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Abstract
It is shown that generally higher order process calculi cannot be interpreted in name-passing
calculi in a robust way.
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1 Introduction

Many process calculi have been proposed [19]. It is important to investigate the relative
expressiveness between them [29, 25, 18, 20, 23, 10, 8]. It is even more important to study
the relative expressiveness between classes of these models [5]. Positive results can tell us
which model plays a foundational role in interaction theory and which acts as a prototype in
applications. A negative result often reveals a deep distinct property of a model we probably
were not aware of beforehand.

There are basically three classes of interactively Turing powerful models characterized
by the content of communication. In the name-passing calculi the messages are channels
(channel names) [16, 28, 22]. The power of this class of process calculi crucially depends on
the ability to pass around private channels. The general view is that the π-calculus is the
“λ-calculus” of concurrency theory [15] and is capable of modelling all kinds of phenomena in
both theory and application [34]. The second class contains higher order process calculi. The
pure process-passing calculus is too weak [5]. The messages in higher order process calculi are
normally abstractions [25, 26, 31, 32]. A receiving process can instantiate the parameters of
the received abstraction with its own private channels. A seemingly exception is Thomsen’s
CHOCS [29, 30]. However there is a very strong operator in CHOCS, the so-called relabelling
operator [14]. If we think of it the relabelling operator can achieve the effect of instantiations
of abstractions. So in CHOCS process-passing is abstraction-passing in disguise. Concerning
the relative expressive power of the higher order process calculi, it is a popular belief that they
can be completely interpreted in the name-passing calculi. If the messages are neither channels
nor abstractions, they can always be coded up by natural numbers. The class of value-passing
calculi consists of those models whose contents of communications are numbers [13, 14, 11, 12].
It is proved in [5] that value-passing calculi and name-passing calculi are incompatible in
expressive power. This result appears somewhat surprising at first sight. The value-passing
calculi turns out to be very expressive. A great deal of higher order communications can
be interpreted by value-passing communications [3]. More precisely, if in a higher order
process calculus messages may contain neither unbound private channels nor global channels,
then the calculus is a submodel of the standard value-passing calculus [3]. The intuition is
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22:2 Power of Name-Passing Communication

that such messages can be coded up by numbers. Therefore abstraction-passing becomes
value-passing. Moreover the Gödel encoding is bijective. So full abstraction poses no problem.
What we will show in this short paper, by generalizing the proof in [5], is that even such
restricted higher order communications cannot be interpreted by the name-passing calculi in
a faithful manner. This result contributes to a better understanding of the relative expressive
power of the three classes of interaction models.

Section 2 introduces the criteria for relative expressiveness. Section 3 fixes notations for
the π-calculus. Section 4 proves a general negative result about non-interpretability in the
π-calculus. Section 5 derives the main result. Section 6 makes some concluding comments.

2 Relative Expressiveness

Given two models M,N, in what sense is N at least as expressive as M? Different researchers
have different criteria. In logic terms the answer is given by submodel relationship. In
what follows we shall motivate a set of criteria that will uncover our definition of submodel
relationship.

Generally we understand an interpretation of M in N as a binary relation ∝ from the set
of M-processes to the set of N-processes. The interpretation should be total in the sense that
for every M-process M there is an N-process N such that M ∝ N . The interpretation should
not introduce extra divergence. There should not be an infinite internal action sequence
N

τ−→ N0
τ−→ N1

τ−→ N2
τ−→ . . . such that M ∝ Ni for all i ∈ ω if M cannot do any infinite

internal action sequence. More formally this energy respect criterion is introduced in [24].

I Definition 1. The relation ∝ is codivergent if M0 ∝ N0 implies the following: (i) If there
is an infinite internal action sequence N0

τ−→ N1
τ−→ N2

τ−→ . . ., there is some M ′ such that
M

τ−→ M ′ ∝ Ni for some i > 0. (ii) If M0
τ−→ M1

τ−→ M2
τ−→ . . . is an infinite internal

action sequence, there is some N ′ such that N τ−→ N ′ and Mj ∝ N ′ for some j > 0.

Codivergence is a computational property. The unique equality for computation, the
extensional equality, is divergence sensitive. Codivergence is the divergence sensitive property
reformulated in the presence of bisimulation. Bisimulation property [15, 21] is in essence also
about computations [4]. This is particularly evident in the following definition, where =⇒ is
the reflexive and transitive closure of the one step internal transition τ−→.

I Definition 2. The relation ∝ is a bisimulation if the following are valid whenever M ∝ N :
1. If M τ−→M ′, then

a. either N =⇒ N ′ for some N ′ such that M ∝ N ′ and M ′ ∝ N ′, or
b. N =⇒ N ′′

τ−→ N ′ for some N ′′, N ′ such that M ∝ N ′′ and M ′ ∝ N ′.
2. If N τ−→ N ′, then

a. either M =⇒M ′ for some M ′ such that M ′ ∝ N and M ′ ∝ N ′, or
b. M =⇒M ′′

τ−→M ′ for some M ′′,M ′ such that M ′′ ∝ N and M ′ ∝ N ′.
Case (1a) and case (2a) are about deterministic computation whereas case (1b) and case (2b)
are to do with nondeterministic computation. The reader must have noticed that this is the
branching bisimulation defined in [33]. The reason for using branching bisimulation is that
even if we allow the interpretation N of M to carry out some internal adjustments (actions),
we do not allow N to introduce any extra nondeterministic computation step. If N τ=⇒ N ′

for some N ′ not equivalent to N , then N ′ cannot be an interpretation of M . This would lead
to a contradiction if M cannot do any nondeterministic computation. The problem with the
weak bisimulation [14] is that it confuses nondeterministic computation with deterministic
computation. This is a confusion that never happens in computation theory.
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We also need criteria that take into account of interaction. We assume that all external
actions admitted in all our models are carried out at global channels. We say that a process
P is observable at a global channel a if P =⇒ P ′ for some P ′ such that P ′ may perform an
external action at channel a. If N is an interpretation of M then they should have the same
capacity to communicate at any particular global channel, hence the following [17].

I Definition 3. The relation ∝ is equipollent if M ∝ N implies that, for every global channel
a, M is observable at a if and only if N is observable at a.

If M ∝ N then there should be no difference between M and N detectable by equivalent
observers from the respective models. In other words ∝ should be closed under the concurrent
composition operator. Without this closure property it does not make sense to talk about
relative expressiveness for interaction model.

I Definition 4. The relation ∝ is extensional if M |M ′ ∝ N |N ′ whenever M ∝ N and
M ′ ∝ N ′.

Intuitively M is a submodel of N if for each M-process M there is an N-process N that is
equal to M as it were. Obviously the equality on M-processes must be a special submodel
relationship.

I Definition 5. The absolute equality =M on M is the largest binary relation on M-processes
that renders true the following statements.
1. It is reflexive.
2. It is extensional, equipollent, codivergent, bisimilar.
We often omit the subscript in =M. It is important that expressiveness and equality are
defined in completely the same fashion. Otherwise it would not be a submodel relationship,
confer Lemma 7.

I Definition 6. A subbisimilarity from M to N is a binary relation ∝ from M-processes to
N-processes such that the following statements are valid.
1. It is total and semantical, the latter means that M ′ = M ∝ N implies M ′ ∝ N .
2. It is extensional, equipollent, codivergent, bisimilar.
The first condition of Definition 6 is a generalization of the reflexivity condition of Definition 5.
Like reflexivity it is a preliminary requirement. The semantical condition asks for nothing
more than that the relation ∝ should be syntax independent when seen as an interpretation
from M to N. We say that M is a submodel of N, notation M v N, if there is a subbisimilarity
from M to N. The terminology is enforced by the following full abstraction lemma.

I Lemma 7. Suppose ∝ is a subbisimilarity from M to N, and M ∝ N and M ′ ∝ N ′. Then
M = M ′ if and only if N = N ′.

Proof. N =N N
′ implies M =M M ′ since the composition ∝; =N;∝−1 is a subbisimilarity,

where ∝−1 is the reverse relation of ∝. Conversely if M =M M ′ then M ′ ∝ N by the
semantical condition. It follows from M ′ ∝ N ′ and M ′ ∝ N that N =N N

′ because ∝; =N is
a subbisimilarity. J

In the rest of the paper we say that P τ−→ P ′ is a deterministic computation step,
notation P → P ′, if P ′ = P , and that it is a nondeterministic computation step, notation
P

ι−→ P ′, if P ′ 6= P . We will write →+ (→∗) for the (reflexive and) transitive closure of →.
A τ -descendant of T is a term T ′ such that T =⇒ T ′. Every model has an unobservable
process 0 whose every computation is finite and an unobservable process Ω whose every
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22:4 Power of Name-Passing Communication

computation is infinite. It is easy to see that both 0 and Ω can only do deterministic
computation. For every subbisimilarity ∝ it holds that Q = Ω whenever Ω ∝ Q or Q ∝ Ω.
Similarly Q = 0 whenever 0 ∝ Q or Q ∝ 0.

For more motivations to the absolute equality and the subbismilarity, consult [5].

3 Name-Passing Calculus

We fix in this section the target model [16]. Unlike in the original presentation we introduce
syntactical distinction between global channels, private channels and channel variables.

Let Cg be the set of global channels. The elements of Cg are denoted by a, b, c, d, e, f .
Let Cp be the set of private channels. The elements of Cp are denoted by l,m, n, o, p, q.
Let Cv be the set of channel variables. The elements of Cv are denoted by u, v, w, x, y, z.

The set Cg ∪ Cp ∪ Cv will be ranged over by µ, ν, and the set Cg ∪ Cp by α, β. The π-terms
are constructed from the following grammar.

S, T :=
∑
i∈I

µ(x).Ti |
∑
i∈I

µνi.Ti | S |T | (p)T | [µ=ν]T | [µ6=ν]T | !µ(x).T.

In the above definition I is a finite indexing set. We abbreviate
∑
i∈I µ(x).Ti and

∑
i∈I µµ

′
i.Ti

to 0 if I = ∅. If the size of I is one, we get input term µ(x).T and output term µµ′.T . We
abbreviate (p)µp.T to µ(p).T , a(x).T to a.T if x does not appear in T , and a(q).T to a.T if
q does not appear in T . The labeled transition semantics is defined by the following rules.

∑
i∈I α(x).Ti

αβ−→ Ti{β/x}
∑

i∈I αβi.Ti
αβi−→ Ti

T
λ−→ T ′ p/∈λ

(p)T λ−→ (p)T ′

T
αp−→ T ′

(p)T α(p)−→ T ′

S
αβ−→ S′ T

αβ−→ T ′

S |T τ−→ S′ |T ′
S

αp−→ S′ T
α(p)−→ T ′

S |T τ−→ (p)(S′ |T ′)
S

λ−→ S′

S |T λ−→ S′ |T

T
λ−→ T ′

[α=α]T λ−→ T ′

T
λ−→ T ′

[α 6=β]T λ−→ T ′ !α(x).T αβ−→ T{β/x} | !α(x).T

All symmetric rules are omitted. In the third rule p/∈λ means that p does not appear in λ.
In the transition T α(p)−→ T ′ the action α(p) is a bound output action. A π-process is a π-term
in which all channel variables are bounded by input prefix operators and all private channels
are bounded by scope operators. We write L,M,N,O, P,Q for processes. We write λa for
an input or output action at channel a and λa for the complementary action. We will find it
necessary to use the internal choice τ.S+ τ.T defined by (p)(p | p.S | p.T ).

The above semantics is called early semantics in literature. There is also a late semantics
in which instantiation comes after the commitment of an input action [16]. If we think of
bisimulation as a computational property, only early semantics makes sense. However it
must be said that, due to the ever presence of name extrusion in π, the late semantics is
intrinsic to the π-calculus [27]. We explain the claim by an example. The numbers fetchable
at channel α can be defined in π as follows.

J0Kα
def= α(o).o(p).o(q).q,

Jk+1Kα
def= α(o).o(p).o(q).p(r).JkKr.

It is simple to define the process a(x).if x=0 then P else Q that turns into P if the process
has fetched a zero at channel a and turns into Q if the number it imports is not zero. Now
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consider N def= a(x).
(
if x=0 then cx else dx

)
, C def= !a(x).cx and D def= !a(x).dx. It is easy to

see that the equality

C |D |N = C |D (1)

fails for the π-calculus. The observer O defined in (2) can make a choice between 0 and 1
after it is engaged.

O
def= a.b | a(o). (τ.o(p).o(q).q + τ.o(p).o(q).p(r).J0Kr) . (2)

Let C |D |N |O τ−→ C |D | (o)(N ′ |O′) be caused by the interaction between N and O. This
internal action cannot be bisimulated vacuously by C |D |O because C |D |O is observable at
b whereas C |D | (o)(N ′ |O′) is not. It cannot be bisimulated by C |D |O τ−→ (o)(C ′ |D |O′′)
caused by the interaction between C and O since (o)(C ′ |D |O′′) is not observable at d.
Similarly the internal action of C |D |O caused by the interaction between D and O does not
bisimulate C |D |N |O τ−→ C |D | (o)(N ′ |O′). It is worth pointing out that (1) fails also for
weak bisimilarity.

A lot can happen between the time a π-process starts to fetch a message and the
time it sees the full picture of the message. This is the fundamental weakness of name-
passing communications. In other type of model there are more efficient implementations
of a(x).if x=0 then P else Q that render (1) true. This simple example provides all the
intuition for the main result of the paper.

The absolute equality for π-calculus can be equivalently defined in terms of input-output
behaviours. Let’s call a π-term a quasi π-process if it does not contain any free channel
variables.

I Definition 8. A codivergent bisimulation R on quasi π-processes is an extensional bisimu-
lation if the following statements are valid for all λ 6= τ whenever SRT :
1. If S λ−→ S′, then T =⇒ T ′′

λ−→ T ′ for some T ′′, T ′ such that SRT ′′ and S′RT ′.
2. If T λ−→ T ′, then S =⇒ S′′

λ−→ S′ for some S′′, S′ such that S′′RT and S′RT ′.
The extensional bisimilarity 'π is the largest extensional bisimulation.

Clause (1) and clause (2) of the above definition ensure that equal processes have the same
input-output behaviours. The next lemma points out the authoritative role of the absolute
equality. It is the minimal equality for interactive objects that subsumes the extensional
equality of computation.

I Lemma 9. Suppose P,Q are π-processes. Then P =π Q if and only if P 'π Q.

Proof. The relation 'π is closed under concurrent composition and scope operation. Hence
'π ⊆=π. Conversely we show that the relation(S, T )

∣∣∣∣∣∣∣∣
S and T are quasi π processes,
(p1, . . . , pn)(a1p1 | . . . | anpn |S) =π (p1, . . . , pn)(a1p1 | . . . | anpn |T ),
p1, . . . , pn are all the unbound private channels appearing in S |T,
none of the global channels a1, . . . , an appears in S |T.

 .

is an extensional bisimulation. For details see [9]. J

4 A General Negative Result

We argue in this section that roughly speaking if a model can release an infinite number of
pairwise distinct complete messages, then the model cannot be interpreted in the π-calculus.
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22:6 Power of Name-Passing Communication

Suppose D = {d0ca, d1ca, d2ca, . . . , dica, . . .} is an infinite set of processes in some model
M such that i 6= j implies

dica 6= djca. (3)

We assume that for every i the process dica can do one and only one action, which is an
output action at channel a, and turns into a process equivalent to 0 after the action. In
other words,

dica
a(̂i)−→= 0, (4)

where î is the message released by dica. There is no specific requirement on the messages
0̂, 1̂, 2̂, . . . apart from that they are pairwise distinct. We require that in M we can define
an absorbing process dλx.0ca, a successor process dλx.x+ca, a choice process dλx.τ.x++τca,
and a test process dλx.x

?
>kca for each k ∈ ω. For each i ∈ ω each of the processes can carry

out one and only one action. Their operational behaviours are specified as follows:

dλx.0ca
a(̂i)−→= 0, (5)

dλx.x+ca
a(̂i)−→= di+1ca, (6)

dλx.τ.x++τca
a(̂i)−→= τ.di+1ca + τ, (7)

dλx.x
?
>kca

a(̂i)−→= 0, if i ≤ k, (8)

dλx.x
?
>kca

a(̂i)−→= di+1ca, if i > k. (9)

In M there is also a replicated form for each of dλx.0ca, dλx.x+ca and dλx.τ.x++τca, denoted
respectively by d!λx.0ca, d!λx.x+ca and d!λx.τ.x++τca. For each i ∈ ω their unique actions
are described as follows:

d!λx.0ca
a(̂i)−→= d!λx.0ca, (10)

d!λx.x+ca
a(̂i)−→= di+1ca | d!λx.x+ca, (11)

d!λx.τ.x++τca
a(̂i)−→= (τ.di+1ca + τ) | d!λx.τ.x++τca. (12)

Let G be the process d!λx.0ca | d!λx.x+ca | d!λx.τ.x++τca. We assume that in M the following
semantic equality is valid for each k ∈ ω.

Ω |G = Ω |G | dλx.x
?
>kca. (13)

Our assumption on M is very liberal. It asks for no more than a numerical system that
validates (13).

I Theorem 10. M 6v π.

Proof. Suppose there were a subbisimilarity I from the M-processes to the π-processes. In
what follows we write MIP 9 for MIP and P 9. Now fix a ∈ Cg. We fix the notations for
the interpretations of the M-processes just described.

For each i ∈ ω let Ni be the π-process such that di ca INi 9.
Let C0 be the π-process such that dλx.0 ca IC0 9.
Let S0 be the π-process such that dλx.x+ca IS0 9.
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Let E0 be the π-process such that dλx.τ.x++τca IE0 9.
Let C be the π-process such that d!λx.0ca IC 9.
Let S be the π-process such that d!λx.x+ca IS 9.
Let E be the π-process such that d!λx.τ.x++τca IE 9.
For each k ∈ ω let Jk be the π-process such that dλx.x

?
>kca I Jk 9.

It follows from (13) and extensionality that

Ω |C |S |E = Ω |C |S |E | Jk. (14)

We now derive some properties for the π-processes N0, N1, N2, N3, . . ..
1. According to codivergence property there is no infinite computation sequence from

S0 |Ni. Suppose S0 |Ni → B. This action must be caused by S0
λa−→ S′ and Ni

λa−→ N ′

for some complementary actions λa, λa and some π-processes S′ and N ′. If neither
λa nor λa is a bound output action then S0 |Ni

λa−→ λa−→ B and S0 |Ni
λa−→ λa−→ B.

It follows that B →∗ λa−→→∗ λa−→ B′ = B and B →∗ λa−→→∗ λa−→ B′′ = B for some
B′, B′′. Now B |B →+ B′ |B′′ = B |B. We derive by induction that there would
be an infinite computation sequence from S0 |Ni |S0 |Ni, contradicting to the fact that
dλx.x+ca | dica | dλx.x+ca | dica is not divergent. If one of λa, λa is a bound output action,
we also get an infinite sequence of computation by renaming and inserting scope operators
in appropriate places. More specifically without loss of generality suppose λa = ao and
λa = a(o). Let S0

aq−→ B1 and Ni
a(p)−→ B2 for fresh private channels p, q. Then

B ≡ (o)(B1{o/p} |B2{o/q}). (15)

It follows from S0 |Ni = B that there must exist some B′ such that

S0 |Ni
aq−→a(p)−→ B1 |B2. (16)

is bisimulated by

B →∗ aq−→→∗a(p)−→ B′. (17)

Now (15) and (17) imply that (16) can be extended to

S0 |Ni
aq−→a(p)−→ B1 |B2 =⇒ λ1

a−→=⇒ λ1
a−→ B′1 |B′2. (18)

for some B′1, B′2 and some λ1
a, λ

1
a. Consequently the bisimulation (17) can be extended to

B →∗ aq−→→∗a(p)−→ B′ =⇒ λ1
a−→=⇒ λ1

a−→ B′′ (19)

for some B′′. The extension can be repeated infinitely often. We eventually get an
infinite sequence with alternating input-output actions. Similarly we can derive from
S0 |Ni

a(p)−→ aq−→ B1 |B2 an infinite sequence with alternating output-input actions. In
this way S0 |Ni |S0 |Ni would induce an infinite sequence of computation. This is again
a contradiction. We conclude that S0 |Ni

ι−→= Ni+1 is essentially the only one-step
nondeterministic computation of S0 |Ni.

2. Ni cannot do both an input action at channel a and an output action at channel a.
Otherwise Ni |Ni would be able to do an interaction, which would be a contradiction.
This is because Ni |Ni cannot perform any nondeterministic computation since dica | dica
cannot do any internal action. It cannot do a deterministic computation step since that
would induce an infinite sequence of internal actions from Ni |Ni |Ni |Ni, like in the
previous case. So Ni may perform either an input action or an output action exclusively.

CONCUR 2017



22:8 Power of Name-Passing Communication

3. If Ni can do an input, respectively output action then Nj can do an input, respectively
output action for all j ∈ ω since the latter has to interact with C0.

4. It follows from dλx.0 ca | di ca
ι−→= 0 that C0 |Ni

ι−→= 0. Suppose Ni
ac−→ N ′ and

Nj
ac−→ N ′′ for some N ′, N ′′. Clearly N ′ = 0 = N ′′. But then one could derive from

Ni |S0
ι−→= Ni+1 and Nj |S0

ι−→= Nj+1 that Ni+1 = Nj+1, which implies i = j. We
conclude that if both Ni and Nj can do free output actions at channel a then the channels
they release must be distinct whenever i 6= j.

5. According to our assumption we have S0 |Ni
τ−→= Ni+1 for all i ≥ 0. Let’s write P λ−→

if P λ−→ P ′ for some P ′. It should be clear that if N1
ac−→, then S0 |N0 =⇒ ac−→. Similarly

if N2
ad−→, then S0 |N1 =⇒ ad−→. Therefore S0 |S0 |N0 =⇒ ad−→. By induction we can prove

that if Ni can release a global channel at a then that global channel must appear in
S0 |N0. So only a finite number of N0, N1, N2, . . . can do free output actions. Let h be
the least number such that, for every j ≥ h, Nj does only a bound output action.

We prove the impossibility result by a case analysis on the actions of N0, N1, N2, N3, . . ..
1. Suppose k > h. Let

Nh
a(p)−→ N ′h,

Nk
a(p)−→ N ′k.

In this case C0, D0, E0, Jh, C, D and E can only do input actions at channel a. Let
C0

ap−→ Cp0 ,

D0
ap−→ Sp0 ,

E0
ap−→ Ep0 ,

Jh
ap−→ Jp,

C
ap−→ Cp = C,

D
ap−→ Sp = Sp0 |S,

E
ap−→ Ep = Ep0 |E.

None of C0, D0, E0, Jh, C, D and E may perform any output actions. Otherwise there
would be either an infinite deterministic computation or a nondeterministic computation
step. It follows from (14) that Ω |C |S |E | Jh

ap−→ Ω |C |S |E | Jp must be bisimulated
by one of the following.

Ω |C |S |E ap−→ Ω |Cp |S |E,
Ω |C |S |E ap−→ Ω |C |Sp |E,
Ω |C |S |E ap−→ Ω |C |S |Ep.

In the first case Ω |C |S |E | Jh |Nk
ι−→ (p)(Ω |C |S |E | Jp |N ′k) should be bisimulated by

Ω |C |S |E |Nk
ι−→ (p)(Ω |Cp |S |E |N ′k) due to congruence. This is impossible because

(p)(Ω |C |S |E | Jp |N ′k) = Ω |C |S |E |Nk+1

6= Ω |C |S |E
= (p)(Ω |C |S |E |N ′k)
= (p)(Ω |Cp |S |E |N ′k)

according to Lemma 7. In the second case Ω |C |S |E | Jh |Nh
ι−→

(p)(Ω |C |S |E | Jp |N ′h) should be bisimulated by Ω |C |S |E |Nh
ι−→

(p)(Ω |C |Sp |E |N ′h). Using again the full abstraction lemma one derives the following
contradiction.
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(p)(Ω |C |S |E | Jp |N ′h) = Ω |C |S |E
6= Ω |C |S |E |Nh+1

= (p)(Ω |C |Sp0 |S |E |N ′h)
= (p)(Ω |C |Sp |E |N ′h).

In the third case Ω |C |S |E | Jh |Nk
ι−→ (p)(Ω |C |S |E | Jp |N ′k) should be bisimu-

lated by Ω |C |S |E |Nk
ι−→ (p)(Ω |C |S |Ep |N ′k). This is also impossible because

(p)(Ω |C |S |Ep |N ′k) = (p)(Ω |C |S |Ep0 |E |N ′k) can do a nondeterministic computation
step, reaching to a state where Nk+1 is not a concurrent component, while on the other
hand (p)(Ω |C |S |E | Jp |N ′k) = Ω |C |S |E |Nk+1.

2. Now suppose the immediate actions of N0, N1, N2, . . . are input actions. In this case an
output action of Ω |C |S |E | Jh induced by Jh, whether it is a free output action or a
bound output action, must be bisimulated by an output action of Ω |C |S |E induced by
C or D or E. We can deduce a contradiction as in the first case.

We have proved that there cannot be any subbisimilarity from M to the π-calculus. J

5 Application to Higher Order Process Calculi

We demonstrate in this section that higher order process calculi cannot be interpreted in
the π-calculus. Since the π-calculus is complete, it makes sense to focus on complete higher
order process calculi. The completeness brings out the simplicity of the counter example and
reveals the strength of the negative result.

Intuitively a model is complete if it is Turing powerful in an interactive fashion. A precise
definition of completeness is given in terms of the computability model denoted by C. The
C-processes are generated from the following grammar.

P := 0 | Ω | F ba(f(x)) | a(i) | P |P,

where f is a computable function and i ∈ ω. The semantics is defined by the following rules,
in which f(i)↑ means that f is undefined on i.

Ω τ−→ Ω a(i) a(i)−→ 0 F ba(f(x)) a(i)−→ b(j)
f(i) = j

F ba(f(x)) a(i)−→ Ω
f(i)↑

P
λ−→ P ′

P |Q λ−→ P ′ |Q

P
a(i)−→ P ′ Q

a(i)−→ Q′

P |Q τ−→ P ′ |Q′

The process Ω diverges. The process F ba(f(x)) simulates the input-output behaviour of f(x)
with input channel a and output channel b. The output process a(i) releases the number i at
channel a. The model C is the minimal interactive extension of the computable functions.
It says nothing about how computations are done. For this reason it is the best model to
formalize the notion of completeness for interaction models. See [5] for more discussions and
technical backgrounds.

I Definition 11. An interaction model M is complete if C vM.

The completeness of the π-calculus and the completeness of value-passing calculi are
proved in [5]. In the same paper it is shown that there is no subbisimilarity from a value-
passing calculus to π. The reader should convince herself/himself that the value-passing
processes satisfying (5) through (13) are easy to define.
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We now convince the reader that the π-calculus cannot in general interpret higher order
process calculi in a robust way. As an example we take a look at a particular functional
model, denoted by L. This is an abstraction-passing calculus. To define the model we
need the syntactical class V of abstraction variables. The elements of V are denoted by
U, V,W,X, Y, Z. The set of L-terms is generated by the following grammar:

S, T := 0 | µ(X).T | µ[A].T | S |T | (p)T | A(µ, ν),
A := X | λ(u, v).T.

An abstraction is either an abstraction variable or of the form λ(u, v).T . The term A(α, β) is
an instantiation of A at α, β. We have the grammar equality (λ(u, v).T )(α, β) ≡ A{α/u, β/v}.
We abbreviate λ(u, v).T to λ(u).T if v does not appear in T and accordingly A(α, α) to
A(α). Because we would like to think that the abstraction A in µ[A].T represents a complete
message, we impose the following constraint.

(‡) In µ[A].T the abstraction A contains no free channel variables, no unbound private
channels and no occurrences of global channel.

The constraint (‡) gives rise to a simpler and weaker model whose algebraic property is easier
to work out.

Using the action set {α(A), α(A) | α ∈ Cg ∪Cp}∪{τ}, the simple operational semantics of
L is defined by the following rules. Notice that because of the constraint (‡) on abstractions
there is no name extrusion.

α(X).T α(A)−→ T{A/X} α[A].T α(A)−→ T

S
λ−→ S′

S |T λ−→ S′ |T
S
α(A)−→ S′ T

α(A)−→ T ′

S |T τ−→ S′ |T ′

S
λ−→ T

(p)S λ−→ (p)T
p/∈λ

The forever diverging process can be defined as follows.

Ω def= (p) (p(X).(Xp | p[X]) | p[λ(x).x(X).(Xx |x[X])]) . (20)

To demonstrate the power of L we provide a direct interpretation of the lazy λ-calculus [1]
in L. Given an injective function from the set of λ variables to V , a λ-term M is interpreted
as an abstraction by the following structural induction.

JxK = X,

Jλx.MK = λ(u, v).u(X).v[JMK],
JMNK = λ(u, v).(mq)(JMK(m, q) |m[JNK].q(Z).Z(u, v)).

The process JMK(a, b) is a “function” that inputs a “λ-term” at channel a and output the
result “λ-term” at channel b. The structural aspect of the interpretation is enforced by the
following simple lemma.

I Lemma 12. JM{N/X}K ≡ JMK{JNK/X}.

Let =β denote the β-conversion. The interpretation is semantically correct, guaranteed
by the following facts. In the statement of Lemma 13 we identify 0 |P to P syntactically.

I Lemma 13. For closed λ-terms M,N , M → N if and only if JMK(a, b)→→ JNK(a, b).
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Proof. The λ-term M must be of the form (λx.L)M1M2 . . .Mk, where the application is
associative to the left. The encoding JMK(a, b) is by definition of the form

..(m2q2) ((m1q1)(Jλx.LK(m1, q1) |m1[JM1K].q1(Z).Z(m2, q2)) | |m2[JM2K].q2(Z).Z(m3, q3)) ..

which reduces in two deterministic computation steps to JL{M1/x}M2 . . .MkK(a, b) ≡
JNK(a, b) using Lemma 12. The argument is reversible. J

I Lemma 14. For closed λ-terms M,N , M =β N implies JMK(a, b) =L JNK(a, b).

Proof. In view of Lemma 13 this is the Church-Rosser property [2]. J

It is well-known [2] that there is a λ-term encoding d0e, d1e, d2e, . . . , die, . . . of the natural
numbers and an encoding d_e of the recursive functions such that dfedie →+ df(i)e if f(i) is
defined, and that dfedie →→ . . . diverges if f(i) is undefined. Given global channels a, b we
define the L-processes

a(i) def= a[JdieK], (21)

λa,b(f)
def= JdfeK(a, b). (22)

It is straightforward to verify that if f(i) = j then

λa,b(f) | a(i) ι−→= b(j) (23)

and if f(i) is undefined then

λa,b(f) | a(i) ι−→= Ω. (24)

The processes defined in (20), (21) and (22) actually provide an encoding of C into L, hence
the following.

I Lemma 15. C v L.

Because of the constraint (‡) the completeness proof given in [32] cannot be carried out
in L. The replication operator defined in [32] does not seem to be encodable in L.

To apply the general negative result it suffices to explain how numbers are defined in L.
Given an abstraction A we write A+ for λ(x, y).x[A]. Let

0̂ def= λ(x, y).y[0],

k̂ + 1 def= (k̂)+.

The abstractions 0̂, 1̂, 2̂, . . . represent numbers. Using these numbers we can define the
following simple processes.
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dica
def= a[̂i],

dλx.0ca
def= a(X),

dλx.x+ca
def= a(X).a[X+],

dλx.τ.x++τca
def= a(X).

(
τ.a[X+] + τ

)
,

dλx.x
?
>kca

def= a(X).(n1o1)(X(n1, o1) |n1(X1).(n2o2)(X1(n2, o2) | . . .
|nk−1(Xk−1).(nkok)(Xk−1(nk, ok) |nk.a[X+]) . . .)),

d!λx.0ca
def= (p) (a(X).p(Z).(Z(a, p) | p[Z]) | p[λ(x, z).x(X).z(Z).(Z(x, z) | z[Z])]) ,

d!λx.x+ca
def= (p)(a(X).(a[X+] | p(Z).(Z(a, p) | p[Z]))

| p[λ(x, z).x(X).(x[X+] | z(Z).(Z(x, z) | z[Z])])),

d!λx.τ.x++τca
def= (p)(a(X).((τ.a[X+] + τ) | p(Z).(Z(a, p) | p[Z]))

| p[λ(x, z).x(X).((τ.x[X+] + τ) | z(Z).(Z(x, z) | z[Z])])).

The last three processes, d!λx.0ca, d!λx.x+ca and d!λx.τ.x++τca, are intuitively the pro-
cesses !a(X), !a(X).a[X+] and !a(X). (τ.a[X+] + τ). These replication processes must be
implemented in L. It is easy to verify that the processes defined in the above satisfy the
necessary requirements stated in (3) through (12).

Let G def= d!λx.0ca | d!λx.x+ca | d!λx.τ.x++τca. We now prove (13).

I Lemma 16. Ω |G = Ω |G | dλx.x
?
>kca.

Proof. Consider the following transition

Ω |G | dλx.x
?
>kca

a(A)−→ Ω |G | JA, (25)

where JA is the following process

(n1o1)(A(n1, o1) |n1(X1).(n2o2)(X1(n2, o2) | . . . | (Xk−1(nk, ok) |nk.a[A+]) . . .)).

The process JA and all its descendants can either carry out an internal action or enable
a[A+]. They cannot do any other actions due to the constraint (‡). Let J be the set of all
terms J ′ such that JA =⇒ J ′. It can be partitioned into three disjoint subsets.

J0
def= {J ′ ∈ J | no τ descendant of J ′ can enable a[A+]},

J1
def= {J ′ ∈ J | every τ descendant of J ′ can enable a[A+] now or in future},

J 1
2

def= J \ (J0 ∪ J1).

If JA ∈ J0 then (25) can be bisimulated by Ω |G a(A)−→= Ω |G by invoking the component
d!λx.0ca. Notice that JA may induce an infinite computation. But this is not a problem in
the presence of Ω. If JA ∈ J1 then (25) can be bisimulated by Ω |G a(A)−→= Ω |G | a[A+] by
invoking the component d!λx.x+ca. If JA ∈ J 1

2
then (25) can be bisimulated by Ω |G a(A)−→=

Ω |G | (τ.a[A+] + τ) by invoking the component dλx.τ.x++τca. We only have to prove that
every J ′ ∈ J 1

2
renders true the following equality.

Ω | (τ.a[A+] + τ) = Ω | J ′. (26)
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Suppose J ′ τ−→ J ′′. It induces the transition

Ω | J ′ τ−→ Ω | J ′′. (27)

If J ′′ ∈ J 1
2
, then (27) is bisimulated by Ω | (τ.a[A+] + τ) τ−→ Ω | (τ.a[A+] + τ). If J ′′ ∈ J0,

then (27) is bisimulated by Ω | (τ.a[A+] + τ) τ−→ Ω |0. If J ′′ ∈ J1, then (27) is bisimulated
by Ω | (τ.a[A+] + τ) τ−→ Ω | a[A+]. We are done. J

The main result of the paper now follows.

I Theorem 17. L 6v π.

Theorem 17 provides a seemingly contradictory result to the well-known encoding of higher
order π-calculus πω in the first order π-calculus [25, 26] and other similar encodings [29, 31].
The higher order process calculi studied in these encodings are both abstraction-passing and
complete. The criteria for relative expressiveness adopted in these papers are weaker than
the one of this paper. They include extensionality, equipollence and weak bisimulation. Some
of the encodings satisfy full abstraction property, others satisfy only a weaker form of it.
Almost all encodings op. cit. satisfy codivergence and branching bisimulation property. As
criteria for submodel relationship codivergence and branching bisimulation help to derive
reasonable properties about interpretations, which is duly demonstrated in the proof of the
general negative result. Without these two criteria we are not able to conclude for example
that Ni cannot perform both an input action and an output action.

The source models considered in the above mentioned papers are more powerful than L
in the sense that the latter is restricted by the condition (‡). The equality stated in (13)
fails in πω since an observer can be powerful enough to detect the presence of the component
dλx.x

?
>kca. Thus Theorem 17 does not contradict to the expressiveness results given by the

encodings in the afore mentioned papers, at least on the face of it. We would however like to
draw reader’s attention to two points. Firstly if we impose the restriction (‡) to πω we get a
variant, denoted by say πω∅ , that is comparable to L. The proof of Theorem 17 applies to
πω∅ . It follows that πω∅ 6v π. On the other hand Sangiorgi’s encoding of πω in π is also an
encoding of πω∅ in π. What we do not understand at the moment is if the encoding is still
fully abstract. Secondly if we drop the condition (‡) on L, we get a model denoted by H.
We may ask the question if H 6v π. Notice that L v H implies H 6v π. Notice also that the
failure of (13) implies that the identity map from L to H is not a subbisimilarity; it does not
rule out however that L v H. For the same reason πω∅ v πω would imply πω 6v π. We do
not expect that either of the questions, “L v H ?” and “πω∅ v πω ?”, is easy to answer. A
possible way to attack these problems is to explore the power of universal processes [6]. This
is left for future investigation.

The negative result offered by Theorem 17 provides a fresh look at the issue of higher
order calculi vs name-passing calculi and forces us to ask some deeper questions.

6 Conclusion

Name-passing calculi are low level models. It should not come as a surprise that neither
the value-passing calculi nor the higher order process calculi with complete messages can be
interpreted by the π-calculus. The size of a message in the former models is unbounded. In
such models in a single interaction a number/abstraction of arbitrary size is passed from one
process to another. This is a high level feature. Studies of communication mechanisms at
different abstract levels are part of process theory.
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Let’s summarize what we know about the relative expressiveness of the three classes of
model. Now “Name-Passing 6v Value-Passing 6v Name-Passing” [5] and for what we know at
the moment “Process-Passing 6v Name-Passing”. It is easily seen that “Process-Passing 6v
Value-Passing” because value-passing communications cannot interpret name extrusion. The
problem “Value-Passing v Process-Passing?” deserves attention. The numbers can be coded
up by abstractions. The question is how to do it in a bijective way.

Having seen all the negative results, one wonders if there is a communication mechanism
that can interpret the name-passing, the value-passing and the abstraction-passing mechan-
isms. In [7] a universal model V is defined that can indeed interpret for example the model L,
the π-calculus and the value-passing calculus [3]. Such a model, rather than being artificial,
is well motivated by the Church-Turing Thesis. It is against this overall picture that the
result of this short paper is to be appreciated.
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