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Abstract
Population protocols are a distributed computing model appropriate for describing massive num-
bers of agents with very limited computational power (finite automata in this paper), such as
sensor networks or programmable chemical reaction networks in synthetic biology. A population
protocol is said to require a leader if every valid initial configuration contains a single agent in a
special “leader” state that helps to coordinate the computation. Although the class of predicates
and functions computable with probability 1 (stable computation) is the same whether a leader
is required or not (semilinear functions and predicates), it is not known whether a leader is ne-
cessary for fast computation. Due to the large number of agents n (synthetic molecular systems
routinely have trillions of molecules), efficient population protocols are generally defined as those
computing in polylogarithmic in n (parallel) time. We consider population protocols that start
in leaderless initial configurations, and the computation is regarded finished when the population
protocol reaches a configuration from which a different output is no longer reachable.

In this setting we show that a wide class of functions and predicates computable by population
protocols are not efficiently computable (they require at least linear time), nor are some linear
functions even efficiently approximable. It requires at least linear time for a population protocol
even to approximate division by a constant or subtraction (or any linear function with a coefficient
outside of N), in the sense that for sufficiently small γ > 0, the output of a sublinear time protocol
can stabilize outside the interval f(m)(1± γ) on infinitely many inputs m. In a complementary
positive result, we show that with a sufficiently large value of γ, a population protocol can
approximate any linear f with nonnegative rational coefficients, within approximation factor γ,
in O(logn) time. We also show that it requires linear time to exactly compute a wide range of
semilinear functions (e.g., f(m) = m if m is even and 2m if m is odd) and predicates (e.g., parity,
equality).
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141:2 Hardness of Computing with Leaderless Population Protocols

1 Introduction

Population protocols were introduced by Angluin, Aspnes, Diamadi, Fischer, and Peralta[3]
as a model of distributed computing in which the agents have very little computational power
and no control over their schedule of interaction with other agents. They can be thought
of as a special case of a model of concurrent processing introduced in the 1960s, known
alternately as vector addition systems[16], Petri nets[19], or commutative semi-Thue systems
(or, when all transitions are reversible, “commutative semigroups”)[9, 17]. As well as being
an appropriate model for electronic computing scenarios such as sensor networks, they are a
useful abstraction of “fast-mixing” physical systems such as animal populations[22], gene
regulatory networks[8], and chemical reactions.

The latter application is especially germane: several recent wet-lab experiments demon-
strate the systematic engineering of custom-designed chemical reactions [23, 12, 7, 20],
unfortunately in all cases having a cost that scales linearly with the number of unique chem-
ical species (states). (The cost can even be quadratic if certain error-tolerance mechanisms
are employed [21].) Thus, it is imperative in implementing a molecular computational system
to keep the number of distinct chemical species at a minimum. On the other hand, it is
common (and relatively cheap) for the total number of such molecules (agents) to number
in the trillions in a single test tube. It is thus important to understand the computational
power enabled by a large number of agents n, where each agent has only a constant number
of states (each agent is a finite state machine).

A population protocol is said to require a leader if every valid initial configuration
contains a single agent in a special “leader” state that helps to coordinate the computation.
Studying computation without a leader is important for understanding essentially distributed
systems where symmetry breaking is difficult. Further, in the chemical setting obtaining
single-molecule precision in the initial configuration is difficult. Thus, it would be highly
desirable if the population protocol did not require an exquisitely tuned initial configuration.

1.1 Introduction to the model
A population protocol is defined by a finite set Λ of states that each agent may have, together
with a transition function1 δ : Λ2 → Λ2. A configuration is a nonzero vector c ∈ NΛ

describing, for each s ∈ Λ, the count c(s) of how many agents are in state s. By convention
we denote the number of agents by n = ‖c‖ =

∑
s∈Λ c(s). Given states r1, r2, p1, p2 ∈ Λ, if

δ(r1, r2) = (p1, p2) (denoted r1, r2 → p1, p2), and if a pair of agents in respective states r1
and r2 interact, then their states become p1 and p2.2 The next pair of agents to interact
is chosen uniformly at random. The expected (parallel) time for any event to occur is the
expected number of interactions, divided by the number of agents n. This measure of time is
based on the natural parallel model where each agent participates in a constant number of
interactions in one unit of time; hence Θ(n) total interactions are expected per unit time [5].

The most well-studied population protocol task is computing Boolean-valued predicates.
It is known that a protocol stably decides a predicate φ : Nk → {0, 1} (meaning computes

1 Some work allows nondeterministic transitions, in which the transition function maps to subsets of
Λ × Λ. Our results are independent of whether transitions are nondeterministic, and we choose a
deterministic, symmetric transition function, rather than a more general relation δ ⊆ Λ4, merely for
notational convenience.

2 In the most generic model, there is no restriction on which agents are permitted to interact. If one
prefers to think of the agents as existing on nodes of a graph, then it is the complete graph Kn for a
population of n agents.
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the correct answer with probability 1; see Section 6 for a formal definition) if [3] and only
if [4] φ is semilinear.

Population protocols can also compute integer-valued functions f : Nk → N. Suppose
we start with m ≤ n/2 agents in “input” state x and the remaining agents in a “quiescent”
state q. Consider the protocol with a single transition rule x, q → y, y. Eventually exactly
2m agents are in the “output” state y, so this protocol computes the function f(m) = 2m.
Furthermore (letting #s = count of state s), if #q − 2m = Ω(n) initially (e.g., #q = 3m),
then it takes Θ(logn) expected time until #y = 2m. Similarly, the transition rule x, x→ y, q

computes the function f(m) = bm/2c, but exponentially slower, in expected time Θ(n). The
transitions x1, q → y, q and x2, y → q, q compute f(m1,m2) = m1−m2 (assuming m1 ≥ m2),
also in time Θ(n) if m1 = m2 +O(1).

Formally, we say a population protocol stably computes a function f : Nk → N if, for every
“valid” initial configuration i ∈ NΛ representing input m ∈ Nk (via counts i(x1), . . . , i(xk)
of “input” states Σ = {x1, . . . , xk} ⊆ Λ) with probability 1 the system reaches from i to o
such that o(y) = f(m) (y ∈ Λ is the “output” state) and o′(y) = o(y) for every o′ reachable
from o (i.e., o is stable). Defining what constitutes a “valid” initial configuration (i.e., what
non-input states can be present initially, and how many) is nontrivial. In this paper we focus
on population protocols without a leader—a state present in count 1, or small count—in
the initial configuration. Here, we equate “leaderless” with initial configurations in which no
positive state count is sublinear in the population size n.

It is known that a function f : Nk → N is stably computable by a population protocol if
and only if its graph {(m, f(m)) |m ∈ Nk} ⊂ Nk+1 is a semilinear set [4, 11]. This means
intuitively that it is piecewise affine, with each affine piece having rational slopes.

Despite the exact characterization of predicates and functions stably computable by
population protocols, we still lack a full understanding of which of the stably computable (i.e.,
semilinear) predicates and functions are computable quickly (say, in time polylogarithmic
in n) and which are only computable slowly (linear in n). For positive results, significantly
more is known about time to convergence [5] with a leader (time to reach a configuration
with the correct answer). In this paper we shed new light on time to stabilization without a
leader (time to reach a configuration from which the answer is guaranteed to remain correct).

1.2 Contributions
Definition of function computation and approximation. We formally define computation
and approximation of functions f : Nk → N for population protocols. This mode of
computation was discussed briefly in the first population protocols paper[3, Section 3.4],
which focused more on Boolean predicate computation, and it was defined formally in the
more general model of chemical reaction networks[11, 13]. Some subtle issues arise that are
unique to population protocols. We also formally define a notion of function approximation
with population protocols, which has its own issues.

Inapproximability of most linear functions with sublinear time and sublinear error. Recall
that the transition rule x, x → y, q computes f(m) = bm/2c in linear time. Consider the
transitions a, x→ b, y and b, x→ a, q, starting with #x = m, #a = γm for some 0 < γ < 1,
and #y = #q = 0 (so n = m+γm total agents). Then eventually #y ∈ {m/2, . . . ,m/2+γm}
and #x = 0 (stabilizing #y), after O( 1

γ logn) expected time. (This is analyzed in more
detail in Section 5.) Thus, if we tolerate an error linear in n, then f can be approximated in
logarithmic time. However, Theorem 4.1 shows this error bound to be tight: any leaderless
population protocol that approximates f(m) = bm/2c, or any other linear function with a
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coefficient outside of N (such as b4m/3c or m1 −m2), requires at least linear time to achieve
sublinear error.

As a corollary, such functions cannot be stably computed in sublinear time (since
computing exactly is the same as approximating with zero error). Conversely, it is simple to
show that any linear function with all coefficients in N is stably computable in logarithmic
time (Observation 5.1). Thus we have a dichotomy theorem for the efficiency (with regard to
stabilization) of computing linear functions f by leaderless population protocols: if all of
f ’s coefficients are in N, then it is computable in logarithmic time, and otherwise it requires
linear time.

Approximability of nonnegative rational-coefficient linear functions with logarithmic time
and linear error. Theorem 4.1 says that no linear function with a coefficient outside of
N can be stably computed with sublinear time and sublinear error. In a complementary
positive result, Theorem 5.2, by relaxing the error to linear, and restricting the coefficients
to be nonnegative rationals (but not necessarily integers), we show how to approximate any
such linear function in logarithmic time. (It is open if m1 −m2 can be approximated with
linear error in logarithmic time.)

Uncomputability of many nonlinear functions in sublinear time. What about non-linear
functions? Theorem 3.1 states that sublinear time computation cannot go much beyond
linear functions with coefficients in N. We show any function computable in sublinear time is
eventually-N-linear, which we define to be linear with nonnegative integer coefficients on all
sufficiently large inputs. Examples of non-eventually-N-linear functions, that provably cannot
be computed in sublinear time, include f(m1,m2) = min(m1,m2) (computable slowly via
x1, x2 → y, q), and f(m) = m− 1 (computable slowly via x, x→ x, y).

The only remaining semilinear functions whose asymptotic time complexity remains
unknown are those “piecewise linear” functions that switch between pieces only near the
boundary of Nk; for example, f(m) = 0 if m ≤ 3 and f(m) = m otherwise.

Undecidability of many predicates in sublinear time. Every semilinear predicate φ : Nk →
{0, 1} is stably decidable in O(n) time [5]. Some, such as φ(m) = 1 iff m ≥ 1, are
stably decidable in O(logn) time by a leaderless protocol, in this case by the transition
x, q → x, x, where x “votes” for output 1 and q votes 0. A predicate is eventually constant if
φ(m0) = φ(m1) for all sufficiently large m0,m1. We show that if a leaderless population
protocol stably decides a predicate φ in sublinear time, then φ is eventually constant.
Examples of non-eventually constant predicates include parity (φ(m) = 1 iff m is odd),
majority (φ(m1,m2) = 1 iff m1 ≥ m2), and equality (φ(m1,m2) = 1 iff m1 = m2). It does
not include certain semilinear predicates, such as φ(m) = 1 iff m ≥ 1 (decidable in O(logn)
time) or φ(m) = 1 iff m ≥ 2 (decidable in O(n) time, and no faster protocol is known).

Note that there is a fundamental difficulty in extending the last two stated negative
results to functions and predicates that “do something different only near the boundary of
Nk”. This is because for inputs where one state is present in small count, the population
protocol could in principle use that input as a “leader state”—and no longer be leaderless.

It is possible that the non-eventually constant predicates and non-eventually-N-linear
functions, which cannot be computed in sublinear time in our setting, could be efficiently
computed in the following ways: (1) With an initial leader stabilizing to the correct answer in
sublinear time, (2) Without initial leaders but converging to the correct output in sublinear
time. (3) (With or without a leader) stabilizing to an output in sublinear time but allowing
a small probability of incorrect output.
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1.3 Related work
Positive results. Angluin, Aspnes, Diamadi, Fischer, and Peralta [3] showed that any
semilinear predicate can be decided in expected parallel time O(n logn), later improved
to O(n) by Angluin, Aspnes, and Eisenstat [5]. More strikingly, the latter paper showed
that if an initial leader is present (a state assigned to only a single agent in every valid
initial configuration), then there is a protocol for φ that converges to the correct answer in
expected time O(log5 n). However, this protocol’s expected time to stabilize is still provably
Ω(n). Chen, Doty, and Soloveichik [11] showed in the related model of chemical reaction
networks (borrowing techniques from the related predicate results [3, 4]) that any semilinear
function (integer-output f : Nk → N) can similarly be computed with expected convergence
time O(log5 n) if an initial leader is present, but again with much slower stabilization time
O(n logn). Doty and Hajiaghayi [13] showed that any semilinear function can be computed
by a chemical reaction network without a leader with expected convergence and stabilization
time O(n). Although the chemical reaction network model is more general, these results
hold for population protocols.

Since efficient computation seems to be helped by a leader, the computational task
of leader election has received significant recent attention. In particular, Alistarh and
Gelashvili [2] showed that in a variant of the model allowing the number of states λn to
grow with the population size n, a protocol with λn = O(log3 n) states can elect a leader
with high probability in O(log3 n) expected time. Alistarh, Aspnes, Eisenstat, Gelashvili,
and Rivest [1] later showed how to reduce the number of states to λn = O(log2 n), at the
cost of increasing the expected time to O(log5.3 n log logn).

Negative results. The first attempt to show the limitations of sublinear time population
protocols, using the more general model of chemical reaction networks, was made by Chen,
Cummings, Doty, and Soloveichik [10]. They studied a variant of the problem in which
negative results are easier to prove, an “adversarial worst-case” notion of sublinear time:
the protocol is required to be sublinear time not only from the initial configuration, but
also from any reachable configuration. They showed that the predicates computable in this
manner are precisely those whose output depends only on the presence or absence of states
(and not on their exact positive counts). Doty and Soloveichik [14] showed the first Ω(n)
lower bound on expected time from valid initial configurations, proving that any protocol
electing a leader with probability 1 takes Ω(n) time.

These techniques were recently improved by Alistarh, Aspnes, Eisenstat, Gelashvili, and
Rivest [1], who showed that even with up to λn = O(log logn) states, any protocol electing a
leader with probability 1 requires nearly linear time: Ω(n/polylog n). They used these tools
to prove time lower bounds for another important computational task: majority (detecting
whether state x1 or x2 is more numerous in the initial population, by stabilizing on a
configuration in which the state with the larger initial count occupies the whole population).

In contrast to these previous results on the specific tasks of leader election and majority,
we obtain time lower bounds for a broad class of functions and predicates, showing “most” of
those computable at all by population protocols, cannot be computed in sublinear time. Since
they all can be computed in linear time, this settles their asymptotic population protocol
time complexity.

Informally, one explanation for our result could be that some computation requires electing
“leaders” as part of the computation, and other computation does not. Since leader election
itself requires linear time as shown in [14], the computation that requires it is necessarily
inefficient. It is not clear, however, how to define the notion of a predicate or function
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141:6 Hardness of Computing with Leaderless Population Protocols

computation requiring electing a leader somewhere in the computation, but recent work by
Michail and Spirakis helps to clarify the picture [18].

2 Preliminaries

If Λ is a finite set (in this paper, of states, which will be denoted as lowercase Roman
letters with an overbar such as s), we write NΛ to denote the set of functions c : Λ → N.
Equivalently, we view an element c ∈ NΛ as a vector of |Λ| nonnegative integers, with each
coordinate “labeled” by an element of Λ. (By assuming some canonical ordering s1, . . . , sk
of Λ, we also interpret c ∈ NΛ as a vector c ∈ Nk.) Given s ∈ Λ and c ∈ NΛ, we refer to
c(s) as the count of s in c. Let ‖c‖ = ‖c‖1 =

∑
s∈Λ c(s). We write c ≤ c′ to denote that

c(s) ≤ c′(s) for all s ∈ Λ. Since we view vectors c ∈ NΛ equivalently as multisets of elements
from Λ, if c ≤ c′ we say c is a subset of c′. For α > 0, we say that c ∈ Nk is α-dense if, for
all i ∈ {1, . . . , k}, if c(i) > 0, then c(i) ≥ α‖c‖.

It is sometimes convenient to use multiset notation to denote vectors, e.g., {x, x, y}
and {2x, y} both denote the vector c defined by c(x) = 2, c(y) = 1, and c(s) = 0 for all
s 6∈ {x, y}. Given c, c′ ∈ NΛ, we define the vector component-wise operations of addition
c + c′, subtraction c− c′, and scalar multiplication mc for m ∈ N. For a set ∆ ⊂ Λ, we view
a vector c ∈ N∆ equivalently as a vector c ∈ NΛ by assuming c(s) = 0 for all s ∈ Λ \∆.
Write c � ∆ to denote the vector d ∈ N∆ such that c(s) = d(s) for all s ∈ ∆. In this paper,
the floor function b·c : R→ Z is defined to be the integer closest to 0 that is distance < 1
from the input, e.g., b−3.4c = −3 and b3.4c = 3.

We say a function f : Nk → N is eventually-N-affine if there are b, c1, . . . , ck ∈ N and
m0 ∈ N such that for all m ∈ Nk≥m0

, f(m) = b+
∑k
i=1 cim(i). We say a function f : Nk → N

is eventually-N-linear if it is eventually-N-affine with offset b = 0, i.e., if f(0) = 0. We say
the function is N-linear if it is eventually-N-linear with m0 = 0. Similarly, a function is
Q≥0-linear if there are c1, . . . , ck ∈ Q≥0 such that for all m ∈ Nk, f(m) =

∑k
i=1bcim(i)c.

2.1 Population Protocols
A population protocol is a pair P = (Λ, δ), where Λ is a finite set of states and δ : Λ2 → Λ2

is the (symmetric) transition function. A configuration of a population protocol is a vector
c ∈ NΛ, with the interpretation that c(s) agents are in state s ∈ Λ. If there is some “current”
configuration c understood from context, we write #s to denote c(s). By convention,
the value n ∈ Z≥1 represents the total number of agents ‖c‖. A transition is a 4-tuple
τ = (r1, r2, p1, p2) ∈ Λ4, written τ : r1, r2 → p1, p2, such that δ(r1, r2) = (p1, p2). If an agent
in state r1 interacts with an agent in state r2, then they change states to p1 and p2. This
paper typically defines a protocol by a list of transitions, with δ implicit. There is a null
transition δ(r1, r2) = (r1, r2) if a different output for δ(r1, r2) is not specified.

Given c ∈ NΛ and transition τ : r1, r2 → p1, p2, we say that τ is applicable to c if
c ≥ {r1, r2}, i.e., c contains 2 agents, one in state r1 and one in state r2. If τ is applicable
to c, then write τ(c) to denote the configuration c − {r1, r2} + {p1, p2} (i.e., that results
from applying τ to c); otherwise τ(c) is undefined. A finite or infinite sequence of transitions
(τi) is a transition sequence. Given a c0 ∈ NΛ and a transition sequence (τi), the induced
execution sequence (or path) is a finite or infinite sequence of configurations (c0, c1, . . .) such
that, for all i ≥ 1, ci = τi−1(ci−1). If a finite execution sequence, with associated transition
sequence q, starts with c and ends with c′, we write c =⇒q c′. We write c =⇒P c′ (or c =⇒ c′
when P is clear from context) if such a path exists (i.e., it is possible to reach from c to c′)
and we say that c′ is reachable from c. Let postP(c) = {c′ | c =⇒P c′} to denote the set of
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all configurations reachable from c, writing post(c) when P is clear from context. If it is
understood from context what is the initial configuration i, then say c is simply reachable if
i =⇒ c. If a transition τ : r1, r2 → p1, p2 has the property that for i ∈ {1, 2}, ri 6∈ {p1, p2},
or if (r1 = r2 and (ri 6= p1 or ri 6= p2)), then we say that τ consumes ri; i.e., applying τ
reduces the count of ri. We say τ produces pi if it increases the count of pi.

2.2 Time Complexity
The model used to analyze time complexity is a discrete-time Markov process, whose
states correspond to configurations of the population protocol. In any configuration the next
interaction is chosen by selecting a pair of agents uniformly at random and applying transition
function δ to determine the next configuration. Since a transition may be null, self-loops
are allowed. To measure time we count the expected total number of interactions (including
null), and divide by the number of agents n. (In the population protocols literature, this is
often called “parallel time”; i.e. n interactions among a population of n agents corresponds to
one unit of time). Let c ∈ NΛ and C ⊆ NΛ. Denote the probability that the protocol reaches
from c to some configuration c′ ∈ C by Pr[c =⇒C]. If Pr[c =⇒C] = 1, define the expected
time to reach from c to C, denoted T [c =⇒C], to be the expected number of interactions to
reach from c to some c′ ∈ C, divided by the number of agents n = ‖c‖. If Pr[c =⇒C] < 1
then T [c =⇒C] =∞.

3 Exact computation of nonlinear functions

In Section 4, we obtained a precise characterization of the linear functions stably computable
in sublinear time by population protocols and furthermore show that those not exactly
computable in sublinear time are not even approximable with sublinear error in sublinear
time. However, the class of functions stably computable (in any amount of time) by population
protocols is known to contain non-linear functions such as f(m1,m2) = max(m1,m2), or
f(m) = m if m is even and f(m) = 2m if m is odd. In fact a function is stably computable
by a population protocol if and only if its graph {(m, f(m)) | m ∈ Nk} is a semilinear
set [4, 11]. A set A ⊆ Nk is semilinear if and only if [15] it is expressible as a finite
number of unions, intersections, and complements of sets of one of the following two forms:
threshold sets of the form {x |

∑k
i=1 ai · x(i) < b} for some constants a1, . . . , ak, b ∈ Z or

mod sets of the form {x |
∑k
i=1 ai · x(i) ≡ b mod c} for some constants a1, . . . , ak, b, c ∈ N.

Say that a set P ⊆ Nk is a periodic coset if there exist b,p1, . . . ,pl ∈ Nk such that
P = {b + n1p1 + . . .+ nlpl | n1, . . . , nl ∈ N}. (These are typically called “linear” sets, but
we wish to avoid confusion with linear functions.) Equivalently, a set is semilinear if and
only if it is a finite union of periodic cosets. We say a function f : Nk → N is semilinear if its
graph {(m, f(m)) |m ∈ Nk} ⊂ Nk+1 is a semilinear set. A function f is stably computable
by a population protocol (given unbounded time) if and only if f is semilinear [11, 4].

Although our technique fails to completely characterize the efficient computability of
all semilinear functions, we show that a wide class of semilinear functions cannot be stably
computed in sublinear time: functions that are not eventually N-linear. The only exceptions,
for which we cannot prove linear time is required, yet neither is there known a counterexample
protocol stably computing the function in sublinear time, are functions whose “non-integral-
linearities are near the boundary of Nk”. For example, the function f(m) = 0 if m ≤ 3 and
f(m) = m otherwise is non-linear (although it is semilinear, so stably computable), but
restricted to the domain of inputs > 3, it is linear with positive integer coefficients. Thus it
is an example of a function whose “population protocol time complexity” is unknown.
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Corollary 4.2 and Observation 5.1 imply that a linear function is stably computable in
sublinear time by a population protocol if and only if it is N-linear. Theorem 3.1 generalizes
the forward direction (restricted to nonlinear functions) to eventually-N-linear functions.

We first give a formal definition of function computation by population protocols. A
function-computing population protocol is a tuple C = (Λ, δ,Σ, y, q), where (Λ, δ) is a popu-
lation protocol, Σ = {x1, . . . , xk} ⊂ Λ is the set of input states, y ∈ Λ is the output state,
and q ∈ Λ \ Σ is the quiescent state. We say that a configuration o ∈ NΛ is stable if, for all
o′ ∈ post(o), o(y) = o′(y), i.e., the count of y cannot change once o is reached.

Let f : Nk → N, i ∈ NΛ, and let m = i � Σ. We say that C stably computes f from i if,
for all c ∈ post(i), there exists a stable o ∈ post(c) such that o(y) = f(m), i.e., C stabilizes
to the correct output from the initial configuration i. However, for any input m ∈ Nk, there
are many initial configurations i ∈ NΛ representing it (i.e., such that i � Σ = m). We now
formalize what sort of initial configurations C is required to handle.

We say a function q0 : Nk → N is linearly bounded if there is a constant c ∈ N such
that, for all m ∈ Nk, q0(m) ≤ c‖m‖. We say that C stably computes f if there is a linearly
bounded function q0 : Nk → N such that, for any i ∈ NΛ, defining m = i � Σ, if i(q) ≥ q0(m)
and i(s) = 0 for all s ∈ Λ \ (Σ ∪ {q}), then C stably computes f from i. It is well-known[6]
that this is equivalent to requiring, under the randomized model in which the next interaction
is between a pair of agents picked uniformly at random, that the protocol stabilizes on the
correct output with probability 1. More formally, given f : Nk → N and m ∈ Nk, defining
SCf,m = {o ∈ NΛ | o is stable and o(y) = f(m)}, C stably computes f if and only if, for
all m, defining i with i � Σ = m as above with i(q) sufficiently large, Pr

[
i =⇒SCf,m

]
= 1.

It is also equivalent to requiring that every fair infinite execution leads to a correct stable
configuration, where an execution is fair if every configuration infinitely often reachable
appears infinitely often in the execution. We say that an initial configuration i so defined is
valid. Since all semilinear functions are linearly bounded [11], a linearly bounded q0 suffices
to ensure there are enough agents to represent the output of a semilinear function, even if
we choose i(q) = q0(i � Σ). If q0 were not linearly bounded, and thus a super-linear count
of state q is required, we would essentially need to do non-semilinear computation just to
initialize the population protocol.

Let f : Nk → N and t : N→ N. Given a function-computing population protocol C that
stably computes f , we say C stably computes f in expected time t if, for all valid initial
configurations i of C, letting m = i � Σ, T

[
i =⇒SCf,m

]
≤ t(n).

I Theorem 3.1. Let f : Nk → N, and let C be a function-computing population protocol that
stably computes f . If f is not eventually-N-linear then C takes expected time Ω(n).

Techniques developed in previous work for proving time lower bounds [14, 1] can certainly
generalize beyond leader election and majority, although it was not clear what precise
category of computation they cover. However, to extend the impossibility results to all not
eventually-N-linear functions, we needed to develop new tools.

Both in prior and current work, the high level intuition of the proof technique is as follows.
The overall argument is a proof by contradiction: if sublinear time computation is possible
then we find a nefarious execution sequence which stabilizes to an incorrect output. In more
detail, sublinear time computation requires avoiding “bottlenecks”—having to go through
a transition in which both states are present in small count (constant independent of the
number of agents n). Traversing even a single such transition requires linear time. Technical
lemmas show that bottleneck-free execution sequences from α-dense initial configurations
(i.e., initial configurations where every state that is present is present in at least αn count)
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are amenable to predictable “surgery” [14, 1]. At the high level, the surgery lemmas show
how states that are present in “low” count when the population protocol stabilizes, can
be manipulated (added or removed) such that only “high” count other states are affected.
Since it can also be shown that changing high count states in a stable configuration does
not affect its stability, this means that the population protocol cannot “notice” the surgery,
and remains stabilized to the previous output. For leader election, the surgery allows one to
remove an additional leader state (leaving us with no leaders). For majority computation [1],
the input in the minority must be present in low count (or absent) at the end. This allows
one to add enough of the minority input to turn it into the majority, while the protocol
continues to output the wrong answer.

However, applying the previously developed surgery lemmas to fool a more general
function computing population protocol is more difficult. The surgery to consume additional
input states affects the count of the output state, which could be present in “large count” at
the end. How do we know that the effect of the surgery on the output is not consistent with
the desired output of the function? In order to arrive at a contradiction we develop two new
techniques, both of which are necessary to cover all cases. The first involves showing that
the slope of the change in the count of the output state as a function of the input states
is inconsistent. The second involves exposing the semilinear structure of the graph of the
function being computed, and forcing it to enter the “wrong piece” (i.e., periodic coset).

4 Sublinear-time, sublinear-error approximation of linear functions
with negative or non-integer coefficients is impossible

A function-approximating population protocol is a tuple A = (Λ, δ,Σ, y, q, a), where
(Λ, δ,Σ, y, q) is a function-computing population protocol and a ∈ Λ \ (Σ ∪ {y, q}) is the
approximation state. Let ε, τ ∈ N; intuitively τ represents the “target” (or “true”) function
output, and ε represents the allowed approximation error. We say that a configuration
o ∈ NΛ is ε-τ -correct if |o(y)− τ | ≤ ε.

Let f : Nk → N, ε ∈ N, i ∈ NΛ, and let m = i � Σ. We say that A stably ε-approximates
f from i if, for all c ∈ post(i), there exists a o ∈ post(c) that is stable and ε-f(m)-correct,
i.e., from the initial configuration i, A gets the output to stabilize to a value at most ε from
the correct output. Let SAf,m,ε = {o ∈ NΛ | o is stable and ε-f(m)-correct }. Note that A
stably ε-approximates f from i if and only if Pr

[
i =⇒SAf,m,ε

]
= 1.

Let E : N→ N; the choice of E as a function instead of a constant reflects the idea that
the approximation error is allowed to depend on the initial count i(a) of the approximation
state a, i.e., E(i(a)) is the desired approximation error. We say that A stably E-approximates
f if there are a0 ∈ N and linearly bounded q0 : Nk+1 → N such that, for any i ∈ NΛ, defining
m = i � Σ, if i(a) ≥ a0, i(q) ≥ q0(m, i(a)), and i(s) = 0 for all s ∈ Λ \ (Σ ∪ {q, a}), then A
stably E(i(a))-approximates f from i.3 An initial configuration i so defined is valid.

As we consider leaderless population protocols, we need to make sure that a does not
act as a small count “leader”. Consistent with the rest of this paper, we reason about initial
configurations with i(a) ≥ αn for some α > 0 to ensure α-density.

Let f : Nk → N. In defining running time for function-approximating population
protocols, we express the expected time as a function of both the total number of agents

3 I.e., the initial count i(a) can influence the initial required count i(q), since adding more initial a may
imply that more quiescent agents are required as “fuel”. However, a0 is constant, not a function of m.

ICALP 2017



141:10 Hardness of Computing with Leaderless Population Protocols

n = ‖i‖ and the initial count i(a) of approximation states. Let E : N→ N and t : N2 → N.
Given a function-approximating population protocol A that E-approximates f , we say A
E-approximates f in expected time t if, for all valid initial configurations i of A, letting
m = i � Σ, T

[
i =⇒SAf,m,E(i(a))

]
≤ t(n, i(a)).

The following theorem states that given any linear function f and any population protocol
P, if f has a non-integer or negative coefficient, then P requires at least linear time to
approximate f with sublinear error. It states this by contrapositive: if the protocol takes
sublinear time, then the error E : N→ N must grow at least linearly with the initial count of
approximation state a. In particular, the initial configurations i (letting n = ‖i‖) on which
our argument maximizes the error have i(a) = Ω(n). Thus, the fact that E(a) ≥ γa implies
that on these i, the error is Ω(n).

I Theorem 4.1. Let f : Nk → N be a linear function that is not N-linear. Let E : N→ N. Let
A be a function-approximating population protocol that stably E-approximates f in expected
time t, where for some α > 0, t(n, αn) = o(n). Then there is a constant γ > 0 such that, for
infinitely many a ∈ N, E(a) ≥ γa.

A protocol stably computing f also stably E-approximates f for E(a) = 0, so we have:

I Corollary 4.2. Let f : Nk → N be a linear function f(m) =
∑k
i=1bcim(i)c, where ci 6∈ N

for some i ∈ {1, . . . , k}. Let C be a function-computing population protocol that stably
computes f . Then C takes expected time Ω(n).

This gives a complete classification of the asymptotic efficiency of computing linear
functions f(m) =

∑k
i=1bcim(i)c with population protocols. If ci ∈ N for all i ∈ {1, . . . , k},

then f is stably computable in logarithmic time by Observation 5.1. Otherwise, f requires
linear time to stably compute by Corollary 4.2.

5 Logarithmic-time, linear-error approximation of linear functions
with nonnegative rational coefficients is possible

It is easy to see that any N-linear function f can be stably computed in logarithmic time.
Recall that x, q → y, y stably computes f(m) = 2m in expected time O(logn). The extension
to larger coefficients and multiple inputs is routine:

I Observation 5.1. Let f : Nk → N be an N-linear function. There is a function-computing
population protocol that stably computes f in expected time O(logn).

We now describe how to stably approximate linear functions with nonnegative rational
coefficients, i.e., Q≥0-linear functions, with a linear approximation error, in logarithmic
time. (It is open to do this for negative coefficients, e.g., f(m1,m2) = m1 −m2). Recall the
following simple example of a population protocol that approximately divides by 2 (that
is, with probability 1 it outputs a value guaranteed to be a certain distance to the correct
output), with a linear approximation error, and is fast (O(logn) time) with initial counts
#x = m, #a = γm, and #q = #y = 0:

a, x→ b, y

b, x→ a, q

which stabilizes #y to somewhere in the interval {m/2,m/2 + 1, . . . ,m/2 + γm}.
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To see that the protocol is correct, note that the transition sequence can make #y closer
to one endpoint of the interval or the other depending on which transitions are chosen to
consume the last γm of x, but no matter what, the first transition executes at least as many
times as the second, but not more than γm times more.

If #a = 1 initially, the above protocol stably computes bm/2c (taking linear time just for
the last transition; and in total takes Θ(n logn) time, by a coupon collector argument).

To see that the protocol takes O(logn) time if #a = γm initially, note n = m+γm ≤ 2m.
Observe that #a + #b = γm in any reachable configuration. Thus the probability any
given interaction is one of the above two transitions is ≈ γm#x

n2 , so the expected number of
interactions until such a transition occurs is n2

γm#x . After m such transitions occur, all the
input x is gone and the protocol stabilizes, which by linearity of expectation takes expected
number of interactions

m∑
#x=1

n2

γm#x = n2

γm

m∑
#x=1

1
#x ≈

n2

γm
lnm ≤ n2

γn/2 lnn = 2n
γ

lnn,

i.e., expected parallel time 2
γ lnn. Thus this shows a tradeoff between accuracy and speed in

a single protocol, adjustable by the initial count of a. In this case, the approximation error
increases, and the expected time to stabilization decreases, with increasing initial #a.

More generally, we can prove the following. In particular, if a = Ω(n), then t(n, a) =
O(logn). Also, if a = o(n), then the approximation error is o(n), and if a = ω(logn), then
the expected time is o(n) also. This does not contradict Theorem 4.1 since setting a = o(n)
implies the initial configurations are not all α-dense for a fixed α > 0.

I Theorem 5.2. Let f : Nk → N be a Q≥0-linear function. Let E : N → N be the identity
function. Define t : N2 → N by t(n, a) = n

a logn. Then there is a function-approximating
population protocol A that E-approximates f in expected time O(t).

The basic analysis is similar to the example protocol above, and the extension to rational
coefficients other than 1

2 follows techniques used in similar papers on function computation
with chemical reaction networks [11, 13].

6 Predicate computation

In this section we show that a wide class of Boolean predicates cannot be stably computed
in sublinear time by population protocols (without a leader). Intuitively, this is the class
of predicates φ : Nk → {0, 1} such that for all m ∈ N, there are two inputs m0,m1 ∈ Nk≥m
such that φ(m0) 6= φ(m1). (See the definition of eventually constant below.)

Formally, a predicate-deciding population protocol is a tuple D = (Λ, δ,Σ,Υ1), where
(Λ, δ) is a population protocol, Σ ⊆ Λ is the set of input states, and Υ1 ⊆ Λ is the set
of 1-voters. By convention, we define Υ0 = Λ \ Υ1 to be the set of 0-voters. The output
Φ(c) of a configuration c ∈ NΛ is b ∈ {0, 1} if c(s) = 0 for all s ∈ Υ1−b (i.e., if the vote
is unanimously b); the output is undefined if voters of both types are present. We say
o ∈ NΛ is stable if Φ(o) is defined and for all o′ ∈ post(o), Φ(o′) = Φ(o). For all m ∈ Nk,
define initial configuration im ∈ NΛ by im � Σ = m and im � (Λ \ Σ) = 0. Call such
an initial configuration valid. For any valid initial configuration im ∈ NΛ and predicate
φ : Nk → {0, 1}, let Sim,φ = {o ∈ NΛ | im =⇒o,o is stable, and Φ(o) = φ(m)}. A population
protocol stably decides a predicate φ : Nk → {0, 1} if, for any valid initial configuration
im ∈ NΛ, Pr[im =⇒Sim,φ] = 1. This is equivalent to requiring that for all c ∈ post(im), there
is o ∈ post(c) such that o is stable and Φ(o) = φ(m).
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For example, the protocol defined by transitions

x1, x2 → q1, q2

x1, q2 → x1, q1

x2, q1 → x2, q2

q1, q2 → q1, q1

if Υ1 = {x1, q1} and Υ0 = {x2, q2}, decides whether m1 = i(x1) ≥ m2 = i(x2). The first
transition stops once the less numerous input state is gone. If x1 (resp. x2) is left over, then
the second (resp. third) transition converts qi states to its vote. If neither is left over (i.e., if
m1 = m2, requiring output 1), the fourth transition converts all q2 states to q1.

Let φ : Nk → {0, 1}, and for b ∈ {0, 1}, define φ−1(b) = {m ∈ Nk | φ(m) = b} to be
the set of inputs on which φ outputs b. We say φ is eventually constant if there is m0 ∈ N
such that φ is constant on Nk≥m0

= {m ∈ Nk | (∀i ∈ {1, . . . , k}) m(i) ≥ m0}, i.e., either
φ−1(0) ∩ Nk≥m0

= ∅ or φ−1(1) ∩ Nk≥m0
= ∅. In other words, although φ may have an infinite

number of each output, “sufficiently far from the boundary” (where all coordinates exceed
m0), only one output appears.

The following theorem shows that any predicate that is not eventually constant cannot
be stably decided in sublinear time by a population protocol.

I Theorem 6.1. Let φ : Nk → {0, 1} and D be a predicate-deciding population protocol that
stably decides φ. If φ is not eventually constant, then D takes expected time Ω(n).

Alistarh, Aspnes, Eisenstat, Gelashvili, and Rivest [1] showed a linear-time lower bound
on any leaderless population protocol deciding the majority predicate. Recall that their
technique is based on showing that after adding enough of the input in the minority to
change it to the majority, the effect of this addition can be effectively nullified by surgery
of the transition sequence, yielding a stable configuration with the original (now incorrect)
answer. The technique can be extended easily to show various other specific predicates,
such as equality and parity, also require linear time. We use the same technique of finding
pairs of inputs with opposite correct answers and apply a similar transition sequence surgery.
The main difficulty in showing Theorem 6.1, which covers the class of all predicates that
are semilinear but not eventually constant, is to identify a common characteristic that can
be exploited to find pairs of inputs that are α-dense for some α > 0. Here, we rely on
the semilinear structure of the predicate computed. Indeed, note that we cannot find such
α-dense pairs for the predicate φ : N2 → {0, 1} with support {(k, 2k) | k ∈ N}, which is not
eventually constant (but also not semilinear).

7 Open Questions

Time complexity of other functions. What is the optimal time complexity of computing
semilinear functions and predicates not satisfying the hypotheses of Theorems 3.1 and 6.1;
namely the eventually-N-linear functions, (e.g., f(m) = 0 if m < 3 and f(m) = m otherwise)
and eventually-constant predicates (e.g., φ(m) = 1 iff m ≥ 2)?

Stabilization vs convergence. Measuring time to stabilization in the randomized model,
as we do here, measures the expected time until the probability of changing the output
becomes 0. Our proof shows only that stabilization must take expected Ω(n) time. However,
convergence could occur much earlier in a transition sequence than stabilization (we can say
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a particular transition sequence converged at the point when the output count is the same in
every subsequently reached configuration). We conjecture that similar negative results hold
for convergence for leaderless population protocols. It is also open whether stabilization can
occur in sublinear time, even with an initial leader. The known stably computing protocols
converging in O(log5 n) time [5, 11] provably require expected time Ω(n) to stabilize.
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