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Abstract
Recent discussion in the public sphere about algorithmic classification has involved tension
between competing notions of what it means for a probabilistic classification to be fair to different
groups. We formalize three fairness conditions that lie at the heart of these debates, and we prove
that except in highly constrained special cases, there is no method that can satisfy these three
conditions simultaneously. Moreover, even satisfying all three conditions approximately requires
that the data lie in an approximate version of one of the constrained special cases identified
by our theorem. These results suggest some of the ways in which key notions of fairness are
incompatible with each other, and hence provide a framework for thinking about the trade-offs
between them.
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1 Introduction

There are many settings in which a sequence of people comes before a decision-maker, who
must make a judgment about each based on some observable set of features. Across a range
of applications, these judgments are being carried out by an increasingly wide spectrum of
approaches ranging from human expertise to algorithmic and statistical frameworks, as well
as various combinations of these approaches.

Along with these developments, a growing line of work has asked how we should reason
about issues of bias and discrimination in settings where these algorithmic and statistical
techniques, trained on large datasets of past instances, play a significant role in the outcome.
Let us consider three examples where such issues arise, both to illustrate the range of relevant
contexts, and to surface some of the challenges.

A set of example domains

First, at various points in the criminal justice system, including decisions about bail, senten-
cing, or parole, an officer of the court may use quantitative risk tools to assess a defendant’s
probability of recidivism — future arrest — based on their past history and other attributes.
Several recent analyses have asked whether such tools are mitigating or exacerbating the
sources of bias in the criminal justice system; in one widely-publicized report, Angwin et al.
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43:2 Inherent Trade-Offs in the Fair Determination of Risk Scores

analyzed a commonly used statistical method for assigning risk scores in the criminal justice
system — the COMPAS risk tool — and argued that it was biased against African-American
defendants [1, 15]. One of their main contentions was that the tool’s errors were asymmetric:
African-American defendants were more likely to be incorrectly labeled as higher-risk than
they actually were, while white defendants were more likely to be incorrectly labeled as
lower-risk than they actually were. Subsequent analyses raised methodological objections
to this report, and also observed that despite the COMPAS risk tool’s errors, its estimates
of the probability of recidivism are equally well calibrated to the true outcomes for both
African-American and white defendants [17, 6, 9, 12].

Second, in a very different domain, researchers have begun to analyze the ways in which
different genders and racial groups experience advertising and commercial content on the
Internet differently [5, 18]. We could ask, for example: if a male user and female user are
equally interested in a particular product, does it follow that they’re equally likely to be
shown an ad for it? Sometimes this concern may have broader implications, for example if
women in aggregate are shown ads for lower-paying jobs. Other times, it may represent a
clash with a user’s leisure interests: if a female user interacting with an advertising platform
is interested in an activity that tends to have a male-dominated viewership, like professional
football, is the platform as likely to show her an ad for football as it is to show such an ad to
an interested male user?

A third domain, again quite different from the previous two, is medical testing and
diagnosis. Doctors making decisions about a patient’s treatment may rely on tests providing
probability estimates for different diseases and conditions. Here too we can ask whether such
decision-making is being applied uniformly across different groups of patients [11, 19], and in
particular how medical tests may play a differential role for conditions that vary widely in
frequency between these groups.

Providing guarantees for decision procedures

One can raise analogous questions in many other domains of fundamental importance,
including decisions about hiring, lending, or school admissions [16], but we will focus on the
three examples above for the purposes of this discussion. In these three example domains, a
few structural commonalities stand out. First, the algorithmic estimates are often being used
as “input” to a larger framework that makes the overall decision — a risk score provided to
a human expert in the legal and medical instances, and the output of a machine-learning
algorithm provided to a larger advertising platform in the case of Internet ads. Second, the
underlying task is generally about classifying whether people possess some relevant property:
recidivism, a medical condition, or interest in a product. We will refer to people as being
positive instances if they truly possess the property, and negative instances if they do not.
Finally, the algorithmic estimates being provided for these questions are generally not pure
yes-no decisions, but instead probability estimates about whether people constitute positive
or negative instances.

Let us suppose that we are concerned about how our decision procedure might operate
differentially between two groups of interest (such as African-American and white defendants,
or male and female users of an advertising system). What sorts of guarantees should we ask
for as protection against potential bias?

A first basic goal in this literature is that the probability estimates provided by the
algorithm should be well-calibrated: if the algorithm identifies a set of people as having a
probability x of constituting positive instances, then approximately an x fraction of this
set should indeed be positive instances [4, 10]. Moreover, this condition should hold when
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applied separately in each group as well [9]. For example, if we are thinking in terms of
potential differences between outcomes for men and women, this means requiring that an
x fraction of men and an x fraction of women assigned a probability x should possess the
property in question.

A second goal focuses on the people who constitute positive instances (even if the algorithm
can only imperfectly recognize them): the average score received by people constituting
positive instances should be the same in each group. We could think of this as balance for the
positive class, since a violation of it would mean that people constituting positive instances in
one group receive consistently lower probability estimates than people constituting positive
instances in another group. In our initial criminal justice example, for instance, one of the
concerns raised was that white defendants who went on to commit future crimes were assigned
risk scores corresponding to lower probability estimates in aggregate; this is a violation of the
condition here. There is a completely analogous property with respect to negative instances,
which we could call balance for the negative class. These balance conditions can be viewed as
generalizations of the notions that both groups should have equal false negative and false
positive rates.

It is important to note that balance for the positive and negative classes, as defined here,
is distinct in crucial ways from the requirement that the average probability estimate globally
over all members of the two groups be equal. This latter global requirement is a version of
statistical parity [8, 3, 13, 14]. In some cases statistical parity is a central goal (and in some
it is legally mandated), but the examples considered so far suggest that classification and
risk assessment are much broader activities where statistical parity is often neither feasible
nor desirable. Balance for the positive and negative classes, however, is a goal that can be
discussed independently of statistical parity, since these two balance conditions simply ask
that once we condition on the “correct” answer for a person, the chance of making a mistake
on them should not depend on which group they belong to.

The present work: Trade-offs among the guarantees

Despite their different formulations, the calibration condition and the balance conditions for
the positive and negative classes intuitively all seem to be asking for variants of the same
general goal — that our probability estimates should have the same effectiveness regardless
of group membership. One might therefore hope that it would be feasible to achieve all of
them simultaneously.

Our main result, however, is that these conditions are in general incompatible with each
other; they can only be simultaneously satisfied in certain highly constrained cases. Moreover,
this incompatibility applies to approximate versions of the conditions as well.

In the remainder of this section we formulate this main result precisely, as a theorem
building on a model that makes the discussion thus far more concrete.

1.1 Formulating the Goal
Let’s start with some basic definitions. As above, we have a collection of people each of whom
constitutes either a positive instance or a negative instance of the classification problem.
We’ll say that the positive class consists of the people who constitute positive instances, and
the negative class consists of the people who constitute negative instances. For example,
for criminal defendants, the positive class could consist of those defendants who will be
arrested again within some fixed time window, and the negative class could consist of those
who will not. The positive and negative classes thus represent the “correct” answer to the
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43:4 Inherent Trade-Offs in the Fair Determination of Risk Scores

classification problem; our decision procedure does not know them, but is trying to estimate
them.

Feature vectors

Each person has an associated feature vector σ, representing the data that we know about
them. Let pσ denote the fraction of people with feature vector σ who belong to the positive
class. Conceptually, we will picture that while there is variation within the set of people who
have feature vector σ, this variation is invisible to whatever decision procedure we apply; all
people with feature vector σ are indistinguishable to the procedure. Our model will assume
that the value pσ for each σ is known to the procedure.1

Groups

Each person also belongs to one of two groups, labeled 1 or 2, and we would like our decisions
to be unbiased with respect to the members of these two groups.2 In our examples, the
two groups could correspond to different races or genders, or other cases where we want to
look for the possibility of bias between them. The two groups have different distributions
over feature vectors: a person of group t has a probability atσ of exhibiting the feature
vector σ. However, people of each group have the same probability pσ of belonging to the
positive class provided their feature vector is σ. In this respect, σ contains all the relevant
information available to us about the person’s future behavior; once we know σ, we do not
get any additional information from knowing their group as well.3

Risk Assignments

We say that an instance of our problem is specified by the parameters above: a feature vector
and a group for each person, with a value pσ for each feature vector, and distributions {atσ}
giving the frequency of the feature vectors in each group.

Informally, risk assessments are ways of dividing people up into sets based on their
feature vectors σ (potentially using randomization), and then assigning each set a probability
estimate that the people in this set belong to the positive class. Thus, we define a risk
assignment to consist of a set of “bins” (the sets), where each bin is labeled with a score
vb that we intend to use as the probability for everyone assigned to bin b. We then create
a rule for assigning people to bins based on their feature vector σ; we allow the rule to
divide people with a fixed feature vector σ across multiple bins (reflecting the possible use of
randomization). Thus, the rule is specified by values Xσb: a fraction Xσb of all people with
feature vector σ are assigned to bin b. Note that the rule does not have access to the group t
of the person being considered, only their feature vector σ. (As we will see, this does not
mean that the rule is incapable of exhibiting bias between the two groups.) In summary, a

1 Clearly the case in which the value of pσ is unknown is an important version of the problem as well;
however, since our main results establish strong limitations on what is achievable, these limitations are
only stronger because they apply even to the case of known pσ.

2 We focus on the case of two groups for simplicity of exposition, but it is straightforward to extend all of
our definitions to the case of more than two groups.

3 As we will discuss in more detail below, the assumption that the group provides no additional information
beyond σ does not restrict the generality of the model, since we can always consider instances in which
people of different groups never have the same feature vector σ, and hence σ implicitly conveys perfect
information about a person’s group.



J. Kleinberg, S. Mullainathan, and M. Raghavan 43:5

risk assignment is specified by a set of bins, a score for each bin, and values Xσb that define
a mapping from people with feature vectors to bins.

Fairness Properties for Risk Assignments

Within the model, we now express the three conditions discussed at the outset, each reflecting
a potentially different notion of what it means for the risk assignment to be “fair.”
(A) Calibration within groups requires that for each group t, and each bin b with associated

score vb, the expected number of people from group t in b who belong to the positive
class should be a vb fraction of the expected number of people from group t assigned
to b.

(B) Balance for the negative class requires that the average score assigned to people of group
1 who belong to the negative class should be the same as the average score assigned to
people of group 2 who belong to the negative class. In other words, the assignment of
scores shouldn’t be systematically more inaccurate for negative instances in one group
than the other.

(C) Balance for the positive class symmetrically requires that the average score assigned to
people of group 1 who belong to the positive class should be the same as the average
score assigned to people of group 2 who belong to the positive class.

Why Do These Conditions Correspond to Notions of Fairness?

All of these are natural conditions to impose on a risk assignment; and as indicated by
the discussion above, all of them have been proposed as versions of fairness. The first
one essentially asks that the scores mean what they claim to mean, even when considered
separately in each group. The second and third ask that if two individuals in different groups
exhibit comparable future behavior (negative or positive), they should be treated comparably
by the procedure. In other words, a violation of, say, the second condition would correspond
to the members of the negative class in one group receiving consistently higher scores than
the members of the negative class in the other group, despite the fact that the members of
the negative class in the higher-scoring group have done nothing to warrant these higher
scores.

We can also interpret some of the prior work around our earlier examples through the
lens of these conditions. For example, in the analysis of the COMPAS risk tool for criminal
defendants, the critique by Angwin et al. focused on the risk tool’s violation of conditions
(B) and (C); the counter-arguments established that it satisfies condition (A). While it is
clearly crucial for a risk tool to satisfy (A), it may still be important to know that it violates
(B) and (C). Similarly, to think in terms of the example of Internet advertising, with male
and female users as the two groups, condition (A) as before requires that our estimates of
ad-click probability mean the same thing in aggregate for men and women. Conditions (B)
and (C) are distinct; condition (C), for example, says that a female user who genuinely wants
to see a given ad should be assigned the same probability as a male user who wants to see
the ad.

1.2 Determining What is Achievable: A Characterization Theorem

When can conditions (A), (B), and (C) be simultaneously achieved? We begin with two
simple cases where it’s possible.
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Perfect prediction. Suppose that for each feature vector σ, we have either pσ = 0 or
pσ = 1. This means that we can achieve perfect prediction, since we know each person’s
class label (positive or negative) for certain. In this case, we can assign all feature vectors
σ with pσ = 0 to a bin b with score vb = 0, and all σ with pσ = 1 to a bin b′ with score
vb′ = 1. It is easy to check that all three of the conditions (A), (B), and (C) are satisfied
by this risk assignment.
Equal base rates. Suppose, alternately, that the two groups have the same fraction of
members in the positive class; that is, the average value of pσ is the same for the members
of group 1 and group 2. (We can refer to this as the base rate of the group with respect
to the classification problem.) In this case, we can create a single bin b with score equal
to this average value of pσ, and we can assign everyone to bin b. While this is not a
particularly informative risk assignment, it is again easy to check that it satisfies fairness
conditions (A), (B), and (C).

Our first main result establishes that these are in fact the only two cases in which a risk
assignment can achieve all three fairness guarantees simultaneously.

I Theorem 1. Consider an instance of the problem in which there is a risk assignment
satisfying fairness conditions (A), (B), and (C). Then the instance must either allow for
perfect prediction (with pσ equal to 0 or 1 for all σ) or have equal base rates.

Thus, in every instance that is more complex than the two cases noted above, there
will be some natural fairness condition that is violated by any risk assignment. Moreover,
note that this result applies regardless of how the risk assignment is computed; since our
framework considers risk assignments to be arbitrary functions from feature vectors to bins
labeled with probability estimates, it applies independently of the method — algorithmic or
otherwise — that is used to construct the risk assignment.

The conclusions of the first theorem can be relaxed in a continuous fashion when the
fairness conditions are only approximate. In particular, for any ε > 0 we can define ε-
approximate versions of each of conditions (A), (B), and (C) (specified precisely in the next
section), each of which requires that the corresponding equalities between groups hold only
to within an error of ε. For any δ > 0, we can also define a δ-approximate version of the
equal base rates condition (requiring that the base rates of the two groups be within an
additive δ of each other) and a δ-approximate version of the perfect prediction condition
(requiring that in each group, the average of the expected scores assigned to members of the
positive class is at least 1− δ; by the calibration condition, this can be shown to imply a
complementary bound on the average of the expected scores assigned to members of the
negative class).

In these terms, our approximate version of Theorem 1 is the following.

I Theorem 2. There is a continuous function f , with f(x) going to 0 as x goes to 0, so that
the following holds. For all ε > 0, and any instance of the problem with a risk assignment
satisfying the ε-approximate versions of fairness conditions (A), (B), and (C), the instance
must satisfy either the f(ε)-approximate version of perfect prediction or the f(ε)-approximate
version of equal base rates.

Thus, anything that approximately satisfies the fairness constraints must approximately
look like one of the two simple cases identified above.

Finally, in connection to Theorem 1, we note that when the two groups have equal base
rates, then one can ask for the most accurate risk assignment that satisfies all three fairness
conditions (A), (B), and (C) simultaneously. Since the risk assignment that gives the same
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score to everyone satisfies the three conditions, we know that at least one such risk assignment
exists; hence, it is natural to seek to optimize over the set of all such assignments. We
consider this algorithmic question in the final technical section of the paper.

To reflect a bit further on our main theorems and what they suggest, we note that our
intention in the present work isn’t to make a recommendation on how conflicts between
different definitions of fairness should be handled. Nor is our intention to analyze which
definitions of fairness are violated in particular applications or datasets. Rather, our point is
to establish certain unavoidable trade-offs between the definitions, regardless of the specific
context and regardless of the method used to compute risk scores. Since each of the definitions
reflect (and have been proposed as) natural notions of what it should mean for a risk score
to be fair, these trade-offs suggest a striking implication: that outside of narrowly delineated
cases, any assignment of risk scores can in principle be subject to natural criticisms on the
grounds of bias. This is equally true whether the risk score is determined by an algorithm or
by a system of human decision-makers.

Special Cases of the Model

Our main results, which place strong restrictions on when the three fairness conditions can
be simultaneously satisfied, have more power when the underlying model of the input is
more general, since it means that the restrictions implied by the theorems apply in greater
generality. However, it is also useful to note certain special cases of our model, obtained by
limiting the flexibility of certain parameters in intuitive ways. The point is that our results
apply a fortiori to these more limited special cases.

First, we have already observed one natural special case of our model: cases in which, for
each feature vector σ, only members of one group (but not the other) can exhibit σ. This
means that σ contains perfect information about group membership, and so it corresponds
to instances in which risk assignments would have the potential to use knowledge of an
individual’s group membership. Note that we can convert any instance of our problem into
a new instance that belongs to this special case as follows. For each feature vector σ, we
create two new feature vectors σ(1) and σ(2); then, for each member of group 1 who had
feature vector σ, we assign them σ(1), and for each member of group 2 who had feature
vector σ, we assign them σ(2). The resulting instance has the property that each feature
vector is associated with members of only one group, but it preserves the essential aspects of
the original instance in other respects.

Second, we allow risk assignments in our model to split people with a given feature vector
σ over several bins. Our results also therefore apply to the natural special case of the model
with integral risk assignments, in which all people with a given feature σ must go to the
same bin.

Third, our model is a generalization of binary classification, which only allows for 2 bins.
Note that although binary classification does not explicitly assign scores, we can consider
the probability that an individual belongs to the positive class given that they were assigned
to a specific bin to be the score for that bin. Thus, our results hold in the traditional binary
classification setting as well.

Data-Generating Processes

Finally, there is the question of where the data in an instance of our problem comes from.
Our results do not assume any particular process for generating the positive/negative class
labels, feature vectors, and group memberships; we simply assume that we are given such a
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collection of values (regardless of where they came from), and then our results address the
existence or non-existence of certain risk assignments for these values.

This increases the generality of our results, since it means that they apply to any process
that produces data of the form described by our model. To give an example of a natural
generative model that would produce instances with the structure that we need, one could
assume that each individual starts with a “hidden” class label (positive or negative), and a
feature vector σ is then probabilistically generated for this individual from a distribution that
can depend on their class label and their group membership. (If feature vectors produced
for the two groups are disjoint from one another, then the requirement that the value of pσ
is independent of group membership given σ necessarily holds.) Since a process with this
structure produces instances from our model, our results apply to data that arises from such
a generative process.

1.3 Further Related Work

Mounting concern over discrimination in machine learning has led to a large body of new
work seeking to better understand and prevent it. Barocas and Selbst survey a range of ways
in which data-analysis algorithms can lead to discriminatory outcomes [2]. Kamiran and
Calders, among others, seek to modify datasets to remove any information that might permit
discrimination [13, 8]. Similarly, Zemel et al. look to learn fair intermediate representations
of data while preserving information needed for classification [20].

One common notion of fairness, adopted by Feldman et al., Kamishima et al., and others,
is “statistical parity” – equal fractions of each group should be treated as belonging to the
positive class [8, 3, 13, 14]. Work in this direction has developed learning algorithms that
penalize violations of statistical parity [3, 14]. As noted above, we consider definitions other
than statistical parity that take into account the class membership (positive or negative) of
the people being classified.

Dwork et al. propose a framework based on a task-specific externally defined similarity
metric between individuals, seeking to achieve fairness through the goal that “similar people
[be] treated similarly” [7]. They strive towards individual fairness, which is a stronger notion
of fairness than the definitions we use; however, our approach shares some of the underlying
motivation (though not the specifics) in that our balance conditions for the positive and
negative classes also reflect the notion that similar people should be treated similarly.

Much of the applied work on risk scores, as noted above, focuses on calibration as a central
goal [4, 6, 9]. In particular, responding to the criticism of their risk scores as displaying
asymmetric errors for different groups, Dietrich et al. note that empirically, both in their
domain and in similar settings, it is typically difficult to achieve symmetry in the error rates
across groups when base rates differ significantly. Our formulation of the balance conditions
for the positive and negative classes, and our result showing the incompability of these
conditions with calibration, provides a theoretical basis for such observations.

2 The Characterization Theorems

Starting with the notation and definitions from the previous section, we now give a proof of
Theorem 1.

First, let Nt be the number of people in group t. Since an atσ fraction of the people in
group t have feature vector σ, we write ntσ = atσNt for the number of people in group t
with feature vector σ. Many of the components of the risk assignment and its evaluation
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can be written in terms of operations on a set of underlying matrices and vectors, which we
begin by specifying.

First, let |σ| denote the number of feature vectors in the instance, and let p ∈ R|σ|
be a vector indexed by the possible feature vectors, with the coordinate in position σ
equal to pσ. For group t, let nt ∈ R|σ| also be a vector indexed by the possible feature
vectors, with the coordinate in position σ equal to ntσ. Finally, it will be useful to have a
representation of p as a diagonal matrix; thus, let P be a |σ| × |σ| diagonal matrix with
Pσσ = pσ.
We now specify a risk assignment as follows. The risk assignment involves a set of B bins
with associated scores; let v ∈ RB be a vector indexed by the bins, with the coordinate
in position b equal to the score vb of bin b. Let V be a diagonal matrix version of v: it
is a B × B matrix with Vbb = vb. Finally, let X be the |σ| × B matrix of Xσb values,
specifying the fraction of people with feature vector σ who get mapped to bin b under
the assignment procedure.

There is an important point to note about the Xσb values. If all of them are equal to
0 or 1, this corresponds to a procedure in which all people with the same feature vector σ
get assigned to the same bin. When some of the Xσb values are not equal to 0 or 1, the
people with vector σ are being divided among multiple bins. In this case, there is an implicit
randomization taking place with respect to the positive and negative classes, and with respect
to the two groups, which we can think of as follows. Since the procedure cannot distinguish
among people with vector σ, in the case that it distributes these people across multiple bins,
the subset of people with vector σ who belong to the positive and negative classes, and to
the two groups, are divided up randomly across these bins in proportions corresponding to
Xσb. In particular, if there are ntσ group-t people with vector σ, the expected number of
these people who belong to the positive class and are assigned to bin b is ntσpσXσb.

Let us now proceed with the proof of Theorem 1, starting with the assumption that our
risk assignment satisfies conditions (A), (B), and (C).

Calibration within groups

We begin by working out some useful expressions in terms of the matrices and vectors defined
above. We observe that n>t P is a vector in R|σ| whose coordinate corresponding to feature
vector σ equals the number of people in group t who have feature vector σ and belong to the
positive class. n>t X is a vector in RB whose coordinate corresponding to bin b equals the
expected number of people in group t assigned to bin b.

By further multiplying these vectors on the right, we get additional useful quantities.
Here are two in particular:

n>t XV is a vector in RB whose coordinate corresponding to bin b equals the expected
sum of the scores assigned to all group-t people in bin b. That is, using the subscript b to
denote the coordinate corresponding to bin b, we can write (n>t XV )b = vb(n>t X)b by the
definition of the diagonal matrix V .
n>t PX is a vector in RB whose coordinate corresponding to bin b equals the expected
number of group-t people in the positive class who are placed in bin b.

Now, condition (A), that the risk assignment is calibrated within groups, implies that the
two vectors above are equal coordinate-wise, and so we have the following equation for all t:

n>t PX = n>t XV (1)
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Calibration condition (A) also has an implication for the total score received by all people
in group t. Suppose we multiply the two sides of (1) on the right by the vector e ∈ RB
whose coordinates are all 1, obtaining

n>t PXe = n>t XV e. (2)

The left-hand-side is the number of group-t people in the positive class. The right-hand-
side, which we can also write as n>t Xv, is equal to the sum of the expected scores received
by all group-t people. These two quantities are thus the same, and we write their common
value as µt.

Fairness to the positive and negative classes

We now want to write down vector equations corresponding to the fairness conditions (B)
and (C) for the negative and positive classes. First, recall that for the B-dimensional vector
n>t PX, the coordinate corresponding to bin b equals the expected number of group-t people
in the positive class who are placed in bin b. Thus, to compute the sum of the expected
scores received by all group-t people in the positive class, we simply need to take the inner
product with the vector v, yielding n>t PXv. Since µt is the total number of group-t people
in the positive class, the average of the expected scores received by a group-t person in the
positive class is the ratio 1

µt
n>t PXv. Thus, condition (C), that members of the positive class

should receive the same average score in each group, can be written

1
µ1
n>1 PXv = 1

µ2
n>2 PXv (3)

Applying strictly analogous reasoning but to the fractions 1− pσ of people in the negative
class, we we can write condition (B), that members of the negative class should receive the
same average score in each group, as

1
N1 − µ1

n>1 (I − P )Xv = 1
N2 − µ2

n>2 (I − P )Xv (4)

Using (1), we can rewrite (3) to get

1
µ1
n>1 XV v = 1

µ2
n>2 XV v (5)

Similarly, we can rewrite (4) as

1
N1 − µ1

(µ1 − n>1 XV v) = 1
N2 − µ2

(µ2 − n>2 XV v) (6)

The portion of the score received by the positive class

We think of the ratios on the two sides of (3), and equivalently (5), as the average of the
expected scores received by a member of the positive class in group t: the numerator is the
sum of the expected scores received by the members of the positive class, and the denominator
is the size of the positive class. Let us denote this fraction by γt. By (2), we can alternately
think of the denominator as the sum of the expected scores received by all group-t people.
Hence, the two sides of (3) and (5) can be viewed as representing the ratio of the sum of the
expected scores in the positive class of group t to the sum of the expected scores in group t
as a whole. (3) requires that γ1 = γ2; let us denote this common value by γ.
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Now, we observe that γ = 1 corresponds to a case in which the sum of the expected scores
in just the positive class of group t is equal to the sum of the expected scores in all of group
t. In this case, it must be that all members of the negative class are assigned to bins of score
0. If any members of the positive class were assigned to a bin of score 0, this would violate
the calibration condition (A); hence all members of the positive class are assigned to bins of
positive score. Moreover, these bins of positive score contain no members of the negative
class (since they’ve all been assigned to bins of score 0), and so again by the calibration
condition (A), the members of the positive class are all assigned to bins of score 1. Finally,
applying the calibration condition once more, it follows that the members of the negative
class all have feature vectors σ with pσ = 0 and the members of the positive class all have
feature vectors σ with pσ = 1. Hence, when γ = 1 we have perfect prediction.

Finally, we use our definition of γt as
1
µt
n>t XV v, and the fact that γ1 = γ2 = γ to

write (6) as

1
N1 − µ1

(µ1 − γµ1) = 1
N2 − µ2

(µ2 − γµ2)

1
N1 − µ1

µ1(1− γ) = 1
N2 − µ2

µ2(1− γ)

µ1/N1

1− µ1/N1
(1− γ) = µ2/N2

1− µ2/N2
(1− γ)

Now, this last equality implies that one of two things must be the case. Either 1− γ = 0, in
which case γ = 1 and we have perfect prediction; or

µ1/N1

1− µ1/N1
= µ2/N2

1− µ2/N2
,

in which case µ1/N1 = µ2/N2 and we have equal base rates. This completes the proof of
Theorem 1.

Some Comments on the Connection to Statistical Parity

Earlier we noted that conditions (B) and (C) — the balance conditions for the positive and
negative classes — are quite different from the requirement of statistical parity, which asserts
that the average of the scores over all members of each group be the same.

When the two groups have equal base rates, then the risk assignment that gives the same
score to everyone in the population achieves statistical parity along with conditions (A), (B),
and (C). But when the two groups do not have equal base rates, it is immediate to show
that statistical parity is inconsistent with both the calibration condition (A) and with the
conjunction of the two balance conditions (B) and (C). To see the inconsistency of statistical
parity with the calibration condition, we take Equation (1) from the proof above, sum the
coordinates of the vectors on both sides, and divide by Nt, the number of people in group t.
Statistical parity requires that the right-hand sides of the resulting equation be the same
for t = 1, 2, while the assumption that the two groups have unequal base rates implies that
the left-hand sides of the equation must be different for t = 1, 2. To see the inconsistency
of statistical parity with the two balance conditions (B) and (C), we simply observe that if
the average score assigned to the positive class and to the negative class are the same in the
two groups, then the average of the scores over all members of the two groups cannot be the
same provided they do not contain the same proportion of positive-class and negative-class
members.
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3 The Approximate Theorem

In this section we prove Theorem 2. First, we must first give a precise specification of the
approximate fairness conditions:

(1− ε)[n>t XV ]b ≤ [n>t PX]b ≤ (1− ε)[n>t XV ]b (A’)

(1− ε)
(

1
N2 − µ2

)
n>2 (I − P )Xv ≤

(
1

N1 − µ1

)
n>1 (I − P )Xv

≤ (1 + ε)
(

1
N2 − µ2

)
n>2 (I − P )Xv (B’)

(1− ε)
(

1
µ2

)
n>2 PXv ≤

(
1
µ1

)
n>1 PXv ≤ (1 + ε)

(
1
µ2

)
n>2 PXv (C’)

For (B’) and (C’), we also require that these hold when µ1 and µ2 are interchanged.
We also specify the approximate versions of perfect prediction and equal base rates in

terms of f(ε), which is a function that goes to 0 as ε goes to 0.

Approximate perfect prediction. γ1 ≥ 1− f(ε) and γ2 ≥ 1− f(ε)

Approximately equal base rates. |µ1/N1 − µ2/N2| ≤ f(ε)

A brief overview of the proof of Theorem 2 is as follows. It proceeds by first establishing
an approximate form of Equation (1) above, which implies that the total expected score
assigned in each group is approximately equal to the total size of the positive class. This
in turn makes it possible to formulate approximate forms of Equations (3) and (4). When
the base rates are close together, the approximation is too loose to derive bounds on the
predictive power; but this is okay since in this case we have approximately equal base rates.
Otherwise, when the base rates differ significantly, we show that most of the expected score
must be assigned to the positive class, giving us approximately perfect prediction.

The remainder of this section provides the full details of the proof.

Total scores and the number of people in the positive class

First, we will show that the total score for each group is approximately µt, the number of
people in the positive class. Define µ̂t = n>t Xv. Using (A’), we have

µ̂t = n>t Xv

= n>t XV e

=
B∑
b=1

[n>t PX]b

≤ (1 + ε)
B∑
b=1

[n>t PX]b

= (1 + ε)n>t PXe
= (1 + ε)µt
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Similarly, we can lower bound µ̂t as

µ̂t =
B∑
b=1

[n>t PX]b

≥ (1− ε)
B∑
b=1

[n>t PX]b

= (1− ε)µt

Combining these, we have

(1− ε)µt ≤ µ̂t ≤ (1 + ε)µt. (7)

The portion of the score received by the positive class

We can use (C’) to show that γ1 ≈ γ2. Recall that γt, the average of the expected scores
assigned to members of the positive class in group t, is defined as γt = 1

µt
ntPXv. Then, it

follows trivially from (C’) that

(1− ε)γ2 ≤ γ1 ≤ (1 + ε)γ2. (8)

The relationship between the base rates

We can apply this to (B’) to relate µ1 and µ2, using the observation that the score not
received by people of the positive class must fall instead to people of the negative class.
Examining the left inequality of (B’), we have

(1− ε)
(

1
N2 − µ2

)
n>t (I − P )Xv = (1− ε)

(
1

N2 − µ2

)
(n>t Xv − n>t PXv)

= (1− ε)
(

1
N2 − µ2

)
(µ̂2 − γ2µ2)

≥ (1− ε)
(

1
N2 − µ2

)
((1− ε)µ2 − γ2µt)

= (1− ε)
(

µ2

N2 − µ2

)
(1− ε− γ2)

≥ (1− ε)
(

µ2

N2 − µ2

)(
1− ε− γ1

1− ε

)
= (1− 2ε+ ε2 − γ1)

(
µ2

N2 − µ2

)
Thus, the left inequality of (B’) becomes

(1− 2ε+ ε2 − γ1)
(

µ2

N2 − µ2

)
≤
(

1
N1 − µ1

)
n>t (I − P )Xv (9)

By definition, µ̂1 = n>t Xv and γtµt = n>t PXv, so this becomes

(1− 2ε+ ε2 − γ1)
(

µ2

N2 − µ2

)
≤
(

1
N1 − µ1

)
(µ̂1 − γ1µ1) (10)
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If the base rates differ

Let ρ1 and ρ2 be the respective base rates, i.e. ρ1 = µ1/N1 and ρ2 = µ2/N2. Assume that
ρ1 ≤ ρ2 (otherwise we can switch µ1 and µ2 in the above analysis), and assume towards
contradiction that the base rates differ by at least

√
ε, meaning ρ1 +

√
ε < ρ2. Using (10),

ρ1 +
√
ε

1− ρ1 −
√
ε
≤ ρ2

1− ρ2
≤
(

1 + ε− γ1

1− 2ε+ ε2 − γ1

)(
ρ1

1− ρ1

)
Simplifiying,

(ρ1 +
√
ε)(1− ρ1)(1− 2ε+ ε2 − γ1) ≤ ρ1(1− ρ1 −

√
ε)(1 + ε− γ1)

(ρ1 +
√
ε)(1− ρ1)(1− 2ε)− ρ1(1− ρ1 −

√
ε)(1 + ε) ≤ γ1[(ρ1 +

√
ε)(1− ρ1)

− ρ1(1− ρ1 −
√
ε)]

(ρ1 +
√
ε)(1− ρ1)(1− 2ε)− ρ1(1− ρ1 −

√
ε)(1 + ε) ≤ γ1[

√
ε(1− ρ1) +

√
ερ1]

ρ1[(1− ρ1)(1− 2ε)− (1− ρ1 −
√
ε)(1 + ε)] +

√
ε(1− ρ1)(1− 2ε) ≤ γ1

√
ε

ρ1(−2ε+ 2ερ1 − ε+ ερ1 +
√
ε+ ε

√
ε) +

√
ε(1− 2ε− ρ1 + 2ερ1) ≤ γ1

√
ε

ρ1(−3ε+ 3ερ1 +
√
ε+ ε

√
ε−
√
ε+ 2ε

√
ε) +

√
ε(1− 2ε) ≤ γ1

√
ε

ερ1(−3 + 3ρ1 + 3
√
ε) +

√
ε(1− 2ε) ≤ γ1

√
ε

3ερ1(−1 + ρ1) +
√
ε(1− 2ε) ≤ γ1

√
ε

1− 2ε− 3
√
ερ1(1− ρ1) ≤ γ1

1−
√
ε

(
2
√
ε+ 3

4

)
≤ γ1

Recall that γ2 ≥ γ1(1− ε), so

γ2 ≥ (1− ε)γ1

≥ (1− ε)
(

1−
√
ε

(
2
√
ε+ 3

4

))
≥ 1− ε−

√
ε

(
2
√
ε+ 3

4

)
= 1−

√
ε

(
3
√
ε+ 3

4

)
Let f(ε) =

√
εmax(1, 3

√
ε+ 3/4). Note that we assumed that ρ1 and ρ2 differ by an additive√

ε ≤ f(ε). Therefore if the ε-fairness conditions are met and the base rates are not within an
additive f(ε), then γ1 ≥ 1− f(ε) and γ2 ≥ 1− f(ε). This completes the proof of Theorem 2.

4 Reducing Loss with Equal Base Rates

In a risk assigment, we would like as much of the score as possible to be assigned to members
of the positive class. With this in mind, if an individual receives a score of v, we define their
individual loss to be v if they belong to the negative class, and 1− v if they belong to the
positive class. The loss of the risk assignment in group t is then the sum of the expected
individual losses to each member of group t. In terms of the matrix-vector products used in
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the proof of Theorem 1, one can show that the loss for group t may be written as

`t(X) = n>t (I − P )Xv + (µt − n>t PXv)
= 2(µt − n>t PXv),

and the total loss is just the weighted sum of the losses for each group.
Now, let us say that a fair assignment is one that satisfies our three conditions (A), (B),

and (C). As noted above, when the base rates in the two groups are equal, the set of fair
assignments is non-empty, since the calibrated risk assignment that places everyone in a
single bin is fair. We can therefore ask, in the case of equal base rates, whether there exists
a fair assignment whose loss is strictly less than that of the trivial one-bin assignment. It is
not hard to show that this is possible if and only if there is any assignment using more than
one bin; we will call such an assignment a non-trivial assignment.

Note that the assignment that minimizes loss is simply the one that assigns each σ to a
separate bin with a score of pσ, meaning X is the identity matrix. While this assignment,
which we refer to as the identity assignment I, is well-calibrated, it may violate fairness
conditions (B) and (C). It is not hard to show that the loss for any other assignment is
strictly greater than the loss for I. As a result, unless the identity assignment happens to be
fair, every fair assignment must have larger loss than that of I, forcing a tradeoff between
performance and fairness.

4.1 Characterization of Well-Calibrated Solutions
To better understand the space of feasible solutions, suppose we drop the fairness conditions
(B) and (C) for now and study risk assignments that are simply well-calibrated, satisfying
(A). As in the proof of Theorem 1, we write γt for the average of the expected scores assigned
to members of the positive class in group t, and we define the fairness difference to be γ1−γ2.
If this is nonnegative, we say the risk assignment weakly favors group 1; if it is nonpositive,
it weakly favors group 2. Since a risk assignment is fair if and only if γ1 = γ2, it is fair if and
only if the fairness difference is 0.

We wish to characterize when non-trivial fair risk assignments are possible. First, we
observe that without the fairness requirements, the set of possible fairness differences under
well-calibrated assignments is an interval.

I Lemma 3. If group 1 and group 2 have equal base rates, then for any two non-trivial
well-calibrated risk assignments with fairness differences d1 and d2 and for any d3 ∈ [d1, d2],
there exists a non-trivial well-calibrated risk assignment with fairness difference d3.

Proof. The basically idea is that we can effectively take convex combinations of well-calibrated
assignments to produce any well-calibrated assignment “in between” them. We carry this
out as follows.

Let X(1) and X(2) be the allocation matrices for assignments with fairness differences
d1 and d2 respectively, where d1 < d2. Choose λ such that λd1 + (1− λ)d2 = d3, meaning
λ = (d2 − d3)/(d2 − d1). Then, X(3) = [λX(1) (1− λ)X(2)] is a nontrivial well-calibrated
assignment with fairness difference d3.

First, we observe that X(3) is a valid assignment because each row sums to 1 (meaning
everyone from every σ gets assigned to a bin), since each row of λX(1) sums to λ and each
row of (1− λ)X(2) sums to (1− λ). Moreover, it is nontrivial because every nonempty bin
created by X(1) and X(2) is a nonempty bin under X(3).
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Let v(1) and v(2) be the respective bin labels for assignments X(1) and X(2). Define

v(3) =
[
v(1)

v(2)

]
.

Finally, let V (3) = diag(v(3)). Define V (1) and V (2) analogously. Note that

V (3) =
[
V (1) 0

0 V (2)

]
.

We observe that X(3) is calibrated because

n>t PX
(3) = n>t P [λX(1) (1− λ)X(2)]

= [λn>t PX(1) (1− λ)n>t PX(2)]

= [λn>t X(1)V (1) (1− λ)n>t X(2)V (2)]

= n>t [λX(1) (1− λ)X(2)]V (3)

= n>t X
(3)V (3)

Finally, we show that the fairness difference is d3. Let γ(1)
1 and γ(1)

2 be the portions of
the total expected score receieved by the positive class from each group respectively. Define
γ

(2)
1 , γ

(2)
2 , γ

(3)
1 , γ

(3)
2 similarly.

γ
(3)
1 − γ(3)

2 = 1
µ
n>1 PX

(3)v(3) − 1
µ
n>2 PX

(3)v(3)

= 1
µ

(n>1 − n>2 )PX(3)v(3)

= 1
µ

(n>1 − n>2 )P [λX(1)v(1) (1− λ)X(2)v(2)]

= 1
µ

(λ(n>1 − n>2 )PX(1)v(1) + (1− λ)(n>1 − n>2 )X(2)v(2)])

= λ(γ(1)
1 − γ(1)

2 ) + (1− λ)(γ(2)
1 − γ(2)

2 )
= λd1 + (1− λ)d2

= d3 J

I Corollary 4. There exists a non-trivial fair assignment if and only if there exist non-trivial
well-calibrated assignments X(1) and X(2) such that X(1) weakly favors group 1 and X(2)

weakly favors group 2.

Proof. If there is a non-trivial fair assignment, then it weakly favors both group 1 and group
2, proving one direction.

To prove the other direction, observe that the fairness differences d1 and d2 of X(1)

and X(2) are nonnegative and nonpositive respectively. Since the set of fairness differences
achievable by non-trivial well-calibrated assignments is an interval by Lemma 3, there exists
a non-trivial well-calibrated assignment with fairness difference 0, meaning there exists a
non-trivial fair assignment. J

It is an open question whether there is a polynomial-time algorithm to find a fair
assignment of minimum loss, or even to determine whether a non-trivial fair solution exists.
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4.2 NP-Completeness of Non-Trivial Integral Fair Risk Assignments
As discussed in the introduction, risk assignments in our model are allowed to split people
with a given feature vector σ over several bins; however, it is also of interest to consider the
special case of integral risk assignments, in which all people with a given feature σ must go
to the same bin. For the case of equal base rates, we can show that determining whether
there is a non-trivial integral fair assignment is NP-complete. The proof uses a reduction
from the Subset Sum problem and is given in the Appendix.

The basic idea of the reduction is as follows. We have an instance of Subset Sum with
numbers x1, . . . , xn and a target number T ; the question is whether there is a subset of the
xi’s that sums to T . As before, γt denotes the average of the expected scores received by
members of the positive class in group t. We first ensure that there is exactly one non-trivial
way to allocate the people of group 1, allowing us to control γ1. The fairness conditions then
require that γ2 = γ1, which we can use to encode the target value in the instance of Subset
Sum. For every input number xi in the Subset Sum instance, we create pσ2i−1 and pσ2i ,
close to each other in value and far from all other pσ values, such that grouping σ2i−1 and
σ2i together into a bin corresponds to choosing xi for the subset, while not grouping them
corresponds to not taking xi. This ensures that group 2 can be assigned with the correct
value of γ2 if and only if there is a solution to the Subset Sum instance.

5 Conclusion

In this work we have formalized three fundamental conditions for risk assignments to
individuals, each of which has been proposed as a basic measure of what it means for the
risk assignment to be fair. Our main results show that except in highly constrained special
cases, it is not possible to satisfy these three constraints simultaneously; and moreover, a
version of this fact holds in an approximate sense as well.

Since these results hold regardless of the method used to compute the risk assignment, it
can be phrased in fairly clean terms in a number of domains where the trade-offs among these
conditions do not appear to be well-understood. To take one simple example, suppose we
want to determine the risk that a person is a carrier for a disease X, and suppose that a higher
fraction of women than men are carriers. Then our results imply that in any test designed
to estimate the probability that someone is a carrier of X, at least one of the following
undesirable properties must hold: (a) the test’s probability estimates are systematically
skewed upward or downward for at least one gender; or (b) the test assigns a higher average
risk estimate to healthy people (non-carriers) in one gender than the other; or (c) the test
assigns a higher average risk estimate to carriers of the disease in one gender than the other.
The point is that this trade-off among (a), (b), and (c) is not a fact about medicine; it is
simply a fact about risk estimates when the base rates differ between two groups.

It is also interesting to note that the basic set-up of our model, with the population
divided across a set of feature vectors that convey no information about race, is in fact a
very close match to the information one gets from the output of a well-calibrated risk tool.
In this sense, one setting for our model would be the problem of applying post-processing to
the output of such a risk tool to ensure additional fairness guarantees. Indeed, since much of
the recent controversy about fair risk scores has involved risk tools that are well-calibrated
but lack the other fairness conditions we consider, such an interpretation of the model could
be a useful way to think about how one might work with these tools in the context of a
broader system.

Finally, we note that our results suggest a number of interesting directions for further
work. First, when the base rates between the two underlying groups are equal, our results
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do not resolve the computational tractability of finding the most accurate risk assignment,
subject to our three fairness conditions, when the people with a given feature vector can be
split across multiple bins. (Our NP-completeness result applies only to the case in which
everyone with a given feature vector must be assigned to the same bin.) Second, there may
be a number of settings in which the cost (social or otherwise) of false positives may differ
greatly from the cost of false negatives. In such cases, we could imagine searching for risk
assignments that satisfy the calibration condition together with only one of the two balance
conditions, corresponding to the class for whom errors are more costly. Determining when
two of our three conditions can be simultaneously satisfied in this way is an interesting open
question. More broadly, determining how the trade-offs discussed here can be incorporated
into broader families of proposed fairness conditions suggests interesting avenues for future
research.
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A Appendix: NP-Completeness of Non-Trivial Integral Fair Risk
Assignments

We can reduce to the integral assignment problem, parameterized by a1σ, a2σ, and pσ, from
subset sum as follows.

Given n numbers x1, . . . , xn and a target T , we create an instance of the integral
assignment problem with σ1, . . . , σ2n+2. a1,σi = 1/2 if i ∈ {2n+ 1, 2n+ 2} and 0 otherwise.
a2,σi = 1/(2n) if i ≤ 2n and 0 otherwise. We make the following definitions:

x̂i = xi/(Tn4)

εi =
√
x̂i/2

pσ2i−1 = i/(n+ 1)− εi (1 ≤ i ≤ n)
pσ2i = i/(n+ 1) + εi (1 ≤ i ≤ n)

γ = 1/n
2n∑
i=1

p2
σi − 1/n5

pσ2n+1 = (1−
√

2γ − 1)/2

pσ2n+2 = (1 +
√

2γ − 1)/2

With this definition, the subset sum instance has a solution if and only if the integral
assignment instance given by a1,σ, a2,σ, pσ1 , . . . , pσ2n+2 has a solution.

Before we prove this, we need the following lemma.
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I Lemma 5. For any y1, . . . , yk ∈ R,

k∑
i=1

y2
i −

1
k

(
n∑
i=1

yi

)2

= 1
k

k∑
i<j

(yi − yj)2

Proof.

k∑
i=1

y2
i −

1
k

(
n∑
i=1

yi

)2

=
k∑
i=1

y2
i −

1
k

 k∑
i=1

y2
i + 2

k∑
i<j

yiyj


= k − 1

k

k∑
i=1

y2
i −

2
k

k∑
i<j

yiyj

= 1
k

k∑
i<j

(y2
i + y2

j )− 2
k

k∑
i<j

yiyj

= 1
k

k∑
i<j

y2
i − 2yiyj + y2

j

= 1
k

k∑
i<j

(yi − yj)2 J

Now, we can prove that the integral assignment problem is NP-hard.

Proof. First, we observe that for any nontrivial solution to the integral assignment instance,
there must be two bins b 6= b′ such that Xσ2n+1,b = 1 and Xσ2n+2,b′ = 1. In other words, the
people with σ2n+1 and σ2n+2 must be split up. If not, then all the people of group 1 would be
in the same bin, meaning that bin must be labeled with the base rate ρ1 = 1/2. In order to
maintain fairness, the same would have to be done for all the people of group 2, resulting in
the trivial solution. Moreover, b and b′ must be labeled (1±

√
2γ − 1)/2 respectively because

those are the fraction of people of group 1 in those bins who belong to the positive class.
This means that γ1 = 1/ρ · (a1,σ2n+1p

2
σ2n+1

+ a1,σ2n+2p
2
σ2n+2

) = p2
σ2n+1

+ p2
σ2n+2

= γ as
defined above. We know that a well-calibrated assignment is fair if and only if γ1 = γ2, so
we know γ2 = γ.

Next, we observe that ρ2 = ρ1 = 1/2 because all of the positive a2,σ’s are 1/2n, so ρ2 is
just the average of {pσ1 , . . . , pσ2n}, which is 1/2 by symmetry.

Let Q be the partition of [2n] corresponding to the assignment, meaning that for a given
q ∈ Q, there is a bin bq containing all people with σi such that i ∈ q. The label on that bin is

vq =
∑
i∈q a2,σipσi∑
i∈q a2,σi

=
1/2n

∑
i∈q pσi

|q|/2n

= 1
|q|
∑
i∈q

pσi
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Furthermore, bin bq contains
∑
i∈q a2,σipσi = 1/2n

∑
i∈q pσi positive fraction. Using this, we

can come up with an expression for γ2.

γ2 = 1
ρ

∑
q∈Q

vb · 1
2n
∑
i∈q

pσi


= 1
n

∑
q∈Q

1
|q|

∑
i∈q

pσi

2

Setting this equal to γ, we have

1
n

∑
q∈Q

1
|q|

∑
i∈q

pσi

2

= 1
n

2n∑
i=1

p2
σi −

1
n5

∑
q∈Q

1
|q|

∑
i∈q

pσi

2

=
2n∑
i=1

p2
σi −

1
n4

Subtracting both sides from
∑2n
i=1 p

2
σi and using Lemma 5, we have

∑
q∈Q

1
|q|

∑
i<j∈q

(pσi − pσj )2 = 1
n4 (11)

Thus, Q is a fair nontrivial assignment if and only if (11) holds.

Next, we show that there exists Q that satisfies (11) if and only if there there exists some
S ⊆ [n] such that

∑
i∈S âi = 1/n4.

Assume Q satisfies (11). Then, we first observe that any q ∈ Q must either contain a
single i, meaning it does not contribute to the left hand side of (11), or q = {2i− 1, 2i} for
some i. To show this, observe that the closest two elements of {pσ1 , . . . , pσ2n} not of the
form {pσ2i−1 , pσ2i} must be some {pσ2i , pσ2i+1}. However, we find that
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(pσ2i+1 − pσ2i)2 =
(
i+ 1
n+ 1 − εi+1 −

(
i

n+ 1 + εi

))2

=
(

1
n+ 1 − εi+1 − εi

)2

=
(

1
n+ 1 −

√
x̂i+1

2 −
√
x̂i
2

)2

≥

(
1

n+ 1 −
√

2
n4

)2

(x̂i ≤ 1/n4)

=
(

1
n+ 1 −

√
2

n2

)2

≥
(

1
2n −

√
2

n2

)2

=
(
n− 2

√
2

2n2

)2

≥
( n

4n2

)2

=
(

1
4n

)2

= 1
16n2

If any q contains any j, k not of the form 2i− 1, 2i, then (11) will have a term on the left
hand side at least 1/n · 1/(16n2) = 1/(16n3) > 1/n4 for large enough n, and since there can
be no negative terms on the left hand side, this immediately makes it impossible for Q to
satisify (11).

Consider every 2i− 1, 2i ∈ [2n]. Let qi = {2i− 1, 2i}. As shown above, either qi ∈ Q or
{2i− 1} ∈ Q and {2i} ∈ Q. In the latter case, neither pσ2i−1 nor pσ2i contributes to (11). If
qi ∈ Q, then qi contributes 1/2(pσ2i−pσ2i−1

)2 = 1/2(2εi)2 = x̂i to the overall sum on the left
hand side. Therefore, we can write the left hand side of (11) as∑

q∈Q

1
|q|

∑
i<j∈q

(pσi − pσj )2 =
∑
qi∈Q

1
2(pσ2i−pσ2i−1

)2 =
∑
qi∈Q

x̂i = 1
n4

Then, we can build a solution to the original subset sum instance as S = {i : qi ∈ Q}, giving
us
∑
i∈S x̂i = 1

n4 . Multiplying both sides by Tn4, we get
∑
i∈S xi = T , meaning S is a

solution for the subset sum instance.
To prove the other direction, assume we have a solution S ⊆ [n] such that

∑
i∈S xi = T .

Dividing both sides by Tn4, we get
∑
i∈S x̂i = 1/n4. We build a partition Q of 2n by starting

with the empty set and adding qi = {2i − 1, 2i} to Q if i ∈ S and {2i − 1} and {2i} to Q
otherwise. Clearly, each element of [2n] appears in Q at most once, making this a valid
partition. Moreover, when checking to see if (11) is satisfied (which is true if and only if Q
is a fair assignment), we can ignore all q ∈ Q such that |q| = 1 because they don’t contribute
to the left hand side. Since, we again have∑

q∈Q

1
|q|

∑
i<j∈q

(pσi − pσj )2 =
∑
qi∈Q

1
2(pσ2i−pσ2i−1

)2 =
∑
qi∈Q

x̂i = 1
n4

meaning Q is a fair assignment. This completes the reduction. J
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We have shown that the integral assignment problem is NP-hard, and it is clearly in NP
because given an integral assignment, we can verify in polynomial time whether such an
assignment satisfies the conditions (A), (B), and (C). Thus, the integral assignment problem
is NP-complete.
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