα · (~iα − ~kα) (mod M).

Notice that, for every choice of ~i,~j,~k ∈ [q]n, we have that hX(x~i~j) + hY (y~j~k) =
2hZ(z~k~i) (mod M). Now, let H ⊆ [M ] be a subset of size |H| ≥ M1−o(1) which does
not contain any nontrivial three-term arithmetic progressions mod M ; in other words, if
a, b, c ∈ H such that a + b = 2c (mod M), then a = b = c. Such a set is constructed by
Salem and Spencer [22]. In the second phase, we zero out all x~i~j such that hX(x~i~j) /∈ H, and
similarly for the y and z variables. As a result, every term x~i~jy~j~kz~k~i remaining in our tensor
satisfies:

~i~j, ~j~k, and ~k~i are balanced, and
hX(x~i~j) = hY (y~j~k) = hZ(z~k~i).

4.3 Phase three
In the third phase we zero out some remaining variables to ensure that our resulting tensor
is independent. First, however, we will compute some expected values.

For h ∈ H, let Sh be the set of terms x~i~jy~j~kz~k~i remaining in our tensor after stage two
such that hX(x~i~j) = hY (y~j~k) = hZ(z~k~i) = h. For a given term x~i~jy~j~kz~k~i which was not
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zeroed out in phase one, it will be in Sh whenever hX(x~i~j) = h and hY (y~j~k) = h, since in
that case we must also have that hZ(z~k~i) = h as the three are in arithmetic progression.
For a fixed choice of ~i,~j,~k such that ~i~j and ~j~k are balanced, we can see that hX(x~i~j) and
hY (y~j~k) are independent and uniformly random elements of [M ] (the randomness is over
choosing the wα values). Hence, this term will be in Sh with probability 1/M2, and so
E[|Sh|] = L1+ε ·K1/M

2.
Next, for h ∈ H, let Ph be the set of pairs of terms (x~i~jy~j~kz~k~i, x~i′~j′y~j′~k′z~k′~i′) such that

both terms are in Sh, and ~i = ~i′ and ~j = ~j′, meaning they share the same x variable.
Again, there are L1+ε choices for ~i and ~j, then K1 choices each for ~k and ~k′, and similar
to before, such a choice of ~i,~j,~k,~k′ will be put in Ph with probability 1/M3. Hence,
E[|Ph|] ≤ L1+ε ·K2

1/M
3. Similar calculations hold if we instead look at pairs Qh which share

a y variable, showing that E[|Qh|] ≤ L1+ε ·K2
1/M

3, or pairs Rh which share a z variable,
showing that E[|Rh|] ≤ L2 ·K2

ε/M
3 ≤ L1+ε ·K2

1/M
3.

We now do our final zeroing out. If there are any distinct terms x~i~jy~j~kz~k~i and x~i′~j′y~j′~k′z~k′~i′

remaining in our tensor such that ~i =~i′ and ~j = ~j′, then we zero out x~i~j . We similarly zero
out any variables y~j~k or z~k~i which appear in multiple terms. As a result, our final tensor is
definitely independent.

It remains to show that it has enough terms remaining. Since each pair of terms left from
phase two which share a variable is removed in phase three, we see that the number of terms
remaining is at least

∑
h∈H

|Sh| − 2|Ph| − 2|Qh| − 2|Rh|.

Let us pick M to be an odd prime number in the range [12K1, 24K1]. Hence, using our
expected value calculations from before, we see that the expected number of remaining terms
is at least

|H| ·
(
L1+εK1

M2 − 6L1+εK
2
1

M3

)
= |H|L1+εK1

M2

(
1− 6K1

M

)
≥ M1−o(1)L1+εK1

M2

(
1− 6 1

12

)
≥ L1+ε

K
o(1)
1
≥ q(1+ε)n−o(n),

where the last step follows since L1+ε = q(1+ε)n−o(n) and K1 = qO(n). By the probabilistic
method, there is a choice of hash functions which achieves this expected number of independent
triples, as desired. J

5 Monomial Degenerations

I Lemma 6. Suppose A and B are two tensors over X,Y, Z such that A is a monomial
degeneration of B. Further suppose that A⊗n has zeroing out into f(n) independent triples.
Then, B⊗n has a zeroing out into Ω(f(n)/n2) independent triples.

Proof. Let a : X → Z, b : Y → Z, and c : Z → Z be the functions for the monomial
degeneration such that

a(xi) + b(yj) + c(zk) ≥ 0 for all xiyjzk ∈ B, and
furthermore a(xi) + b(yj) + c(zk) = 0 if and only if xiyjzk ∈ A.

Let a− := minx∈X a(x) and a+ := maxx∈X a(x), and define b−, b+, c−, and c+ similarly. Now,
B⊗n is a tensor over Xn, Y n, Zn. Define an : Xn → Z, by an(xi1 , . . . , xin) =

∑n
α=1 a(xiα),

and define bn : Y n → Z and cn : Zn → Z similarly. It follows that
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an(xi1 , . . . , xin) + bn(yj1 , . . . , yjn) + cn(zk1 , . . . , zkn) ≥ 0 for all
xi1 · · ·xinyj1 · · · yjnzk1 · · · zkn ∈ B⊗n, and
furthermore an(xi1 , . . . , xin) + bn(yj1 , . . . , yjn) + cn(zk1 , . . . , zkn) = 0 if and only if
xi1 · · ·xinyj1 · · · yjnzk1 · · · zkn ∈ A⊗n.

The range of an is integers in [a−n, a+n]. For each integer p in that range, let Xn
p be the set of

xi1 · · ·xin ∈ Xn such that an(xi1 · · ·xin) = p. Define Y nq for integers q ∈ [b−n, b+n], and Znr
for integers r ∈ [c−n, c+n], similarly. Now, for (p, q, r) ∈ [a−n, a+n]× [b−n, b+n]× [c−n, c+n],
let B⊗np,q,r be the tensor one gets from B⊗n by zeroing out all the Xn variables not in Xn

p , all
the Y n variables not in Y nq , and all the Zn variables not in Znr . Then, letting W be the set
of triples of integers in [a−n, a+n]× [b−n, b+n]× [c−n, c+n], we see that

A⊗n =
∑

(p,q,r)∈W |p+q+r=0

B⊗np,q,r,

and each term of A⊗n appears in exactly one of the summands. Now, let A⊗n′ be the zeroing
out of A⊗n into f(n) independent triples. Let B⊗n′p,q,r be the zeroing out of B⊗np,q,r in which we
zero out those same variables. Hence,

A⊗n′ =
∑

(p,q,r)∈W |p+q+r=0

B⊗n′p,q,r,

where the sum is hence a disjoint sum of independent triples. The number of terms on
the right is O(n2), and so at least one of the terms on the right must have size at least
|A⊗n′|/O(n2) = Ω(f(n)/n2), as desired. J

6 Main Theorem

In this section, we will combine our results above with the bounds on the sizes of tri-colored
sum-free sets from past work in order to prove our main theorem. Recall the definition of γp
from Section 1.4, and define cp := eγp .

I Theorem 7. Let ε ∈ (0, 1]. Let T be a tensor that is a monomial degeneration of Tp and
suppose that T⊗N can be zeroed out into F � 〈G,Gε, G〉, giving a bound ωε ≤ ω′ε where
Gω

′
ε = dpN/F e. Then ω′ε ≥ (1 + ε) logcp p.

Proof. Let g = G1/N so that G = gN , and let f = F 1/N so that F = fN . Since T⊗N can be
zeroed out into F �〈G,Gε, G〉, via Lemma 5, T⊗N can be zeroed out into fN · g(1+ε)N−o(N)

independent triples. Due to Lemma 6 this means that T⊗Np can also be zeroed out into
D = fN · g(1+ε)N−o(N)/N2 independent triples.

Now, let S = {(a1, b1, c1), . . . , (aD, bD, cD)} be the indices of the D independent triples
obtained from T⊗Np . Because they are obtained by zeroing out T⊗Np , for every i, ai+bi+ci ≡ 0
in ZNp . Now suppose that for some i, j, k, ai + bj + ck ≡ 0 in ZNp . If i, j, k are not all the
same, then (ai, bj , ck) cannot be in S as the triples in S are independent. However, the only
way for a triple of T×Np to be removed is if Xai or Ybj or Zck is set to zero. Suppose that
Xai is set to 0 (the other two cases are symmetric). Then there can be no triple in S sharing
ai as its first index. Thus in fact S forms a tri-colored sum-free set. Hence D ≤ cNp .

From our earlier bound on D we get that fN · g(1+ε)N−o(N)/N2 ≤ cNp , and taking the
Nth root of both sides yields fg1+ε−o(1)/N2/N ≤ cp.

Recall that Gω′
ε = dpN/F e, so that g = (dp/fe)1/ω′

ε . Plugging in above, we get that
f(dp/fe)(1+ε)/ω′

ε−o(1) ≤ cp. Hence, f1−(1+ε)/ω′
ε+o(1)p(1+ε)/ω′

ε−o(1) ≤ cp. Since ω′ε ≥ (1 + ε),
we have that f1−(1+ε)/ω′

ε+o(1) ≥ 1. We obtain that (1 + ε)/ω′ε ≤ logp cp + o(1) and

ω′ε ≥ (1 + ε− o(1)) logcp p. J
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As a corollary we obtain the following upper bound on what α can be achieved by zeroing
out.

I Corollary 8. Let T be a tensor that is a monomial degeneration of Tp. If one can prove
α ≤ α′ using the zeroing-out approach then, α′ ≤ 2

logcp p
− 1.

References
1 Andris Ambainis, Yuval Filmus, and François Le Gall. Fast matrix multiplication: limita-

tions of the coppersmith-winograd method. In STOC, pages 585–593, 2015.
2 D. Bini, M. Capovani, F. Romani, and G. Lotti. O(n2.7799) complexity for n×n approximate

matrix multiplication. Inf. Process. Lett., 8(5):234–235, 1979.
3 Markus Bläser. Fast matrix multiplication. Theory of Computing, Graduate Surveys, 5:1–

60, 2013.
4 Jonah Blasiak, Thomas Church, Henry Cohn, Joshua A Grochow, Eric Naslund, William F

Sawin, and Chris Umans. On cap sets and the group-theoretic approach to matrix multi-
plication. Discrete Analysis, 2017(3):1–27, 2017.

5 Henry Cohn. personal communication, 2017.
6 Henry Cohn, Robert Kleinberg, Balazs Szegedy, and Christopher Umans. Group-theoretic

algorithms for matrix multiplication. In FOCS, pages 379–388, 2005.
7 Henry Cohn and Christopher Umans. A group-theoretic approach to fast matrix multiplic-

ation. In FOCS, pages 438–449, 2003.
8 D. Coppersmith and S. Winograd. On the asymptotic complexity of matrix multiplication.

In SFCS, pages 82–90, 1981.
9 Don Coppersmith. Rectangular matrix multiplication revisited. Journal of Complexity,

13(1):42–49, 1997.
10 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.

Journal of symbolic computation, 9(3):251–280, 1990.
11 A.M. Davie and A. J. Stothers. Improved bound for complexity of matrix multiplication.

Proceedings of the Royal Society of Edinburgh, Section: A Mathematics, 143:351–369, 4
2013.

12 Jordan S Ellenberg and Dion Gijswijt. On large subsets of Fnq with no three-term arithmetic
progression. Annals of Mathematics, 185(1):339–343, 2017.

13 François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the coppersmith-winograd tensor. CoRR, abs/1708.05622, 2017. arXiv:1708.
05622.

14 Robert Kleinberg, William F. Sawin, and David E. Speyer. The growth rate of tri-colored
sum-free sets. math, abs/1607.00047, 2016. arXiv:1607.00047.

15 François Le Gall. Faster algorithms for rectangular matrix multiplication. In FOCS, pages
514–523, 2012.

16 François Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC, pages
296–303, 2014.

17 Mateusz Michalek. personal communication, 2014.
18 Sergey Norin. A distribution on triples with maximum entropy marginal. math,

abs/1608.00243, 2016. arXiv:1608.00243.
19 V. Y. Pan. Strassen’s algorithm is not optimal. In FOCS, volume 19, pages 166–176, 1978.
20 V. Y. Pan. New fast algorithms for matrix operations. SIAM J. Comput., 9(2):321–342,

1980.
21 Luke Pebody. Proof of a conjecture of kleinberg-sawin-speyer. math, abs/1608.05740, 2016.

arXiv:1608.05740.

http://arxiv.org/abs/1708.05622
http://arxiv.org/abs/1708.05622
http://arxiv.org/abs/1607.00047
http://arxiv.org/abs/1608.00243
http://arxiv.org/abs/1608.05740


J. Alman and V. V. Williams 25:15

22 Raphaël Salem and Donald C Spencer. On sets of integers which contain no three terms in
arithmetical progression. Proceedings of the National Academy of Sciences, 28(12):561–563,
1942.

23 A. Schönhage. Partial and total matrix multiplication. SIAM J. Comput., 10(3):434–455,
1981.

24 V. Strassen. The asymptotic spectrum of tensors and the exponent of matrix multiplication.
In FOCS, pages 49–54, 1986.

25 V. Strassen. Relative bilinear complexity and matrix multiplication. J. reine angew. Math.
(Crelles Journal), 375–376:406–443, 1987.

26 Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354–
356, 1969.

27 Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
STOC, pages 887–898, 2012.

A Supporting Calculations

We recall some definitions from earlier in the paper. For any integer q ≥ 2, let ρ be the
unique number in (0, 1) satisfying

ρ+ ρ2 + · · ·+ ρq−1 = q − 1
3 (1 + 2ρq).

Then, define γq ∈ R by γq := ln(1− ρq)− ln(1− ρ)− q−1
3 ln(ρ). Then, the lower bound on ω

we get from using Tq is 2 ln(q)/γq. Here we show that this approaches 2 as q →∞:

I Lemma 9. limq→∞
γq

ln(q) = 1.

Proof. Note that, since ρ ∈ (0, 1), we have

1
1− ρ = 1 + ρ+ ρ2 + · · · > ρ+ ρ2 + · · ·+ ρq−1 = q − 1

3 (1 + 2ρq) > q − 1
3 .

Rearranging, we see that ρ > 1− 3/(q − 1). Hence,

γq
ln(q) =

ln
(

1−ρq
1−ρ

)
ln(q) + (q − 1) ln(ρ)

3 ln(q) >
ln
(
1 + ρ+ · · ·+ ρq−1)

ln(q) +
(q − 1) ln(1− 3

q−1 )
3 ln(q)

>
ln ((q − 1)/3)

ln(q) +
(q − 1) ln(1− 3

q−1 )
3 ln(q) .

As q → ∞, we have that lnq((q − 1)/3) → 1 and (q − 1) lnq(1 − 3/(q − 1)) → 0, as
desired. J
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