
Interactive Compression for Multi-Party Protocols
Gillat Kol1, Rotem Oshman∗2, and Dafna Sadeh†3

1 Princeton University, USA
gillat.kol@gmail.com

2 Tel Aviv University, Israel
rotem.oshman@gmail.com

3 Tel Aviv University, Israel
dafnasadeh@mail.tau.ac.il

Abstract
The field of compression studies the question of how many bits of communication are necessary
to convey a given piece of data. For one-way communication between a sender and a receiver, the
seminal work of Shannon and Huffman showed that the communication required is characterized
by the entropy of the data; in recent years, there has been a great amount of interest in extending
this line of research to interactive communication, where instead of a sender and a receiver we
have two parties communication back-and-forth. In this paper we initiate the study of interactive
compression for distributed multi-player protocols. We consider the classical shared blackboard
model, where players take turns speaking, and each player’s message is immediately seen by all
the other players. We show that in the shared blackboard model with k players, one can compress
protocols down to Õ(I ·k), where I is the information content of the protocol and k is the number
of players. We complement this result with an almost matching lower bound of Ω̃(I · k), which
shows that a nearly-linear dependence on the number of players cannot be avoided.

1998 ACM Subject Classification E.4 Coding and Information Theory

Keywords and phrases interactive compression, multi-party communication

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.31

1 Introduction

In their seminal work, Shannon, Fano and Huffman considered the data compression problem:
a sender wants to send a message x to a receiver. We think of x as a random variable
generated from some distribution µ. How many bits does the sender need to send, so that
the receiver will be able to recover x with high probability? The answer given in [15, 9,
11] is that he needs to send only dH(x)e bits, in expectation, where H denotes Shannon’s
entropy function. Roughly speaking, this means that every message can be compressed to
its information content.

While classical information theory studied the case of one-way transmission, over the last
decades, interactive communication protocols were also studied extensively. The interactive
compression problem [2] is the analog of the data compression problem in the interactive
setting: it asks whether the transcript of any interactive protocol can be compressed to
its information content. Roughly speaking, compressing a protocol Π means constructing

∗ Rotem Oshman is supported by the Israeli Centers of Research Excellence (I-CORE) program (Center
No.4/11) and by BSF Grant No. 2014256.

† Dafna Sadeh is supported by the Israeli Centers of Research Excellence (I-CORE) program (Center
No.4/11) and by BSF Grant No. 2014256.

© Gillat Kol, Rotem Oshman, and Dafna Sadeh;
licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 31; pp. 31:1–31:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DISC.2017.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Interactive Compression for Multi-Party Protocols

a different protocol Π′, hopefully with smaller communication, which computes the same
function. The interactive compression problem for the two players setting attracted a lot of
attention in recent years, resulting in several compression protocols for different settings [10,
2, 6, 4, 7, 3, 14, 12, 16].

Interactive compression can be viewed as a tool for protocol design: one first designs a
communication-inefficient protocol, making sure only that it does not reveal a lot of inform-
ation about the inputs; interactive compression then allows us to convert the protocol into
a communication-efficient one.

In this work we initiate the study of distributed interactive compression. We show how
to compress a given k-party communication protocol, in order to reduce its communication,
and we also show the limitation of such compression schemes.

We study the shared blackboard model of multi-party communication. In this classical
model, the players communicate over a “shared blackboard”, taking turns to write messages
on the board. All players can see the contents of the board, and the player whose turn it
is to write next is determined by what was written so far. The model can be viewed as
a single-hop radio network: when a player sends a message, the message is immediately
received by all the other players.

Measuring information content. As discussed above, in the case of one-way communica-
tion, the information content of the data D we wish to compress is measured by its Shan-
non entropy, H(D). The analog of entropy for interactive communication is information
cost [8, 1, 2], which measures how much information the players reveal about their inputs.

The precise notion we work with here is called external information cost: it measures, in
mutual information, the amount of information an external observer learns about the players’
inputs from observing the transcript of the protocol. Formally, if X1, . . . ,Xk are random
variables denoting the inputs to the k players, sampled according to the joint distribution
µ, and Π(X1, . . . ,Xk) is a random variable denoting the transcript of the protocol Π when
it is run with the inputs X1, . . . ,Xk, then the external information cost of the protocol Π
with respect to the distribution µ is defined as

IC
µ

(Π) = I(Π(X1, . . . ,Xk); X1, . . . ,Xk),

where I denotes the mutual information, I(A; B) = H(A)−H(A|B) = H(B)−H(B|A).
We mention that in the two-player case, another notion of information cost, called in-

ternal information cost, was studies extensively. This notions measures the amount of
information that the players learn about each other’s inputs from their interaction. Internal
information cost differs from external information cost when the players’ inputs are not in-
dependent, because in this case the players potentially know something about each other’s
inputs just by looking at their own inputs, while an external observer has no such prior in-
formation. However, it is unclear how to adapt the definition of internal information to the
multi-player setting in a meaningful way (and indeed, this is an interesting open problem).
In the sequel, when we say “information cost”, we mean external information cost.

1.1 Our Results
1.1.1 A compression protocol in the shared blackboard model
We show that a protocol with information cost I can be compressed down to Õ(I ·k) bits of
communication, where the Õ-notation hides polylogarithmic factors in I, k, and the original
communication cost of the protocol.

G. Kol, R. Oshman, and D. Sadeh 31:3

What does it mean to “compress” a protocol? As in the case of non-interactive data
compression, we give a compression scheme and a decoding function dec. Given any protocol
Π, we can apply the compression scheme to obtain a compressed protocol Π′ (hopefully with
less communication), and we can apply the decoder dec to Π′’s transcripts (and its public
randomness) to extract from them transcripts of Π. Our compression has some error: for
any input X, the transcript we extract from Π′ on X is close in distribution to the transcript
of Π on X.

More formally, let πX be the distribution of the transcript of Π on a specific input X,
and let dec(π′X) be the distribution of the extracted transcript obtained by running Π′ on
X and then applying the decoding function dec. Then our compression result can be stated
(slightly informally) as follows:

I Theorem 1 (Compression in the Shared Blackboard Model, Informal). Let ρ > 0 and k ∈ N.
Let Π be a randomized shared blackboard protocol between k players, and let µ be a joint
distribution over the inputs for the players in Π. Then there exists a randomized protocol Π′
in the shared blackboard model satisfying the following properties:
1. The worst case communication complexity of Π′ is Õ(k · ICµ(Π)/ poly(ρ)).
2. There exists a deterministic function dec that given a transcript of Π′, outputs a corres-

ponding transcript of Π, such that for any global input X we have SD(πX , dec(π′X)) ≤ ρ.

Here, SD(µ, η) = supA⊆Ω |µ(A) − η(A)| denotes the statistical distance between the distri-
butions µ, η over the universe Ω, and µ(A), η(A) denote the probability of event A under µ
and η respectively.

Our compression scheme is based on the beautiful two-player compression scheme of [2]
for external information, but we face several non-trivial challenges in adapting the scheme
to work with multi-player protocols.

1.1.2 Compression lower bound
Our compression scheme achieves communication Õ(I ·k). For any compression scheme, the
information cost IC(Π) is a lower bound on the communication of the compressed protocol,
as any bit communicated by the protocol can give at most one bit of information about
the inputs. However, it is natural to ask whether the blowup by a factor of k in the
communication complexity of our above compression result is necessary, and we show that
indeed it is: there is a communication protocol with information cost I, which cannot be
compressed to a protocol that uses less than Ω̃(k · I) bits of communication. This rules out
the existence of a better compression scheme than the one suggested by Theorem 1, up to
logarithmic factors.

To show this lower bound, we construct a function f on k inputs, and show that f can
be computed by a protocol Π with information cost I. In contrast, we prove an Ω̃(k · I)
lower bound on the distributional communication complexity of f , that is, we show that no
protocol with communication cost Õ(k · I) can compute f . This gives a separation between
information and communication in the distributed multi-player setting. Observe that this
also means that the protocol Π, which has information cost I, cannot be simulated by a
protocol with communication complexity less than Ω̃(k · I), because this would give us a
low-communication protocol for solving f .

I Theorem 2. Let I, k ∈ N. There exists a function f(X1, . . . , Xk) on k inputs, and a joint
distribution µ over the inputs X = (X1, . . . , Xk) for f , such that the following hold:
1. There exists a deterministic communication protocol Π with ICµ(Π) = I for which the

output of Π(X) is f(X) for every X ∈ supp(µ).

DISC 2017

31:4 Interactive Compression for Multi-Party Protocols

2. Any randomized (public coin) communication protocol Π′ satisfying

Pr[Π′(X) outputs f(X)] ≥ 0.99,

must communicate Ω̃(k · I) bits on average. Here the error probability and the average
communication are over inputs X drawn from µ and the randomness used by Π′,

We sketch the proof in Section 4.
A gap of Ω̃(k) between information and communication in the shared blackboard model

was first shown in [5], where it is shown that the And function on k input bits has a
protocol with information cost O(log k), but any protocol that computes and with high
probability communicates at least Ω(k) bits. However, this leaves open the possibility
that the difference is additive in k: that is, it could conceivably be that every protocol
Π can be compressed to a protocol with communication complexity Õ(I + k). Indeed, con-
sider the Disjointness problem, Disjn,k, where each player i gets a set Xi ⊆ [n], and we
want to determine if

⋂
iXi = ∅. We can view Disjm,k as the OR of n instances of And:

Disjn,k(X1, . . . , Xk) =
∧n−1
j=0

∨k
i=1 ¬Xi

j . It is shown in [5] that Disjn,k has information
Θ(n log k) and communication cost Θ̃(n log k + k) in the shared blackboard model, so even
though And exhibits a gap of k/ log k between communication and information, somehow
“many instances of And” no longer exhibit the same gap. Nevertheless, Theorem 2 above
shows that compression to Õ(I+k) is impossible in general, so Disjn,k is the exception and
not the rule.

1.2 Organization of the Paper

The remainder of the paper is organized as follows. In Section 2, we review the basic
notions of communication complexity and information theory required to state and prove
our compression results. In Section 3 we sketch the compression scheme; for lack of space,
some technical details are omitted here, and will appear in the full version of the paper.
Finally, in Section 4 we describe our compression lower bound.

2 Preliminaries

Notation. We use bold-face letters to denote random variables. For variables
A1, . . . ,A` with joint distribution µ, we let µ(Ai) denote the marginal distribution of Ai,
and µ(Ai |Aj = aj) denote the distribution of Ai conditioned on Aj = aj (and similarly
for more variables). For a string S, we let |S| denote the length of S.

Communication complexity. For a protocol Π in the shared blackboard model, we define
the communication complexity of Π, denoted CC(Π), as the worst-case number of bits that
are written on the board in any execution of Π. We say that Π solves a problem P :
X k → Y if for any input X = (X1, . . . , Xk) ∈ X k, the probability that Π’s output on X

is P (X) is at least 2/3. The communication complexity of a problem P , denoted CC(P),
is the minimum communication complexity of a protocol that solves P . We also study the
distributional communication complexity of P , denoted CCµ(P), where now the minimum
is taken over protocols that only need to succeed with high probability over inputs drawn
from the distribution µ.

G. Kol, R. Oshman, and D. Sadeh 31:5

Information theory. We require the following notions.
For a pair of random variables X,Y with joint distribution µ, we denote by Iµ(X; Y) =

H(X)−H(X|Y) themutual information between X and Y (here H is the Shannon entropy).
We omit the distribution µ when clear from the context.

For a pair of distributions p, q over the same domain, we denote by D (p ‖ q) the KL
divergence between p and q, given by D (p ‖ q) = Ex∼p

[
log
(
p(x)
q(x)

)]
. Mutual information

and KL divergence satisfy: I(X; Y) = Ex∼µ(X) [D (µ(Y |X = x) ‖ µ(Y))], where µ is the
joint distribution of X,Y , µ(X) (resp. µ(Y)) is the marginal distribution of X (resp. Y),
and µ(Y |X = x) is the distribution of Y conditioned on X = x. Intuitively, the mutual
information measures the differences between the distribution of Y when we know X, and
the prior distribution of Y .

Information cost. We will use the following measure of the information revealed by an
interactive protocol.

I Definition 3. The information cost of a (private coin) protocol Π over random inputs
X = X1, . . . ,Xk drawn according to a joint distribution µ, is defined as

IC
µ

(Π) = I
µ
(Π; X1, . . . ,Xk),

where Π is a random variable indicating the transcript of Π on inputs X1, . . . ,Xk.

3 Compression for Multi-Party Protocols: a Proof Sketch

Suppose we are given a protocol Π, with communication CC = CC(Π) and information cost
I = ICµ(Π) on some input distribution µ. We want to construct another protocol, Π′, which
on a given input generates a transcript of Π, but with communication cost that depends only
polylogarithmically on CC(Π), and mainly depends on the information cost I of Π and on
the number of players, k. We follow the framework introduced in [2] for two-party protocols.

All compression schemes rely on the intuition that if ICµ(Π) = Iµ(Π; X) is small, then
someone who does not know the input X can sample “close to” the correct distribution Π
even without knowing the input X. For example, in the extreme case where the information
cost is 0, transcript is independent of the inputs and we can sample it from its correct
distribution without knowing the inputs. More generally, if the information cost is very
small, O(1) bits, then we can sample the transcript without looking at the inputs, and have
the players look at their inputs and “correct the mistakes” afterwards without using a lot
of communication (the manner in which we do this is described in Sections 3.3 and 3.4).
When the protocol has high information cost, IC(Π) = ω(1), we reduce to the case of
constant information cost by chopping the transcript up into pieces that each reveals a
constant amount of information: this way, we get O(IC(Π)) “pieces” that each reveal Θ(1)
information, and we can compress each “piece” separately.

It is not trivial to “chop up the transcript” into pieces with Θ(1) information cost,
because we may not know a-priori how much information has been revealed at each point.
For example, suppose that player 1 gets two bits of input, a, b ∈ {0, 1}, which are uniform
and independent. If a = 0, then player 1 sends a uniformly random bit, and in this case it
reveals zero information about its input; if a = 1, player 1 sends the bit b, revealing one bit
of information about its input. Only player 1 knows how much information it has revealed,
and in general all the players could behave this way; therefore the players need to cooperate
to cut up the transcript into pieces that each reveal Θ(1) information.

DISC 2017

31:6 Interactive Compression for Multi-Party Protocols

Next we describe more formally what we mean by “the information revealed” up to some
point in the protocol, and how this notion relates to our ability to sample transcripts without
looking at the input.

3.1 The divergence tree

We view the run of Π on an input x = (x1, . . . , xk) as a binary tree representing all possible
transcripts of Π. Since Π is randomized, it induces a distribution πx on the leafs of the
tree; our goal is to sample a leaf of the tree (that is, a transcript of Π) from a distribution
that is close to πx, but using as little communication as possible. In the sequel we freely
interchange transcripts with nodes of the transcript tree. For convenience we introduce the
following short-hand notation: π≤r, π<r denote the distribution of the first r or the first
(r − 1) bits of Π, respectively. To denote a distribution η conditioned on an event of the
form A = a, we write η|a, and for a specific value y, we write its probability under η|a as
η(y|a). (When we condition on multiple values we write, e.g., η|a, b).

At each node v of the tree, there is some player O(v) whose turn it is to speak when
we reach node v. We call this player the owner of node v. The two children of node v
correspond to the case where player O(v) writes 0 and 1 on the board, respectively.

The owner O(v) of v knows the correct distribution over children of v induced by πx,
because this distribution depends only on its input (the player determines which child we
will go to by speaking). We denote by cvx this “correct” distribution; formally, for each
b ∈ {0, 1}, if v is a node at depth r, then

cvx(b) = Pr [Π≤r+1 = v · b |Π≤r = v,X = x] .

(Note that actually this probability only depends on the input xO(v) of the player that owns
v, because what a player decides to write on the board depends only on its input and what
was written so far.)

The other players and the observer do not know cvx, because they do not know x (only
their own private input). But they know the prior distribution cv on the children of node
v, which is simply the probability over the protocol’s randomness and the input, that player
O(v) will write 0 (resp. 1), given that we reached node v. Formally, for b ∈ {0, 1},

cv(b) = Pr [Π≤r+1 = v · b |Π≤r = v] =
∑
x

(
Pr
µ

[X = x |Π≤r = v] · cvx(b)
)
.

(Here again r is the depth of node v.)
Re-written in short-hand notation, we have

cvx(b) = π≤r+1(vb|v, x), cv(b) = π≤r+1(vb|v) =
∑
x

(µ(x|v)cvx(b)) .

3.2 Relating the information cost to the tree

Intuitively, if Π has low information cost, then the true distribution cvx and the prior cv
should be “close” for most nodes v in the tree corresponding to input x, because the message
each player decides to write on the board does not depend strongly on its input (otherwise
it would reveal a lot of information about the input). And this is made formal by recalling
that ICµ(Π) = Iµ(Π; X), and using the chain rule and the relationship between mutual

G. Kol, R. Oshman, and D. Sadeh 31:7

information and divergence to see that

IC
µ

(Π) =
CC(Π)∑
r=1

I
µ
(Πr; X |Π<r) =

CC(Π)∑
r=1

E
v∼π<r

[
E

x∼µ|v
[D (πr|v, x ‖ πr|v)]

]

=
CC(Π)∑
r=1

E
v∼π<r

[
E

x∼µ|v
[D (cvx ‖ cv)]

]
. (1)

So, what we “pay” at each round is the expected divergence between the true distribution cvx
and the prior cv. Call this quantity the divergence cost of v on input x: Dx(v) = D (cvx ‖ cv) .
We extend this to paths p = v0, . . . , vs in the natural way: the cost of the path is the sum
of the costs of the nodes on the path, that is, Dx(p) =

∑s
i=0 D (cvix ‖ cvi

) . By re-arranging
the order of the expectations in (1) we get that ICµ(Π) = Ex∼µ,t∼π|x [Dx(t)], where here t
is a complete transcript, viewed as path from the root of the tree to a leaf. Thus, protocols
with low information cost have on average a low divergence cost on paths from the root to
a leaf, so at most nodes on the path, the true distribution cvx is close to the prior cv in
divergence. We rely on this characterization in our compression scheme.

A key technical ingredient in the compression algorithm is rejection sampling, which we
review below.

3.3 Rejection sampling
Suppose we want to sample from some distribution p, but we only have access to samples
generated from another distribution q. If we know an upper bound M ≥ maxw p(w)/q(w)
on the ratio between p and q, we can use rejection sampling, which works as follows:
1. Generate a candidate sample w ∼ q.
2. Accept w with probability p(w)/(M · q(w)), and otherwise reject w and try again.
It is not hard to show that the probability that for any w, the probability that w is generated
by the procedure above is exactly p(w): informally, we sample from q, but then “self-correct”
by accepting the sample only with probability p(w)/(M · q(w)), so the probability that the
candidate is w and we accept it is q(w) · (p(w)/(Mq(w)) = p(w)/M . Also, at each attempt,
the probability that we accept the candidate is

∑
w

(
q(w) · p(w)

Mq(w)

)
= 1
M

∑
w

p(w) = 1
M
,

so the distribution generated given that we accepted is exactly p. Moreover, the number of
attempts required until we accept a candidate is O(M) in expectation.

For our purposes we use rejection sampling as follows:
The distribution q that we know how to sample from is the prior distribution π on
leafs (or later on, internal nodes) of the tree, which all players know, because it does
not depend on the input. (This is the distribution where at each node v we sample a
child from the prior cv.) We can sample from this distribution simply using the public
randomness.
The distribution p that we want to sample from is the true distribution πx on leafs
(obtained by taking cvx at each node v), which is not known to any player.

We will show that the players can approximate the ratio πx(t)/π(t) for any leaf (or internal
node) t. This allows us to first sample t ∼ π from the prior, and then reject it with
approximately the right probability πx(t)/(Mπ(t)), where M is an appropriately chosen

DISC 2017

31:8 Interactive Compression for Multi-Party Protocols

normalization factor. In this way we generate leafs from a distribution that is close to the
true distribution πx(t).

(A major difference between our work and [2] is that in [2], where there are only two
players, they do not need to explicitly compute the ratio πx(t)/π(t); they use a clever trick
that rejects with the right probability. For a general number of players k ≥ 2, we can no
longer do this, and we must compute an approximation of the ratio and reject with that
probability.)

To instantiate this outline, we must answer the following questions:
1. What is a good upper bound M ≥ maxt πx(t)/π(t)? Actually, we will not be able to find

a perfect bound, only a high probability bound which holds for most t.
2. How do we compute or approximate the ratio πx(t)/(Mπ(t)) ?

3.4 Compressing protocols with constant information cost
To start with, suppose we have a protocol Π with ICµ(Π) = I = O(1), that is, a typical
path from the root to a leaf of Π incurs only constant divergence cost. In this case we can
compress Π to a protocol Π′ with communication 2O(I). This initially looks very bad, but
since I = O(1), in fact the communication cost of Π′ is also 2O(1) = O(1), regardless of the
communication cost of the original protocol Π.

Recall that the divergence between two distributions p, q is defined as

D (p ‖ q) = E
w∼p

[
log p(w)

q(w)

]
,

that is, D (p ‖ q) is the expected log-ratio between p and q when we sample from p. This
means that if D (p ‖ q) = d and we sample w ∼ p, then with good probability we will have
p(w)/q(w) ≤ 2O(d) [4]. Therefore we can use 2O(d) = 2O(I) as our (high-probability) upper
bound M in the rejection sampling scheme, which leads to an expected communication
cost of 2O(I), times the cost of a single attempt of rejection sampling (that is, sampling a
candidate using public randomness, and then deciding whether to accept it).

It remains to describe how we approximate the acceptance probability of a leaf t, which
should be πx(t)/(Mπ(t)). Here we use the following observation about k-party protocols,
which generalizes the corresponding observation for two players from [2]: for each player
i, let πix be the distribution where at each node v we select a child with probability cvx if
player i owns node v, and with probability cv otherwise. Each player i can compute πix(t)
for any leaf t. And if we take the product of the πix(t)’s, we get:

k∏
i=1

πix(t) =
CC(Π)−1∏
r=0

(
ctrx(tr+1) · ctr (tr+1)k−1) ,

where tr is the r-th node on the path from the root to t; this is because exactly one player,
the owner of tr, uses ctrx to select a child at tr, and the other players use ctr . Now let
fi(t) = πix(t)/π(t) for each i = 1, . . . , k. Then the product of the fi’s is

k∏
i=1

fi(t) =
∏CC(Π)−1
r=0 ctrx(tr+1) · ctr (tr+1)k−1∏CC(Π)−1

r=0 ctr (tr+1)k
=

CC(Π)−1∏
r=0

ctrx(tr+1)
ctr (tr+1) = πx(t)

π(t) ,

giving us exactly the ratio we want.
Thus, in order to implement the rejection sampling, we need to approximate the product∏k

i=1 fi(t), and use it to get an approximate acceptance probability. We require very good
precision: the approximation needs to be to within a factor (1 ± ε), where ε = O(1/I) (for

G. Kol, R. Oshman, and D. Sadeh 31:9

now, I is constant, but later it will not be). This is not hard: we can estimate the product to
within (1± ε) by estimating

∑k
i=1 log fi(t) to within (1±O(ε)), but first discarding from the

sum terms that have very small absolute value, | log fi(t)| < O(ε/k). Because 2x = 1 +O(x)
for very small x, even if we ignore all the small terms, they only add up to O(ε) in absolute
value, and we still get a (1± ε)-multiplicative approximation.

For the larger terms, log fi such that | log fi| ≥ ε/k, we estimate each one of them to
within (1 ± ε) by dividing the range of possibilities for their absolute value, [ε/k,M], into
intervals of exponentially-increasing width, where each interval is (1 + ε) the size of the
preceding interval. We then have each player i tell us which interval their contribution
log fi(t) lies in, and its sign. Combining all the estimates of the individual contributions, we
come up with a (1± ε)-approximation to the product

∏k
i=1 fi(t).

Using an approximation instead of the exact value of the acceptance probability means
that the rejection sampling does not generate the correct distribution πx. However, we prove
that if we use a (1± ε)-approximation for the acceptance probability, then the distribution
generated is O(ε)-close to πx in statistical distance, so that our compression scheme generates
a distribution that is very close to the correct one. In the shared blackboard model, the cost
of the approximation is O(k log 1/ε) bits of communication.

3.5 Compression for protocols with large information cost

Following [2], compression for protocols with constant information cost can be extended to
protocols with higher information cost as follows: we “chop up” each path in the protocol
tree into segments with divergence cost Θ(1) each. This induces a set of frontiers in the
tree, where each frontier intersects each path from the root at exactly one node. Instead of
directly sampling a complete transcript, which corresponds to directly sampling leaf of the
tree, we sample the transcript in segments: first we sample a node from the first frontier,
then a node from the second frontier, and so on, until we reach a leaf. Because the divergence
cost of each segment is constant, we can use rejection sampling as outlined above for constant
divergence cost. And since each frontier “consumes” Ω(1) of the total divergence cost of the
path, and we know that the total divergence cost is O(I) with high probability, the total
number of steps is O(I).

Our overall compression scheme is as follows: we start from the root of the tree, and
while we have not yet reached a leaf, we sample a node from the next frontier, using rejection
sampling to sample very close to the correct distribution induced by πx. The cost of each
such step is Õ(k), so the total cost of sampling a leaf of the tree is Õ(I · k).

Next we give a more precise definition of the frontiers, and show how we can sample a
node from the next frontier.

3.5.1 Frontiers

The definition of a frontier is subtle (and differs from [2] significantly; having only two
players makes life much easier). The main question is: how can we define the frontier in a
way that is precise enough so that each path segment between two frontiers has divergence
cost Θ(1), but on the other hand allows us the players to find the frontier using only Õ(k)
communication? In particular, we cannot afford to have the players send real numbers with
high precision. So how can we identify the point where together the players’ divergence cost
has reached Θ(1)?

DISC 2017

31:10 Interactive Compression for Multi-Party Protocols

Fix a parameter β, which is the target divergence cost we want each path segment
between two frontiers to have. Denote by Di(v, w) the individual divergence cost of player
i, defined as the sum of the divergence costs on the path from v to u, but only at nodes
owned by player i. Then by definition, D(v, w) =

∑k
i=1 Di(v, w). Moreover, each player can

compute Di(v, w), because it knows the divergence cost at nodes it owns: it knows both the
true distribution and the prior, and can compute the divergence between them. Finally, let
D̃i(v, w) = bDi(v, w)/(β/k)c denote the player i’s divergence cost Di(v, w) divided by β/k
and rounded down to the nearest integer.

Formally, we define the frontier of a node v in the tree to be the Fvx set of nodes w such
that
1. For each strict prefix w′ of the path from v to w we have

∑k
i=1(β/k)D̃i(v, w′) < β, but

2. For the full path we have
∑k
i=1(β/k)D̃i(v, w) ≥ β.

That is, the frontier is the first point on the path where the sum of the divergence costs of
the players, each rounded down to the nearest β/k, first exceeds β.

Each player can compute its own contribution D̃i(v, w) given v and w and announce a
constant multiplicative approximation of it. This is good enough to ensure that for any
frontier node w ∈ Fvx we have D(v, w) = Θ(β).

(In [2], the frontier is defined as the point where one of the two players first reaches
divergence cost Di(v, w) ≥ β. Since there are only two players, this also means that the
total divergence cost is Θ(β). This has the advantage that in order to check if a node is on
the frontier, all we need to do is ask the two players whether they have individual divergence
cost at most β or not, costing a single bit per player. In our case, if we tried to take this
approach, the total divergence cost could be as high as Θ(kβ), which we cannot afford, as
our probability of accepting in the rejection sampling would then be only 2−Θ(kβ). Thus,
we must define the frontier by the total divergence cost directly, and this leads to technical
complications.)

We define two distributions on the frontier Fvx: the first, Fvx, is the “correct” distribution
induced by πx, where we sample a path from v to a leaf, t ∼ πx|v, and cut the path at the
(unique) point where it intersects Fvx. The second distribution, denoted Fv, is the prior
distribution, induced by the prior π in the same way.

3.5.2 Sampling from the frontier
Suppose we are currently at node v in the tree, and we want to sample from the correct
distribution Fvx on the frontier at node v. Let us recall the ingredients we need to sample
from the frontier using rejection sampling:
1. We need to sample a frontier node w ∼ Fv,
2. We need to compute or approximate the acceptance probability, Fvx(w)/(MFv(w)).
We already saw how to approximate the acceptance probability in Section 3.4. Here it
becomes important to set the precision parameter ε to O(1/I), because we will be passing
through O(I) frontiers, and the error adds up; we can only afford an error of O(1/I) per
frontier to get constant error in the end.

It remains to describe how we can sample a frontier node from the prior, w ∼ Fv. To
do this, we first sample a leaf t ∼ π|v, using public randomness (since π|v is known to all
players). Next, we find the point where the frontier Fvx intersects the path from v to t, and
return this node. In order to find the cut-point of the frontier we use binary search (as in [2]),
to find the first node w on the path from v to t where we have

∑k
i=1(β/k)D̃i(v, w) ≥ β.

The total cost of sampling from w ∼ Fv is bounded by log CC times the cost of ap-
proximating

∑k
i=1(β/k)D̃i(v, w) ≥ β to within a constant multiplicative factor ε, which is

O(k log(k/ε)) bits.

G. Kol, R. Oshman, and D. Sadeh 31:11

4 Compression Lower Bound

In this section we present the AndTreeh function, parameterized by h, with low information
cost, O (h log k), but high communication cost, Ω̃ (k · h). This function serves to separate
information from communication in the shared blackboard model, ruling out the existence
of a compression scheme whose cost does not depend nearly-linearly on k.

4.1 The AndTree problem
The input to AndTreeh is represented by a complete binary tree of depth h; at each node
u of the tree, we embed an instance of And, with each player i receiving a bit Xi

u. We
represent each node of the tree by the path from the root, with the root denoted λ, a left
child appending zero to its parent, and a right child appending one to its parent.

For a tree T , let leaf(T) be the leaf obtained by starting at the root, turning left at each
node u such that

∧
i Xi

u = 0, and turning right at each node u such that
∧
i Xi

u = 1. We
define the output of the AndTreeh problem to be the parity of this leaf: AndTreeh(T) =
parity(leaf(T)).

4.2 The information cost of AndTree
A single instance of And can be solved with O(log k) bits of information under any input
distribution: simply have the players announce their inputs one-by-one, until we either find
a player with input 0, in which case we halt and output 0, or all players have announced
that their input is 1, in which case we output 1. This protocol has only k + 1 possible
transcripts: if all players got 1, the transcript is 1k, and otherwise the transcript is 1i0,
where i is the index of the first player that got 0. Therefore the entropy of the transcript is
O(log k), meaning that the information cost of the protocol is also O(log k).

To solve a full instance of AndTree, we start at the root, and use the protocol above to
solve each node, moving down to the correct child. When we arrive at a leaf, we output its
parity. The information cost is O(h log k) under any input distribution.

4.3 The communication complexity of AndTree
Next we must show that no randomized protocol with o(k · I) communication can solve
AndTree with small error in the worst-case. We show a slightly stronger lower bound: we give
an input distribution µ, and show that no randomized protocol with o(k · I) communication
can solve AndTree with small average error when inputs are drawn from µ.

For the analysis, we divide the tree into R layers, each of depth d = Θ(log k+ log h). We
define the input distribution µR on an R-layer tree as follows: for each node u of the tree,
we draw a random player P (u) uniformly and independently. The input of player P (u) is
drawn uniformly, Bu ∼ U({0, 1}); the other players receive 1. Thus, under µR, for each
node u we have

∧
i Xi

u = X
P (u)
u = Bu.

It is convenient to represent an r-layer tree as T = (S,R1, . . . , R2d), where S is the top
layer (i.e., the first d levels of the tree), and R1, . . . , R2d are the subtrees starting at the
leafs of S.

I Theorem 4. For sufficiently small constant ε, the randomized public-coin communication
complexity of AndTreeh is CC(AndTreeh, ε) = Ω (R · k), where R = Θ(h/(log k + log h)).

We prove the theorem by induction on the number of layers: for each r ≤ R, given an
protocol with communication C and error ε for the r-layer tree, we “peel off” a layer, and

DISC 2017

31:12 Interactive Compression for Multi-Party Protocols

Figure 1 Embedding X in an r-layer tree

construct a protocol with communication C − Θ(k) and error ε + Θ(1/R) for the (r − 1)-
layer tree. If we started out with communication less than c ·R ·k for some sufficiently small
constant c, then eventually we obtain a protocol with zero communication and constant
error for the one-layer tree, which is impossible.

The induction step. Let d = β(log k+log h) be the height of a layer, where β is a constant
whose value will be fixed later.

Given a protocol Π for the r-layer tree AndTreer·d, with communication cost CC(Π) = C

and distributional error ε on µr, we construct a new protocol, Π̃, for (r − 1)-layer trees.

Embedding in an r-layer tree

The input to Π̃ is an (r − 1)-layer tree X, but the protocol Π that we are given takes as
input r-layer trees. How can we use Π to solve our input, which has one fewer layer? The
answer is that we embed our (r − 1)-layer input in a larger r-layer tree T , the rest of which
we generate using public randomness. We design the embedding so that the answer on the
input X can be extracted from the answer on T .

More formally, we embed X in an r-layer tree by publicly generating a random “top
layer”, S ∼ µ1, and placing X as the J -th subtree of S, where J is the “correct” leaf of S,
obtained by solving the And at each node and turning left when the answer is 0 and right
when the answer is 1. Note that by definition, parity(J) = AndTree(S).

The other 2d − 1 subtrees, placed under the leafs of S that are not the “correct” leaf
J , are generated publicly and independently from µr−1. Let T1, . . . ,T2d denote these
subtrees. Then formally, what we said above is that we set TJ = X, and we sample
(T1, . . . ,TJ−1,TJ+1, . . . ,T2d) ∼ (µr−1)2d−1.

Let T = (S,T1, . . . ,T2d) be the resulting r-layer tree.

I Property 5. Observe that since AndTreed(S) = parity(J), and we set TJ = X, we have
AndTree(r−1)d(X) = AndTree(r−1)d (TJ) = AndTreerd(T)⊕ parity(J).

We can now solve our (r − 1)-layer input X by calling Π on the r-layer tree T that we
constructed, but this is not enough: for the induction step we need to construct a protocol
with less communication than Π. Our goal is therefore to simulate the execution of Π on
T , but using less communication than Π requires. If we can do this, then we can solve
AndTree(r−1)d using less communication.

G. Kol, R. Oshman, and D. Sadeh 31:13

Saving Θ(k) bits of communication

We split the transcript of the original protocol Π into two parts, Π = Π1Π2, where the
prefix Π1 is of length |Π1| = αk for a constant α whose value will be fixed later, and the
suffix Π2 consists of the rest of the transcript.

In Π̃, instead of sampling Π1 “correctly” by having each player look at their input
and send the messages indicated under Π, we fix a prefix m1 of length αk, and have the
players sample Π2 as though they had said m1; that is, the transcript of Π̃ is the suffix
Π ∼ π2|Π1 = m1,J = j. We need to show that there is a “good” choice for m1 and j, under
which the suffix has small error probability on our real input X.

I Definition 6. We say that a pair (m1, j) is good, where m1 ∈ {0, 1}αk , j ∈ [2d], if the
following holds:
1. D (µr−1(Tj |Π1 = m1,J = j) ‖ µr−1(Tj)) ≤ 1

100R2 , and,
2. Pr [Π errs |Π1 = m1,J = j] ≤

(
1 + 1

R

)
· ε.

Note that since Tj is independent of J , the first condition can also be written as:

D (µr−1(Tj |Π1 = m1,J = j) ‖ µr−1(Tj |J = j)) ≤ 1
100R2 .

I Lemma 7. There exists a good pair (m1, j).

Before proving that there exists a good setting for (m1, j), let us show that if (m1, j) is
good, then when we sample Π2 ∼ π2|Π1 = m1,J = j we have small error on our (r−1)-layer
input, Tj = X.

I Lemma 8. If (m1, j) is good, then PrX∼µr−1 [Π errs on X | J = j,Π1 = m1] ≤
(
1 + 1

R

)
·

ε+ 1
10R .

Proof sketch. Let µ′ be the distribution µr−1(Tj |Π1 = m1,J = j) of the j-th subtree,
given Π1 = m1 and J = j. Let E = E(X) be an indicator for the event that the output
produced by the suffix Π2 is incorrect on X. Finally, let π2 be the distribution of Π2 given
Π1 = m1,J = j when the input is X ∼ µr−1, and let π′2 be the distribution of Π2 given
Π1 = m1,J = j when the input is X ∼ µ′.

Re-stated in this notation, the lemma asserts that Prπ2 [E] ≤
(
1 + 1

R

)
· ε + 1

10·R , and
Condition 2 of Definition 6 says that Prπ′2 [E] ≤

(
1 + 1

R

)
· ε. Thus, to show the lemma, we

show that π2(E) and π′2(E) are “close”, and therefore the expectation of E cannot differ by
much between them. We get the required “closeness” from the first condition of 6, which
bounds the divergence between the two distributions. J

I Corollary 9. Let Π̃ be the protocol defined by taking a good pair (m1, j), embedding the
input in location Tj, sampling the suffix Π2 from its distribution given Π1 = m1,J = j (the
missing parts of the input are sampled from public randomness according to m1 and j) and
returning (Π′2s output)⊕ parity(S). Then PrX∼µr−1

[
Π̃ errs on X

]
≤
(
1 + 1

R

)
· ε+ 1

10R .

Now let us sketch the proof that with high probability there is a good pair (m1, j).

Proof sketch of Lemma 7. We show that the probability over M1 and J that either the
first or the second condition of Definition 6 fails to hold is smaller than 1, which means that
there is a pair (m1, j) satisfying both conditions.

First consider the first condition, which requires that m1 does not reveal a lot of inform-
ation about the subtree Tj . Since m1 is short, only αk bits, the total information it reveals
about all the sub-trees T1, . . . ,T2d together is at most O(αk) with high probability. The sub-
trees T1, . . . ,T2d are initially independent, and information has the super-additivity property:

DISC 2017

31:14 Interactive Compression for Multi-Party Protocols

if A1, . . . ,Am are independent, then for any B, I(B; A1, . . . ,Am) ≥
∑m
i=1 I(B; Ai). In our

case this means that if we choose a uniformly random index J ∈
{

1, . . . , 2d
}
which is inde-

pendent of m1, the information m1 reveals about TJ is at most O(αk)/2d = O(αk)/ poly(k),
which is negligible.

Unfortunately, the choice of the index J where we embed our input is not independent
of m1: there is a hypothetical possibility that the players can discover where the input is
embedded by computing the correct leaf of the top layer S (which is how we defined J). If
they can do this, then they can focus all their attention on the correct sub-tree TJ , and m1
can reveal a lot of information about it. We need to show that since m1 is short, the players
cannot discover J .

To capture the fact that the players cannot learn J , except with small probability, we
use the notion of min-entropy: for a random variable A ∼ η over domain Ω, the min-entropy
of A is defined as H∞(A) = minω∈Ω log 1

η(ω) . The min-entropy corresponds to our ability to
guess the correct value of A (unlike Shannon entropy).

We use a lemma from [13] which generalizes the super-additivity of information to vari-
ables with high min-entropy, and asserts that

E
J|Π1=m1

[D (µr−1(TJ |Π1 = m1,J) ‖ µr−1(TJ |J))]

≤ 2−H∞(J|m1) · D
(
µ2d

r−1(T1, . . . ,T2d |Π1 = m1) ‖ µ2d

r−1(T1, . . . ,T2d)
)
. (2)

To use this lemma, we must show that with high probability the min-entropy H∞(J |m1)
of the correct leaf given the message m1 is high. This holds because m1 consists of only αk
bits of communication, which allows only an α-fraction of players to speak; for most nodes
u in the top layer S, the “influential” player P (u), whose input determines the correct child
of u, does not get to say anything at all. Therefore the correct child at most nodes remains
uniformly random even after seeing the message m1, and the correct leaf J retains high
min-entropy.

For the second condition of a good pair, we know that the overall error of Π is ε, and
therefore, by Markov and the law of total expectation,

Pr
Π1,J

[
Pr [Π errs | J ,Π1] >

(
1 + 1

R

)
ε

]
<

ε

ε(1 + 1/R) < 1− 1
2R.

A union bound over the probabilities that the first and second condition fail to hold yields
the lemma. J

Proof of Theorem 4. Suppose Π is a protocol for AndTreeh with error 1/100 and com-
munication C. Let R = bh/dc − 1. Using Corollary 9, we construct a series of protocols
Π0, . . . ,ΠR, where ΠR = Π is the protocol we started with, and for each r > 0, the protocol
Πr solves AndTreeh−(R−r)d with error at most εr, and its communication cost is C − αrk.
Applying Corollary 9 R times, we get that the final protocol Π0, solves AndTreeh−Rd with
error

ε0 <

(
1 + 1

R

)R(
εR +R · 1

10R

)
< e ·

(
1

100 + 1
10

)
< 1/3.

Since h − Rd > 0 by definition of R, the problem AndTreeh−Rd cannot be solved with
error 1/3 with no communication (indeed, we know that the communication required is
Ω(k) to solve even a single instance of And), and therefore we must have C > αRk =
Ω
(

h
log k+loghk

)
. J

G. Kol, R. Oshman, and D. Sadeh 31:15

We have now shown that for any sufficiently large h, the AndTreeh problem can be solved
using O(h log k) bits of information, but requires Ω(hk/(log k+log h)) bits of communication.
This shows that our compression scheme is optimal up to polylogarithmic factors in k and
the input size.

References
1 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics

approach to data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–
732, 2004.

2 Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive
communication. In STOC, pages 67–76, 2010.

3 Balthazar Bauer, Shay Moran, and Amir Yehudayoff. Internal compression of protocols to
entropy. In APPROX/RANDOM, pages 481–496, 2015.

4 Mark Braverman. Interactive information complexity. In STOC, pages 505–524, 2012.
5 Mark Braverman and Rotem Oshman. On information complexity in the broadcast model.

In PODC, pages 355–364, 2015.
6 Mark Braverman and Anup Rao. Information equals amortized communication. In FOCS,

pages 748–757, 2011.
7 Joshua Brody, Harry Buhrman, Michal Koucký, Bruno Loff, Florian Speelman, and

Nikolay K. Vereshchagin. Towards a reverse newman’s theorem in interactive information
complexity. In CCC, pages 24–33, 2013.

8 Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Chi-Chih Yao. Informational
complexity and the direct sum problem for simultaneous message complexity. In FOCS,
pages 270–278, 2001.

9 Robert M Fano. The transmission of information. Massachusetts Institute of Technology,
Research Laboratory of Electronics, 1949.

10 Prahladh Harsha, Rahul Jain, David A. McAllester, and Jaikumar Radhakrishnan. The
communication complexity of correlation. IEEE Transactions on Information Theory,
56(1):438–449, 2010.

11 David A Huffman. A method for the construction of minimum redundancy codes. proc.
IRE, 40(9):1098–1101, 1952.

12 Gillat Kol. Interactive compression for product distributions. In STOC, pages 987–998,
2016.

13 Gillat Kol and Ran Raz. Interactive channel capacity. In STOC, pages 715–724, 2013.
14 Sivaramakrishnan Natarajan Ramamoorthy and Anup Rao. How to compress asymmetric

communication. In CCC, pages 102–123, 2015.
15 C. E. Shannon. A mathematical theory of communication. The Bell Systems Technical

Journal, 27:July 379–423, October 623–656, 1948.
16 Alexander A. Sherstov. Compressing interactive communication under product distribu-

tions. In FOCS, pages 535–544, 2016.

DISC 2017

	Introduction
	Our Results
	A compression protocol in the shared blackboard model
	Compression lower bound

	Organization of the Paper

	Preliminaries
	Compression for Multi-Party Protocols: a Proof Sketch
	The divergence tree
	Relating the information cost to the tree
	Rejection sampling
	Compressing protocols with constant information cost
	Compression for protocols with large information cost
	Frontiers
	Sampling from the frontier

	Compression Lower Bound
	The AndTree problem
	The information cost of AndTree
	The communication complexity of AndTree

