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Abstract
We revisit the classic problem of estimating the degree distribution moments of an undirected
graph. Consider an undirected graph G = (V,E) with n (non-isolated) vertices, and define (for
s > 0) µs = 1

n ·
∑

v∈V d
s
v. Our aim is to estimate µs within a multiplicative error of (1 + ε) (for a

given approximation parameter ε > 0) in sublinear time. We consider the sparse graph model that
allows access to: uniform random vertices, queries for the degree of any vertex, and queries for a
neighbor of any vertex. For the case of s = 1 (the average degree), Õ(

√
n) queries suffice for any

constant ε (Feige, SICOMP 06 and Goldreich-Ron, RSA 08). Gonen-Ron-Shavitt (SIDMA 11)
extended this result to all integral s > 0, by designing an algorithms that performs Õ(n1−1/(s+1))
queries. (Strictly speaking, their algorithm approximates the number of star-subgraphs of a given
size, but a slight modification gives an algorithm for moments.)

We design a new, significantly simpler algorithm for this problem. In the worst-case, it exactly
matches the bounds of Gonen-Ron-Shavitt, and has a much simpler proof. More importantly,
the running time of this algorithm is connected to the degeneracy of G. This is (essentially) the
maximum density of an induced subgraph. For the family of graphs with degeneracy at most α,
it has a query complexity of Õ

(
n1−1/s

µ
1/s
s

(
α1/s + min{α, µ1/s

s }
))

= Õ(n1−1/sα/µ
1/s
s ). Thus, for

the class of bounded degeneracy graphs (which includes all minor closed families and preferential
attachment graphs), we can estimate the average degree in Õ(1) queries, and can estimate the
variance of the degree distribution in Õ(

√
n) queries. This is a major improvement over the

previous worst-case bounds. Our key insight is in designing an estimator for µs that has low
variance when G does not have large dense subgraphs.
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7:2 Sublinear Time Estimation of Degree Distribution Moments

1 Introduction

Estimating the mean and moments of a sequence of n integers d1, d2, . . . , dn is a classic
problem in statistics that requires little introduction. In the absence of any knowledge of the
moments of the sequence, it is not possible to prove anything non-trivial. But suppose these
integers formed the degree sequence of a graph. Formally, let G = (V,E) be an undirected
graph over n vertices, and let dv denote the degree of vertex v ∈ V , where we assume
that dv ≥ 1 for every v.1 Feige proved that O∗(

√
n) uniform random vertex degrees (in

expectation) suffice to provide a (2 + ε)-approximation to the average degree [23]. (We use
O∗(·) to suppress poly(logn, 1/ε) factors.) The variance can be as large as n for graphs of
constant average degree (simply consider a star), but the constraints of a degree distribution
allow for non-trivial approximations. Classic theorems of Erdős-Gallai and Havel-Hakimi
characterize such sequences [29, 21, 27].

Again, the star graph shows that the (2 + ε)-approximation cannot be beaten in sublinear
time through pure vertex sampling. Suppose we could also access random neighbors of a
given vertex. In this setting, Goldreich and Ron showed it is possible to obtain a (1 + ε)-
approximation to the average degree in O∗(

√
n) expected time [24].

In a substantial (and complex) generalization, Gonen, Ron, and Shavitt (henceforth,
GRS) gave a sublinear-time algorithm that estimates the higher moments of the degree
distribution [25]. Technically, GRS gave an algorithm for approximating the number of
stars in a graph, but a simple modification yields an algorithm for moments estimation. For
precision, let us formally define this problem. The degree distribution is the distribution
over the degree of a uniform random vertex. The s-th moment of the degree distribution is
µs , 1

n ·
∑
v∈V d

s
v.

The Degree Distribution Moment Estimation (DDME) Problem. Let G = (V,E) be a
graph over n vertices, where n is known. Access to G is provided through the following
queries. We can (i) get the id (label) of a uniform random vertex, (ii) query the degree dv of
any vertex v, (iii) query a uniform random neighbor of any vertex v. Given ε > 0 and s ≥ 1,
output a (1 + ε)-multiplicative approximation to µs with probability2 > 2/3.

The DDME problem has important connections to network science, which is the study
of properties of real-world graphs. There have been numerous results on the significance
of heavy-tailed/power-law degree distributions in such graphs, since the seminal results of
Barabási-Albert [5, 10, 22]. The degree distribution and its moments are commonly used
to characterize and model graphs appearing in varied applications [7, 36, 14, 37, 8]. On
the theoretical side, recent results provide faster algorithms for graphs where the degree
distribution has some specified form [6, 9]. Practical algorithms for specific cases of DDME
have been studied by Dasgupta et al and Chierichetti et al. [17, 13]. (These results requires
bounds on the mixing time of the random walk on G.)

1.1 Results
Letm denote the number of edges in the graph (wherem is not provided to the algorithm). For
the sake of simplicity, we restrict the discussion in the introduction to case when µs ≤ ns−1.

1 The assumption on there being no isolated vertices is made here only for the sake of simplicity of the
presentation, as it ensures a basic lower bound on the moments.

2 The constant 2/3 is a matter of convenience. It can be increased to at least 1 − δ by taking the median
value of log(1/δ) independent invocations.
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As observed by GRS, the complexity of the DDME problem is smaller when µs is significantly
larger. GRS designed an (expected) O∗

(
n1−1/(s+1)/µ

1/(s+1)
s + n1−1/s

)
-query algorithm for

DDME and proved this expression was optimal up to poly(logn, 1/ε) dependencies. (Here
O∗(·) also suppresses additional factors that depend only on s). Note that for a graph
without isolated vertices, µs ≥ 1 for every s > 0, so this yields a worst-case O∗(n1−1/(s+1))
bound. The s = 1 case is estimating the average degree, so this recovers the O∗(

√
n) bounds

of Goldreich-Ron. We mention a recent result by Aliakbarpour et al. [1] for DDME, in
a stronger model that assumes additional access to uniform random edges. They get a
better bound of O∗(m/(nµs)1/s) in this stronger model, for s > 1 (and µs ≤ ns−1). Note
that the main challenge of DDME is in measuring the contribution of high-degree vertices,
which becomes substantially easier when random edges are provided. In the DDME problem
without such samples, it is quite non-trivial to even detect high degree vertices.

All the bounds given above are known to be optimal, up to poly(logn, 1/ε) dependencies,
and at first blush, this problem appears to be solved. We unearth a connection between
DDME and the degeneracy of G. The degeneracy of G is (up to a factor 2) the maximum
density over all subgraphs of G. We design an algorithm that has a nuanced query complexity,
depending on the degeneracy of G. Our result subsumes all existing results, and provides
substantial improvements in many interesting cases. Furthermore, our algorithm and its
analysis are significantly simpler and more concise than in the GRS result.

We begin with a convenient corollary of our main theorem. A tighter, more precise bound
appears as Theorem 3.

I Theorem 1. Consider the family of graphs with degeneracy at most α. The DDME problem
can be solved on this family using O∗

(
n1−1/s

µ
1/s
s

(
α1/s + min{α, µ1/s

s }
))

queries in expectation.
The running time is linear in the number of queries.

Consider the case of bounded degeneracy graphs, where α = O(1). This is a rich class of
graphs. Every minor-closed family of graphs has bounded degeneracy, as do graphs generated
by the Barabási-Albert preferential attachment process [5]. There is a rich theory of bounded
expansion graphs, which spans logic, graph minor theory, and fixed-parameter tractability [32].
All these graph classes have bounded degeneracy. For every such class of graphs, we get a
(1 + ε)-estimate of µs in O∗(n1−1/s/µ

1/s
s ) time. We stress that bounded degeneracy does not

imply any bounds on the maximum degree or the moments. The star graph has degeneracy
1, but has extremely large moments due to the central vertex.

Consider any bounded degeneracy graph without isolated vertices. We can accurately
estimate the average degree (s = 1) in poly(logn) queries, and estimate the variance of the
degree distribution (s = 2) in

√
n · poly(logn) queries. Contrast this with the (worst-case

optimal)
√
n bounds of Feige and Goldreich-Ron for average degree, and the O∗(n2/3) bound

of GRS for variance estimation. For general s, our bound is a significant improvement over
the O∗(n1−1/(s+1)/µ

1/(s+1)
s ) bound of GRS.

The algorithm attaining Theorem 1 requires an upper bound on the degeneracy of the
graph. When an degeneracy bound is not given, the algorithm recovers the bounds of GRS,
with an improvement on the extra poly(logn)/ε factors. More details are in Theorem 3. We
note that the degeneracy-dependent bound in Theorem 1 cannot be attained by an algorithm
that is only given n as a parameter. In particular, if an algorithm is only provided with n
and must work on all graphs with n vertices, then it must perform Ω(

√
n) queries in order

to approximate the average degree even for graphs of constant degeneracy (and constant
average degree). Details are given in Subsection 7.1 in the full version of the paper.

ICALP 2017



7:4 Sublinear Time Estimation of Degree Distribution Moments

The bound of Theorem 1 may appear artificial, but we prove that it is optimal when
µs ≤ ns−1. (For the general case, we also have optimal upper and lower bounds.) This
construction is an extension of the lower bound proof of GRS.

I Theorem 2. Consider the family of graphs with degeneracy α and where µs ≤ ns−1. Any
algorithm for the DDME problem on this family requires Ω

(
n1−1/s

µ
1/s
s

·
(
α1/s + min{α, µ1/s

s }
))

queries.

1.2 From degeneracy to moment estimation
We begin with a closer look at the lower bound examples of Feige, Goldreich-Ron, and GRS.
The core idea is quite simple: DDME is hard when the overall graph is sparse, but there are
small dense subgraphs. Consider the case of a clique of size 100

√
n connected to a tree of

size n. The small clique dominates the average degree, but any sublinear algorithm with
access only to random vertices pays Ω(

√
n) for a non-trivial approximation. GRS use more

complex constructions to get an Ω(n1−1/(s+1)) lower bound for general s. This also involves
embedding small dense subgraphs that dominate the moments.

Can we prove a converse to these lower bound constructions? In other words, prove
that the non-existence of dense subgraphs must imply that DDME is easier? A convenient
parameter for this non-existence is the degeneracy.

But the degeneracy is a global parameter, and it is not clear how a sublinear algorithm
can exploit it. Furthermore, DDME algorithms are typically very local; they sample random
vertices, query the degrees of these vertices and maybe also query the degrees of some of
their neighbors. We need a local property that sublinear algorithms can exploit, but can
also be linked to the degeneracy. We achieve this connection via the degree ordering of
G. Consider the DAG obtained by directing all edges from lower to higher degree vertices.
Chiba-Nishizeki related the properties of the out-degree distribution to the degeneracy, and
exploited this for clique counting [12]. Nonetheless, there is no clear link to DDME. (Nor do
we use any of their techniques; we state this result merely to show what led us to use the
degree ordering).

Our main insight is the construction of an estimator for DDME whose variance depends
on the degeneracy of G. This estimator critically uses the degree ordering. Our proof relates
the variance of this estimator to the density of subgraphs in G, which can be bounded by
the degeneracy. We stress that our algorithm is quite simple, and the technicalities are in
the analysis and setting of certain parameters.

1.3 Designing the algorithm
Designate the weight of an edge (u, v) to be ds−1

u + ds−1
v . A simple calculation yields that the

sum of the weights of all edges is exactly Ms ,
∑
v d

s
v = n · µs. Suppose we could sample

uniform random edges (and knew the total number of edges). Then we could hope to estimate
Ms through uniform edge sampling. The variance of the edge weights can be bounded, and
this yields an O∗(m/(nµs)1/s) = O∗(n1−1/s) algorithm (when no vertex is isolated). Indeed,
this is very similar to the approach of Aliakbarpour et al. [1]. Such variance calculations
were also used in the classic Alon-Matias-Szegedy result of frequency moment estimation [3].

Our approach is to simulate uniform edge samples using uniform vertex samples. Suppose
we sampled a set R of uniform random vertices. By querying the degrees of all these vertices,
we can select vertices in R with probability proportional to their degrees, which allows us to
uniformly sample edges that are incident to vertices in R. Now, we simply run the uniform
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edge sampling algorithm on these edges. This algorithmic structure was recently used for
sublinear triangle counting algorithms by Eden et al. [19].

Here lies the core technical challenge. How to bound the number of random vertices that
is sufficient for effectively simulating the random edge algorithm? This boils down to the
behavior of the variance of the “vertex weight" distribution. Let the weight of a vertex be the
sum of weights of its incident edges. The weight distribution over vertices can be extremely
skewed, and this approach would require a forbiddingly large R.

A standard technique from triangle counting (first introduced by Chiba-Nishizeki [12])
helps reduce the variance. Direct all edges from lower degree to higher degree vertices,
breaking ties consistently. Now, set the weight of a vertex to be the sum of weights
on incident out-edges. Thus, a high-degree vertex with lower degree neighbors will have
a significantly reduced weight, reducing overall variance. In the general case (ignoring
degeneracy), a relatively simple argument bounds the maximum weight of a vertex, which
enables us to bound the variance of the weight distribution. This yields a much simpler
algorithm and proof of the GRS bound.

In the case of graphs with bounded degeneracy, we need a more refined approach. Our key
insight is an intimate connection between the variance and the existence of dense subgraphs
in G. We basically show that the main structure that leads to high variance is the existence
of dense subgraphs. Formally, we can translate a small upper bound on the density of any
subgraph to a bound on the variance of the vertex weights. This establishes the connection
to the graph degeneracy.

1.4 Simplicity of our algorithm
Our viewpoint on DDME is quite different from GRS and its precursor [24], which proceed
by bucketing the vertices based on their degree. This leads to a complicated algorithm, which
essentially samples to estimate the size of the buckets, and also the number of edges between
various buckets (and “sub-buckets”). We make use of buckets in out analysis, in order to
obtain the upper bound that depends on the degeneracy α (in order to achieve the GRS
upper bound, our analysis does not use bucketing).

As explained above, our main DDME procedure, Moment-estimator is simple enough
to present in a few lines of pseudocode (see Figure 1). We feel that the structural simplicity
of Moment-estimator is an important contribution of our work.

Moment-estimator takes two sampling parameters r and q. The main result Theorem 3
follows from running Moment-estimator with a standard geometric search for the right
setting of r and q. In Moment-estimator we use id(v) to denote the label of a vertex v,
where vertices have unique ids and there is a complete order over the ids.

1.5 Other related work
As mentioned at the beginning of this section, Aliakbarpour et al. [1] consider the problem
of approximating the number of s-stars for s ≥ 2 when given access to uniformly selected
edges. Given the ability to uniformly select edges, they can select vertices with probability
proportional to their degree (rather than uniformly). This can be used to get an unbiased
estimator of µs (or the s-star count) with low variance. This leads to an O(m/(nµs)1/s)
bound, which is optimal (for µs ≤ ns−1).

Dasgupta, Kumar, and Sarlos give practical algorithms for average degree estimation,
though they assume bounds on the mixing time of the random walk on the graph [17]. A
recent paper of Chierichetti et al. build on these methods to sample nodes according to

ICALP 2017



7:6 Sublinear Time Estimation of Degree Distribution Moments

Moment-estimators(r, q)
1. Select r vertices, uniformly, independently, at random and let the resulting multi-set

be denoted by R. Query the degree of each vertex in R, and let dR =
∑
v∈R dv.

2. For i = 1, . . . , q do:
a. Select a vertex vi with probability proportional to its degree (i.e., with probability
dvi
/dR), and query for a random neighbor ui of vi.

b. If dvi < dui or dvi = dui and id(vi) < id(ui), set Xi = (ds−1
vi

+ ds−1
ui

). Else, set
Xi = 0.

3. Return X = 1
r ·

dR

q ·
q∑
i=1

Xi .

Figure 1 Algorithm Moment-estimators for approximating µs.

powers of their degree (which is closely related to DDME) [13]. Simpson, Seshadhri, and
McGregor give practical algorithms to estimate the entire cumulative degree distribution in
the streaming setting [38]. This is different from the sublinear query model we consider, and
the results are mostly empirical.

In [19], Eden et al. present an algorithm for approximating the number of triangles in a
graph. Although this is a very different problem than DDME, there are similar challenges
regarding high-degree vertices. Indeed, as mentioned earlier, the approach of sampling
random edges through a set of random vertices was used in [19].

The degeneracy is closely related to other “density" notions, such as the arboricity,
thickness, and strength of a graph [4]. There is a rich history of algorithmic results where
run time depends on the degeneracy [31, 12, 2, 20].

Other sublinear algorithms for estimating various graph parameters include: approximat-
ing the size of the minimum-weight spanning tree [11, 16, 15], maximum matching [33, 39]
and of the minimum vertex cover [35, 33, 30, 39, 28, 34].

A Comment regarding this extended abstract
We defer some of the details of the analysis of the algorithm, as well as the lower bound
proof, to the accompanying full version of the paper.

2 The main theorem

I Theorem 3. For every graph G, there exists an algorithm that returns a value Z such
that Z ∈ [(1− ε)µs(G), (1 + ε)µs(G)] with probability at least 2/3. Assume that algorithm is
given α, an upper bound on the degeneracy of G. (If no such bound is provided, the algorithm
assumes a trivial bound of α = ∞.) The expected running time is the minimum of the
following two expressions.

O
(

2s · n1−1/s · log2 n ·
( α
µs

)1/s
+ min

{n1−1/s · α
µ

1/s
s

,
ns−1 · α
µs

})
· s logn · log(s logn)

ε2 (1)

O
(n1−1/(s+1)

µ
1/(s+1)
s

+ min
{
n1−1/s,

ns−1−1/s

µ
1−1/s
s

})
· s logn · log(s logn)

ε2 (2)

Equation (2) is essentially the query complexity of GRS (albeit with a better dependence
on s, logn, and 1/ε). Thus, our algorithm is guaranteed to be at least as good as that. If α is
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exactly the degeneracy of G, then we can prove that Equation (1) is less than Equation (2).
Within each expression, there is a min of two terms. The first term is smaller iff µs ≤ ns−1.

The mechanism of deriving this rather cumbersome running time is the following. The
algorithm of Theorem 3 runs Moment-estimator for geometrically increasing values of r
and q, which is in turn derived from a geometrically decreasing guess of µs. It uses this guess
to set r and q. There is a setting of values depending on α, and a setting independent of it.
The algorithm simply picks the minimum of these settings to achieve the smaller running
time.

3 Sufficient conditions for r and q in Moment-estimator

In this section we provide sufficient conditions on the parameters r and q that are used
by Moment-estimator (Figure 1), in order for the algorithm to return a (1 + ε) estimate
of µs. First we introduce some notations. For a graph G = (V,E) and a vertex v ∈ V ,
let Γ(v) denote the set of neighbors of v in G (so that dv = |Γ(v)|). For any (multi-
)set R of vertices, let ER be the (multi-)set of edges incident to the vertices in R. We
will think of the edges in ER as ordered pairs; thus (v, u) is distinct from (u, v), and so
ER , {(v, u) : v ∈ R, u ∈ Γ(v)}. Observe that dR, as defined in Step 1 of Moment-
estimator equals |ER|. Let Ms = Ms(G) ,

∑
v∈V d

s
v, so that µs = Ms/n. In the analysis

of the algorithm, it is convenient to work with Ms instead of µs.
A critical aspect of our algorithm (and proof) is the degree ordering on vertices. Formally,

we set u ≺ v if du < dv or, du = dv and id(u) < id(v). Given the degree ordering, we let
Γ+(v) , {u ∈ Γ(v) : v ≺ u}, d+

v , |Γ+(v)|, and E+ , {(v, u) : v ∈ V, u ∈ Γ+(v)}. Here
and elsewhere, we use

∑
v as a shorthand for

∑
v∈V .

I Definition 4. We define the weight of an edge e = (v, u) as follows: if v ≺ u define
wt(e) , (ds−1

v + ds−1
u ). Otherwise, wt(e) , 0.

For a vertex v ∈ V , wt(v) ,
∑

u∈Γ(v)
wt((v, u)) =

∑
u∈Γ+(v)

wt((v, u)), and for a (multi-)set of

vertices R, wt(R) ,
∑
v∈R

wt(v).

Observe that given the above notations and definition, Moment-estimator selects uniform
edges from ER and sets each Xi (in Step 2b) to wt((vi, ui)). The next two claims readily
follow from Definition 4 (and the description of the algorithm).

I Claim 5.
∑
v wt(v) = Ms.

I Claim 6. Ex[X] = µs, where X is as defined in Step 3 of the algorithm.

3.1 Conditions on the parameters r and q

We next state two conditions on the parameters r and q, which are used in the algorithm,
and then establish several claims, based on the conditions holding. The conditions are stated
in terms of properties of the graph as well as the approximation parameter ε and a confidence
parameter δ.

1. The vertex condition: r ≥ (120 · n ·
∑
v wt(v)2)/(ε2 · δ ·M2

s ),
2. The edge condition: q ≥ 2000 ·m ·M2s−1/(ε2 · δ3 ·M2

s ) .

ICALP 2017



7:8 Sublinear Time Estimation of Degree Distribution Moments

I Lemma 7. If Condition 1 holds, then with probability at least 1− δ/2, all the following
hold.
1. wt(R) ∈

[(
1− ε

2
)
· rn ·Ms,

(
1 + ε

2
)
· rn ·Ms

]
.

2. |ER| ≤ 12
δ ·

r
n ·m.

3.
∑

(v,u)∈E+
R

wt ((v, u))2 ≤ 18
δ ·

r
n ·M2s−1.

The proof of the first item in Lemma 7 follows from Chebyshev’s inequality (using Var[wt(R)] ≤
r
n ·
∑
v wt(v)2), and the proofs of the other two items follow from Markov’s inequality (as

well as the definition of M2s−1).

I Theorem 8. If Conditions 1 and 2 hold, then X ∈ [(1− ε)µs, (1 + ε)µs] with probability
at least 1− δ.

Proof. Condition on any choice of R. We have Ex[X|R] = (1/r)wt(R). Turning to the
variance, since the edges (vi, ui) are chosen from ER uniformly at random, it is not hard to
verify that

Var[X|R] =
(

1
r

)2
·
(
|ER|
q

)2
·Var

[
q∑
i=1

Xi

∣∣∣ R] = 1
q
· |ER|

r
·
∑

(v,u)∈E+
R

wt ((v, u))2

r
.

Let us now condition on R such that the bounds of Lemma 7 hold. Note that such an R is
chosen with probability at least 1− δ/2. We get Var[X|R] ≤ 250

δ2 · 1
q ·

m
n ·

M2s−1
n . We apply

Chebyshev’s inequality and invoke Condition 2:

Pr
[∣∣∣(X|R)− Ex[X|R]

∣∣∣ ≤ ε

2 · µs
]
≤ 4 ·Var[X|R]

ε2 · µ2
s

≤ 1
q
· 4 · (250/δ2) ·m ·M2s−1

ε2 ·M2
s

≤ δ

2 .

By Lemma 7, Ex[X|R] = (1/r)wt(R) ∈ [(1− ε/2)µs, (1 + ε/2)µs]. The theorem follows by
applying the union bound. J

4 Satisfying Conditions 1 and 2 in general graphs

We show how to set r and q to satisfy Conditions 1 and 2 in general graphs. Our setting of r
and q will give us the same query complexity as [25] (up to the dependence on 1/ε and logn,
on which we improve, and the exponential dependence on s in [25], which we do not incur).
In the next section we show how the setting of r and q can be improved using a degeneracy
bound.

For cr and cq that are sufficiently large constants, we set

r = cr
ε2 · δ

· n

M
1/(s+1)
s

, q = cq
ε2 · δ3 ·min

{
n1−1/s,

ns−1/s

M
1−1/s
s

}
. (3)

This setting of parameters requires the knowledge of Ms, which is exactly what we are trying
to approximate (up to the normalization factor of n). A simple geometric search argument
alleviates the need to know Ms. For details see Section 6.

In order to assert that r as set in Equation (3) satisfies Condition 1, it suffices to establish
the next lemma.

I Lemma 9 (Condition 1 holds).
∑
v wt(v)2 ≤ 4M2− 1

s+1
s .
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Proof. Let θ = M
1/(s+1)
s be a degree threshold. We define H , {v : dv > θ}, L , V \H.

This partition into “high-degree” vertices (H) and “low-degree” vertices (L) will be useful
in upper bounding the maximum weight wt(v) of a vertex v, and hence upper bounding∑
v wt(v)2. Details follow.
We first observe that |H| ≤M1/(s+1)

s . This is true since otherwise,
∑
v∈H d

s
v > M

1/(s+1)
s ·

M
s

s+1
s = Ms, which is a contradiction. We claim that this upper bound on |H| implies that

max
v

d+
v ≤M1/(s+1)

s . (4)

To verify this, assume, contrary of the claim, that for some v, d+
v > M

1/(s+1)
s . But then

there are at least M1/(s+1)
s vertices u such that du ≥ dv ≥ d+

v > M
1/(s+1)
s . This contradicts

the bound on |H|.
It will also be useful to bound

∑
u∈H d

s−1
u . By Hölder’s inequality with conjugates s and

s/(s− 1) (a statement of Hölder’s inequality can be found in the full version of the paper)
and the bound on |H|,

∑
u∈H

ds−1
u =

∑
u∈H

1 · ds−1
u ≤ |H|1/s

(∑
u∈H

dsu

) s−1
s

≤M
1

s(s+1)
s ·M

s−1
s

s ≤M
s

s+1
s . (5)

We now turn to bounding maxv{wt(v)}. By the definition of wt(v) and the degree
ordering,

wt(v) =
∑

u∈Γ+(v)

(ds−1
v +ds−1

u ) ≤ 2
∑

u∈Γ+(v)

ds−1
u = 2

∑
u∈Γ+(v)∩L

ds−1
u + 2

∑
u∈Γ+(v)∩H

ds−1
u . (6)

For the first term on the right-hand-side of Equation (6), recall that du ≤M1/(s+1)
s for u ∈ L.

Thus, by Equation (4),∑
u∈Γ+(v)∩L

ds−1
u ≤ d+

v ·M
s−1
s+1
s ≤M

s
s+1
s . (7)

For the second term, using Γ+(v) ∩H ⊆ H and applying Equation (5),∑
u∈Γ+(v)∩H

ds−1
u ≤

∑
u∈H

ds−1
u ≤M

s
s+1
s . (8)

Finally,∑
v

wt(v)2 ≤ max
v
{wt(v)} ·

∑
v

wt(v) ≤M2−1/(s+1)
s ,

where the second inequality follows by combining Equations (6)–(8) to get an upper bound
on maxv{wt(v)} and applying Claim 5. J

The next lemma implies that Condition 2 holds for q as set in Equation (3).

I Lemma 10 (Condition 2 holds). min
{
n1−1/s, n

s−1/s

M
1−1/s
s

}
≥ 2m · M2s−1

M2
s

.

Proof. We can bound M2s−1 in two ways. First, by a standard norm inequality, since s ≥ 1,

M2s−1 =
∑
v

d2s−1
v ≤

(∑
v

dsv

)(2s−1)/s

= M2−1/s
s . (9)
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We can also use the trivial bound dv ≤ n and get M2s−1 ≤ ns−1 ·Ms. Thus, M2s−1 ≤
min{M2−1/s

s , ns−1 ·Ms}. By applying Hölder’s inequality with conjugates s/(s− 1) and s
we get that

2m =
∑
v

1 · dv ≤ n(s−1)/s ·

(∑
v

dsv

)1/s

= n1−1/s ·M1/s
s . (10)

We multiply the bound by M2s−1 to complete the proof. J

5 The Degeneracy Connection

The degeneracy, or the coloring number, of a graph G = (V,E) is the maximum value, over
all subgraphs G′ of G, of the minimum degree in G′. In this definition, we can replace
“minimum" by “average” to get a 2-factor approximation to the degeneracy (refer to [26];
Theorem 2.4.4 and Corollary 5.2.3 of [18]). Abusing notation, it will be convenient for us to
define α(G) = maxS⊆V

{
|E(S)|
|S|

}
.

We also make the following observation regarding the relation between α(G) and Ms(G).

I Claim 11. For every graph G, α(G) ≤Ms(G)
1

s+1 .

In this section, we show that the following setting of parameters forMoment-estimators
satisfies Conditions 1 and 2, for every graph G with degeneracy at most α (i.e., α(G) ≤ α),
and for appropriate constants cr and cq.

r = cr
ε2 · δ

·min
{

n

M
1/(s+1)
s

, 2s · n · log2 n ·
(
α

Ms

)1/s
}
, (11)

q = cq
ε2 · δ3 ·min

{
n · α
M

1/s
s

,
ns · α
Ms

, n1−1/s,
ns−1/s

M
1−1/s
s

}
. (12)

Clearly the setting of r and q in Equation (11) and Equation (12) respectively, can only
improve on the setting of r and q for the general case in Equation (3) (Section 4).

Our main challenge is in proving that Condition 1 holds for r as set in Equation (11)
(when the graph has degeneracy at most α). Here too, the goal is to upper bound

∑
v wt(v)2.

However, as opposed to the proof of Lemma 9 in Section 4, where we simply obtained an
upper bound on maxv{wt(v)} (and bounded

∑
v wt(v)2 by maxv{wt(v)} ·Ms), here the

analysis is more refined, and uses the degeneracy bound. For details see the proof of our
main lemma, stated next.

I Lemma 12 (Condition 1 holds). For a sufficiently large constant c,
∑
v wt(v)2 ≤ c · 2s ·

α1/s ·M2−1/s
s · log2 n.

Proof Sketch. In this extended abstract we only provide the high-level structure of the
proof. By the definition of wt(v), and since dv ≤ du for every v and u ∈ Γ+(v),∑

v

wt(v)2 =
∑
v

( ∑
u∈Γ+(v)

(
ds−1
v + ds−1

u

) )2
≤ 4 ·

∑
v

( ∑
u∈Γ+(v)

ds−1
u

)2
. (13)

In order to bound the expression on the right-hand-side of Equation (13) we partition
the vertices (with degree at least 1) according to their degree. Let Ui , {u ∈ V : du ∈
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(2i−1, 2i]} for 0 ≤ i ≤ dlogne, and let Γ+
i (v) be a shorthand for Γ+(v) ∩ Ui. By considering

each Ui separately and applying Hölder’s inequality we get the following bound for every v.∑
u∈Γ+

i
(v)

1 · ds−1
u ≤ |Γ+

i (v)|1/s ·
( ∑
u∈Γ+

i
(v)

dsu

)(s−1)/s
≤ |Γ+

i (v)|1/s ·M (s−1)/s
s . (14)

For each i, we also partition the vertices in V according to the number of outgoing edges
that they have to Ui. Specifically, for 1 ≤ j ≤ dlog(n/α)e, define Vi,j ,

{
v ∈ V : |Γ+

i (v)| ∈(
2j−1α, 2jα

] }
. Also define Vi,0 ,

{
v ∈ V : |Γ+

i (v)| ≤ α
}
. Hence, {Vi,j}dlog(n/α)e

j=0 is a
partition of V for each i.

For a vertex u, let Γ−(u) , {v : u ∈ Γ+(v)}. For two sets of vertices S and T (which are
not necessarily disjoint), let E+(S, T ) , {(u, v) : (u, v) ∈ E+, u ∈ S, v ∈ T}. By applying
Equation (14) (to one term of the square

(∑
u∈Γ+

i
(v) d

s−1
u

)2
), and by the definition of Vi,j ,

it can be shown that

∑
v

( ∑
u∈Γ+

i
(v)

ds−1
u

)2
≤ M (s−1)/s

s ·
dlogne∑
j=0

( ∑
u∈Ui

ds−1
u ·

∑
v∈Γ−(u)∩Vi,j

|Γ+
i (v)|1/s

)
. (15)

For j < 2 we can show that
∑
u∈Ui

ds−1
u

∑
v∈Γ−(u)∩Vi,j

|Γ+
i (v)|1/s ≤ 2 ·α1/s ·Ms. Turning

to j ≥ 2, since all vertices in Ui have degree at most 2i, we get:∑
u∈Ui

ds−1
u ·

∑
v∈Γ−(u)∩Vi,j

|Γ+
i (v)|1/s ≤ 2j/s · α1/s · 2i(s−1) · |E+(Vi,j , Ui)| . (16)

Since G has degeneracy at most α and by the definition of Vi,j , it can be shown that
|E+(Vi,j , Ui)| ≤ 2α · |Ui|, where Ui = Ui ∩

(⋃
v∈Vi,j

Γ+(v)
)
. Furthermore, the definition

of Ui (together with the degeneracy bound and the definition of Ms) implies that |Ui| ≤
Ms ·2−((i−1)(s−1)+j) ·α−1. The lemma follows by combining Equation (13) with Equation (15)
and the above bounds for j < 2 and j ≥ 2. J

The next lemma, which establishes Condition 2, can be proved similarly to Lemma 10.

I Lemma 13 (Condition 2 holds).

min
{
n · α
M

1/s
s

,
ns · α
Ms

, n1−1/s,
ns−1/s

M
1−1/s
s

}
≥ m · M2s−1

M2
s

.

6 Wrapping things up

The proof of our final result, Theorem 3, follows by combining Theorem 8, Lemma 9,
Lemma 12 and Lemma 13, with a geometric search for a factor-2 estimate of Ms (which
determines the correct setting of r and q in the algorithm).
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