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Abstract
Let B be a set of n axis-parallel boxes in Rd such that each box has a corner at the origin and
the other corner in the positive quadrant of Rd, and let k be a positive integer. We study the
problem of selecting k boxes in B that maximize the volume of the union of the selected boxes.
The research is motivated by applications in skyline queries for databases and in multicriteria
optimization, where the problem is known as the hypervolume subset selection problem. It is
known that the problem can be solved in polynomial time in the plane, while the best known
running time in any dimension d ≥ 3 is Ω

((
n
k

))
. We show that:

The problem is NP-hard already in 3 dimensions.
In 3 dimensions, we break the bound Ω

((
n
k

))
, by providing an nO(

√
k) algorithm.

For any constant dimension d, we give an efficient polynomial-time approximation scheme.
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1 Introduction

An anchored box is an orthogonal range of the form box(p) := [0, p1]× . . .× [0, pd] ⊂ Rd≥0,
spanned by the point p ∈ Rd>0. This paper is concerned with the problem Volume Selection:
Given a set P of n points in Rd>0, select k points in P maximizing the volume of the union
of their anchored boxes. That is, we want to compute

VolSel(P, k) := max
S⊆P, |S|=k

vol
( ⋃
p∈S

box(p)
)
,

as well as a set S∗ ⊆ P of size k realizing this value. Here, vol denotes the usual volume.

Motivation

This geometric problem is of key importance in the context of multicriteria optimization and
decision analysis, where it is known as the hypervolume subset selection problem (HSSP)
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[2, 3, 4, 24, 12, 13]. In this context, the points in P correspond to solutions of an optimization
problem with d objectives, and the goal is to find a small subset of P that “represents”
the set P well. The quality of a representative subset S ⊆ P is measured by the volume
of the union of the anchored boxes spanned by points in S; this is also known as the
hypervolume indicator [34]. Note that with this quality indicator, finding the optimal size-k
representation is equivalent to our problem VolSel(P, k). In applications, such bounded-size
representations are required in archivers for non-dominated sets [23] and for multicriteria
optimization algorithms and heuristics [3, 10, 7].1 Besides, the problem has recently received
attention in the context of skyline operators in databases [17].

In 2 dimensions, the problem can be solved in polynomial time [2, 13, 24], which is used
in applications such as analyzing benchmark functions [2] and efficient postprocessing of
multiobjective algorithms [12]. A natural question is whether efficient algorithms also exist in
dimension d ≥ 3, and thus whether these applications can be pushed beyond two objectives.

In this paper, we answer this question negatively, by proving that Volume Selection
is NP-hard already in 3 dimensions. We then consider the question whether the previous
Ω(
(
n
k

)
) bound can be improved, which we answer affirmatively in 3 dimension. Finally, in

any constant dimension, we improve the best-known (1− 1/e)-approximation to an efficient
polynomial-time approximation scheme (EPTAS). See Section 1.2 for details.

1.1 Further Related Work
Klee’s Measure Problem

To compute the volume of the union of n (not necessarily anchored) axis-aligned boxes in Rd
is known as Klee’s measure problem. The fastest known algorithm takes time2 O(nd/2), which
can be improved to O(nd/3polylog(n)) if all boxes are cubes [15]. By a simple reduction [8],
the same running time as on cubes can be obtained on anchored boxes, which can be improved
to O(n logn) for d ≤ 3 [6]. These results are relevant to this paper because Klee’s measure
problem on anchored boxes (spanned by the points in P ) is a special case of Volume
Selection (by calling VolSel(P, |P |)).

Chan [14] gave a reduction from k-Clique to Klee’s measure problem in 2k dimensions.
This proves NP-hardness of Klee’s measure problem when d is part of the input (and thus
d can be as large as n). Moreover, since k-Clique has no f(k) · no(k) algorithm under the
Exponential Time Hypothesis [16], Klee’s measure problem has no f(d) · no(d) algorithm
under the same assumption. The same hardness results also hold for Klee’s measure problem
on anchored boxes, by a reduction in [8] (NP-hardness was first proven in [11]).

Finally, we mention that Klee’s measure problem has a very efficient randomized (1± ε)-
approximation algorithm in time O(n log(1/δ)/ε2) with error probability δ [9].

Known Results for Volume Selection

As mentioned above, 2-dimensional Volume Selection can be solved in polynomial time;
the initial O(kn2) algorithm [2] was later improved to O((n−k)k+n logn) [13, 24]. In higher
dimensions, by enumerating all size-k subsets and solving an instance of Klee’s measure
problem on anchored boxes for each one, there is an O

((
n
k

)
kd/3polylog(k)

)
algorithm. For

1 We remark that in these applications the anchor point is often not the origin, however, by a simple
translation we can move our anchor point from (0, . . . , 0) to any other point in Rd.

2 In O-notation, we always assume d to be a constant, and log(x) is to be understood as max{1, log(x)}.
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small n − k, this can be improved to O(nd/2 logn + nn−k) [10]. Volume Selection is
NP-hard when d is part of the input, since the same holds already for Klee’s measure problem
on anchored boxes. However, this does not explain the exponential dependence on k for
constant d.

Since the volume of the union of boxes is a submodular function (see, e.g., [31]), the
greedy algorithm for submodular function maximization [27] yields a (1−1/e)-approximation
of VolSel(P, k). This algorithm solves O(nk) instances of Klee’s measure problem on at
most k anchored boxes, and thus runs in time O(nkd/3+1polylog(k)). Using [9], this running
time improves to O(nk2 log(1/δ)/ε2), at the cost of decreasing the approximation ratio to
1− 1/e− ε and introducing an error probability δ. See [20] for related results in 3 dimensions.

A problem closely related to Volume Selection is Convex Hull Subset Selection:
Given n points in Rd, select k points that maximize the volume of their convex hull. For
this problem, NP-hardness was recently announced in the case d = 3 [28].

1.2 Our Results
In this paper we push forward the understanding of Volume Selection. We prove that
Volume Selection is NP-hard already for d = 3 (Section 3). Previously, NP-hardness
was only known when d is part of the input and thus can be as large as n. Moreover, this
establishes Volume Selection as another example for problems that can be solved in
polynomial time in the plane but are NP-hard in three or more dimensions (see also [5, 26]).

In the remainder, we focus on the regime where d ≥ 3 is a constant and k � n. All known
algorithms (explicitly or implicitly) enumerate all size-k subsets of the input set P and thus
take time Ω

((
n
k

))
= nΩ(k). In 3 dimensions, we break this time bound by providing an nO(

√
k)

algorithm (Section 4). To this end, we project the 3-dimensional Volume Selection to a
2-dimensional problem and then use planar separator techniques.

Finally, in Section 5 we design an EPTAS for Volume Selection. More precisely, we
give a (1− ε)-approximation algorithm running in time O((n/εd)(logn+ k+ 2O(ε−2 log 1/ε)d)),
for any constant dimension d. Note that the “combinatorial explosion” is restricted to d
and ε; for any constant d, ε the algorithm runs in time O(n(k + logn)). This improves the
previously best-known (1− 1/e)-approximation, even in terms of running time.

2 Preliminaries

All boxes considered in the paper are axis-parallel and anchored at the origin. For points
p = (p1, . . . , pd), q = (q1, . . . , qd) ∈ Rd, we say that p dominates q if pi ≥ qi for all 1 ≤ i ≤ d.
For p = (p1, . . . , pd) ∈ Rd>0, we let box(p) := [0, p1]× . . .× [0, pd]. Note that box(p) is the
set of all points q ∈ Rd≥0 that are dominated by p. A point set P is a set of points in Rd>0.
We denote the union

⋃
p∈P box(p) by U(P ). The usual Euclidean volume is denoted by vol.

With this notation, we set

µ(P ) := vol(U(P )) = vol
( ⋃
p∈P

box(p)
)

= vol
( ⋃
p∈P

[0, p1]× . . .× [0, pd]
)
.

We study Volume Selection: Given a point set P of size n and 0 ≤ k ≤ n, compute

VolSel(P, k) := max
S⊆P, |S|=k

µ(S).

Note that we can relax the requirement |S| = k to |S| ≤ k without changing this value.

SoCG 2017



22:4 Maximum Volume Subset Selection for Anchored Boxes

Figure 1 Left: triangular grid Γ. Right: choosing the parity of paths.

3 Hardness in 3 dimensions

We consider the following decision variant of 3-dimensional Volume Selection: Given a
triple (P, k, V ), where P is a set of points in R3

>0, k is a positive integer and V is a positive
real value, is there a subset Q ⊆ P of k points such that µ(Q) ≥ V ?

We are going to show that the problem is NP-complete. First, we show that an interme-
diate problem about selecting a large independent set in a given induced subgraph of the
triangular grid is NP-hard. Then we argue that this problem can be embedded using boxes
whose points lie in two parallel planes. One plane is used to define the triangular-grid-like
structure and the other is used to encode the subset of vertices that describe the induced
subgraph of the grid.

3.1 Triangular grid
Let Γ be the infinite graph with vertex set and edge set (see Figure 1):

V (Γ) =
{

(i+ j · 1/2, j ·
√

3/2) | i, j ∈ N
}
,

E(Γ) = {ab | a, b ∈ V (Γ), the Euclidean distance between a and b is exactly 1} .

We use the problem Independent Set on Induced Triangular Grid: Given a pair
(A, `), where A is a subset of V (Γ) and ` is a positive integer, is there a subset B ⊆ A of `
vertices such that no two vertices of B are connected by an edge of E(Γ)?

I Lemma 3.1. Independent Set on Induced Triangular Grid is NP-complete.

Proof Sketch. Garey and Johnson [19] show that the problem Vertex Cover is NP-
complete for planar graphs of degree at most 3, which implies that Independent Set is
NP-complete for planar graphs of degree at most 3.

Given a planar graph G of degree at most 3, we construct an orthogonal drawing of G on
a square grid of polynomial size [29, 30] and transform it into a drawing of G on Γ. Rescaling
and rerouting, we get a graph H that is an induced subgraph of Γ, and a subdivision of G
where each edge of G is path in H with an even number of interior vertices. See Figure 1,
right, to see how to choose the parity of the path. If α(G) is the size of the largest independent
set in G, and each edge uv of G is represented by a path with 2kuv internal vertices, then
α(H) = α(G) +

∑
uv∈E(G) kuv. Indeed, we can obtain H from G by repeatedly replacing an

edge by a 3-edge path, and any such replacement increases the size of the largest independent
set by exactly 1. J

3.2 The point set
Let m ≥ 3 be an arbitrary integer and consider the point set Pm defined by Pm = {(x, y, z) ∈
N3 | x + y + z = m}, see Figure 2. Standard induction shows that the set Pm has
(m− 1)(m− 2)/2 points and that µ(Pm) = m(m− 1)(m− 2)/6.
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Figure 2 Left: the point set Pm and the boxes box(p), with p ∈ Pm. Right: the point q = p+ ∆ε

and the set diff(q).

Consider the real number ε = 1/4m2, and define the vector ∆ε = (ε, ε, ε). Note that ε is much
smaller than 1. For each point p ∈ Pm−1, consider the point p+∆ε, see Figure 2, right. Let us
define the set Qm = {p+ ∆ε | p ∈ Pm−1}. It is clear that Qm has |Pm−1| = (m−2)(m−3)/2
points, for m ≥ 3. The points of Qm lie on the plane x+ y + z = m− 1 + 3ε. For each point
q of Qm define

diff(q) = U
(
Pm ∪ {q}

)
\ U
(
Pm
)

=
( ⋃
p∈Pm∪{q}

box(p)
)
\
( ⋃
p∈Pm

box(p)
)
.

Note that diff(q) is the union of 3 boxes of size ε× ε× 1 and a cube of size ε× ε× ε, see
Figure 2, right. The sets and the parameter ε are selected to have the following properties.

I Lemma 3.2. The following holds.
If Q′ ⊆ Qm and the sets diff(q), for all q ∈ Q′, are pairwise disjoint, then µ(Pm ∪Q′) =
µ(Pm) + |Q′| · (3ε2 + ε3).
If Q′ ⊆ Qm and Q′ contains two points q0 and q1 such that diff(q0) and diff(q1)
intersect, then µ(Pm ∪Q′) < µ(Pm) + |Q′| · (3ε2 + ε3).
If P ′ is a subset of Pm such that Pm \ P ′ is non-empty, then µ(P ′ ∪Qm) < µ(Pm).

3.3 The reduction
We can define naturally a graph Tm on the set Qm by using the intersection of the sets
diff(·). The vertex set of Tm is Qm, and two points q, q′ ∈ Qm define an edge qq′ of Tm if
and only if diff(q) and diff(q′) intersect, see Figure 3. Simple geometry shows that Tm is
isomorphic to a part of the triangular grid Γ, up to scaling. Thus, choosing m large enough,
we can get an arbitrarily large portion of the triangular grid Γ. Note that a subset of vertices
Q′ ⊆ Qm is independent in Tm if and only if the sets {diff(q) | q ∈ Q′} are pairwise disjoint.

I Theorem 3.3. The problem Volume Selection is NP-complete in 3 dimensions.

Proof. Consider an instance (A, `) to Independent Set on Induced Triangular Grid,
where A is a subset of the vertices of the triangular grid Γ and ` is an integer. Take m
large enough so that Tm is isomorphic to an induced subgraph of Γ that contains A. For
each vertex v of Tm let ψΓ(v) be the corresponding vertex of Γ. For each subset B of A, let
Qm(B) be the subset of Tm that corresponds to B, that is, Qm(B) = {q ∈ Qm | ψΓ(q) ∈ B}.

Consider the set of points P = Pm ∪Qm(A), the parameter k = (m− 1)(m− 2)/2 + `,
and the value V = m(m−1)(m−2)

6 + ` · (3ε2 + ε3). Then we can show that (A, `) is a yes

SoCG 2017
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Figure 3 The graph Tm for m = 9.

instance for Independent Set on Induced Triangular Grid if and only if (P, k, V ) is
a yes instance for Volume Selection.

If (A, `) is a yes instance for Independent Set on Induced Triangular Grid, there
is a subset B ⊆ A of ` independent vertices in Γ. This implies that Qm(B) is an independent
set in Tm, that is, the sets {diff(q) | q ∈ Qm(B)} are pairwise disjoint. Lemma 3.2 then
implies that

µ(Pm ∪Qm(B)) = µ(Pm) + |B| · (3ε2 + ε3) = m(m− 1)(m− 2)
6 + ` · (3ε2 + ε3) = V.

Therefore Pm ∪Qm(B) is a subset of P with |Pm|+ |B| = (m− 1)(m− 2)/2 + ` = k points
such that µ(Pm ∪Qm(B)) = V and thus (P, k, V ) is a yes instance for Volume Selection.

Assume now that (P, k, V ) is a yes instance for Volume Selection. This means that P
contains a subset Q of k points such that

µ(Q) ≥ V = m(m− 1)(m− 2)
6 + ` · (3ε2 + ε3) = µ(Pm) + ` · (3ε2 + ε3) > µ(Pm).

Because of Lemma 3.2, it must be that Pm is contained in Q, as otherwise we would
have µ(Q) < µ(Pm). Since we have Pm ⊂ Q and P = Pm ∪ Qm(A), we obtain that Q is
Pm ∪Qm(B) for some B ⊆ A. Moreover, |B| = k − |Pm| = `. By Lemma 3.2, if Qm(B) is
not an independent set in Tm, we have

µ(Q) = µ(Pm ∪Qm(B)) < µ(Pm) + `(3ε2 + ε) = V,

which contradicts the assumption that µ(Q) ≥ V . Thus it must be that Qm(B) is an
independent set in Tm. It follows that B ⊂ A has size ` and is an independent set in Γ, and
thus (A, `) is a yes instance for Independent Set on Induced Triangular Grid. J

4 Exact Algorithm in 3 Dimensions

In this section we design an algorithm to solve Volume Selection in 3 dimensions in time
nO(
√
k). The main insight is that, for an optimal solution Q∗, the boundary of U(Q∗) is a

planar graph with O(k) vertices, and therefore has a balanced separator with O(
√
k) vertices.

We would like to guess the separator, break the problem into two subproblems, and solve
each of them recursively. This basic idea leads to a few technical challenges to take care of.



K. Bringmann, S. Cabello, and M.T.M. Emmerich 22:7

vq4

f(q4, Q)

f(q2, Q)

vq2

Figure 4 The graphs G(Q) (left) and T (Q) (right).

One obstacle is that subproblems should be really independent because we do not want to
double count some covered parts. Essentially, a separator in the graph-theory sense does
not imply independent subproblems in our context. Another technicality is that some of the
subproblems that we encounter recursively cannot be solved optimally; we can only get a
lower bound to the optimal value. However, for the subproblems that define the optimal
solution at the higher level of the recursion, we do compute an optimal solution.

Let P be a set of n points in the positive quadrant of R3. Through our discussion, we
will assume that P is fixed and thus drop the dependency on P and n from the notation. We
can assume that no point of P is dominated by another point of P . Using an infinitesimal
perturbation of the points, we can assume that all points have all coordinates different. Let
M be the largest x- or y-coordinate in P , thus M = max{px, py | p ∈ P}. We define σ to be
the square in R2 defined by [−1,M + 1]× [−1,M + 1]. It has side length M + 2.

For each subset Q of P , consider the projection of U(Q) onto the xy-plane. This defines a
plane graph, which we denote by G(Q); see Figure 4, left. We consider G(Q) as a geometric,
embedded graph where each vertex is a point and each edge is a horizontal or vertical
straight-line segment on the xy-plane. The projection of each point q ∈ Q defines a vertex,
which we denote by vq. Each vertex q ∈ Q defines a bounded face f(q,Q) in G(Q). This is the
projection of the face on the boundary of U(Q) contained in the plane {(x, y, z) ∈ R3 | z = qz}.
In fact, each bounded face of G(Q) is f(q,Q) for some q ∈ Q. We triangulate each bounded
face f(q,Q) of G(Q) canonically, see Figure 4 right. We add all possible edges from the top
rightmost vertex vq, then all possible edges from the bottom leftmost vertex, and finally
all edges from the left bottom-most vertex. This is the canonical triangulation of the face
f(q,Q), and we apply it to each bounded face of G(Q). The outer face of G(Q) may also have
many vertices. We place on top the square σ, with vertices {−1,M + 1}2, and triangulate in
some systematic way. Let T (Q) be the resulting geometric, embedded graph, see Figure 4,
right. The graph T (Q) is a triangulation of the square σ with internal vertices. It is easy to
see that G(Q) and T (Q) have O(|Q|) vertices and edges.

A polygonal domain is a subset of the plane defined by a polygon where we remove the
interior of some polygons, which form holes. A polygonal domain D is Q-compliant if its
boundary is contained in the edge set of T (Q). Note that a Q-compliant polygonal domain
has O(|Q|) edges because the graph T (Q) has O(|Q|) edges.

SoCG 2017
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We are going to use dynamic programming based on planar separators of T (Q∗) for an
optimal solution Q∗. A valid tuple to define a subproblem is a tuple (S,D, `), where S ⊂ P ,
D is an S-compliant polygonal domain, and ` is a positive integer. The tuple (S,D, `) models
a subproblem where the points of S are already selected to be part of the feasible solution,
D is a S-compliant domain so that we only care about the volume inside the cylinder D×R,
and we can still select ` points from P ∩ (D×R). We have two different values associated to
each valid tuple, depending on which subsets Q of vertices from P ∩D can be selected:

Φfree(S,D, `) = max{vol(U(S ∪Q) ∩ (D × R)) | Q ⊂ P ∩ (D × R), |Q| ≤ `}.
Φcomp(S,D, `) = max{vol(U(S ∪Q) ∩ (D × R)) | Q ⊂ P ∩ (D × R), |Q| ≤ `,

D is (S ∪Q)-compliant}.

Obviously, for all valid tuples (S,D, `) we have Φcomp(S,D, `) ≤ Φfree(S,D, `). On the
other hand, we are interested in the valid tuple (∅, σ, k), for which we have Φfree(∅, σ, k) =
Φcomp(∅, σ, k).

We would like to get a recursive formula for Φfree(S,D, `) or Φcomp(S,D, `) using planar
separators. More precisely, we would like to use a separator in T (S ∪ Q∗) for an optimal
solution, and then branch on all possible such separators. However, none of the two definitions
seem good enough for this. If we would use Φfree(S,D, `), then we divide into domains that
may have too much freedom and the interaction between subproblems gets complex. If we
would use Φcomp(S,D, `), then merging the problems becomes an issue. Thus, we take a
mixed route where we argue that, for the valid tuples that are relevant for finding the optimal
solution, we actually have Φfree = Φcomp.

A valid partition π of (S,D, `) is a collection of valid tuples π = {(S1, D1, `1), . . . , (St, Dt, `t)}
such that

S1 = · · · = St = S ∪ S0 for some set S0 ⊂ P ∩D;
|S0| = O

(√
|S|+ `

)
;

the domains D1,. . . , Dt have pairwise disjoint interiors and D =
⋃
iDi;

` = |S0|+
∑
i `i; and

`i ≤ 2`/3 for each i = 1, . . . , t.
Let Π(S,D, `) be the family of valid partitions for the tuple (S,D, `). We remark that
different valid partitions may have different cardinality.

I Lemma 4.1. For each valid tuple (S,D, `) we have

Φfree(S,D, `) ≥ max
π∈Π(S,D,`)

∑
(S′,D′,`′)∈π

Φfree(S′, D′, `′),

Φcomp(S,D, `) ≤ max
π∈Π(S,D,`)

∑
(S′,D′,`′)∈π

Φcomp(S′, D′, `′).

Proof Sketch. For the first inequality, we show that, for each π ∈ Π(S,D, `), joining solutions
to the subproblems Φfree(·) defined by {(S′, D′, `′) | (S′, D′, `′) ∈ π} gives a feasible solution
for the problem Φfree(S,D, `).

For the second inequality, we consider an optimal solution Q∗ ⊆ P ∩D with at most `
points for the problem Φcomp(S,D, `). The triangulation T (S ∪Q∗) is a 3-connected planar
graph and the boundary of D is contained in T (S ∪Q∗) because D is (S ∪Q∗)-compliant.
We now use the cycle-separator theorem of Miller [25] to split the vertices of Q∗: There
is a cycle γ in T (S ∪ Q∗) of length O(

√
|S|+ `) such that the interior of γ has at most

2|Q∗|/3 vertices of Q∗ and the exterior of γ has at most 2|Q∗|/3 vertices of Q∗. Using this
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cycle separator we can build a valid partition πγ ∈ Π(S,D, `) such that Q∗ ∩D′ is a feasible
solution to each (S′, D′, `′) ∈ πγ . For the correctness argument, we use an easy monotonicity
property of being Q-compliant, which we skip in this short version. We then have

Φcomp(S,D, `) ≤
∑

(S′,D′,`′)∈πγ

Φcomp(S′, D′, `′),

and the second inequality follows. J

Our dynamic programming algorithm closely follows the inequalities of Lemma 4.1.
Specifically, we define for each valid tuple (S,D, `) the value

Ψcomp(S,D, `) =


Φcomp(S,D, `) if ` ≤ O(

√
k);

max
π∈Π(S,D,`)

∑
(S′,D′,`′)∈π

Ψcomp(S′, D′, `′), otherwise.

Standard induction on ` using Lemma 4.1 implies the following property.

I Lemma 4.2. For each valid tuple (S,D, `) we have

Φcomp(S,D, `) ≤ Ψcomp(S,D, `) ≤ Φfree(S,D, `).

Since we know that Φfree(∅, σ, k) = Φcomp(∅, σ, k), Lemma 4.2 implies that Ψcomp(∅, σ, k) =
Φfree(∅, σ, k). Hence, it suffices to compute Ψcomp(∅, σ, k) using its recursive definition. In
the remainder, we bound the running time of this algorithm.

I Theorem 4.3. In 3 dimensions, Volume Selection can be solved in time nO(
√
k).

Proof Sketch. We compute Ψcomp(∅, σ, k) using its recursive definition. The base cases,
where ` = O(

√
k), can be solved in nO(`) = nO(

√
k) time using simple enumeration of all

size-` subsets.
Starting with (S1, D1, `1) = (∅, σ, k), consider a sequence of valid tuples (S1, D1, `1),

(S2, D2, `2), . . . such that, for i ≥ 2, the tuple (Si, Di, `i) appears in some valid partition
of (Si−1, Di−1, `i−1). By the properties of valid partitions, we have `i ≤ 2`i−1/3 and
|Si−1| ≤ |Si| ≤ |Si−1| + O(

√
|Si|+ `i−1). It follows that the sequence `1, `2, . . . decreases

geometrically, from which one can deduce that |Si| = O(
√
k) for all i. This means that there

are nO(
√
k) valid tuples (S,D, `) that appear in the recursive calls. The same bound can be

shown for the number of valid partitions in each step. J

We only described an algorithm that computes VolSel(P, k), i.e., the maximal volume
realized by any size-k subset of P . It is easy to augment the algorithm with appropriate
bookkeeping to also compute an actual optimal subset.

5 Efficient Polynomial-time Approximation Scheme

In this section we design an approximation algorithm for Volume Selection.

I Theorem 5.1. Given a point set P of size n in Rd>0, 0 ≤ k ≤ n, and 0 < ε ≤ 1/2, we can
compute a (1±ε)-approximation of VolSel(P, k) in time O(n·ε−d(logn+k+2O(ε−2 log 1/ε)d)).
We can also compute a set S ⊆ P of size at most k such that µ(S) is a (1− ε)-approximation
of VolSel(P, k) in the same time.
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The approach is based on the shifting technique of Hochbaum and Maass [21]. However,
there are some non-standard aspects in our application. It is impossible to break the problem
into independent subproblems because all the anchored boxes intersect around the origin. We
instead break the input into subproblems that are almost independent. To achieve this, we
use an exponential grid, instead of the usual regular grid with equal-size cells. Alternatively,
this could be interpreted as using a regular grid in a log-log plot of the input points.

Throughout this section we need two numbers λ, τ ≈ d/ε. Specifically, we define τ as the
smallest integer larger than d/ε, and λ as the smallest power of (1− ε)−1/d larger than d/ε.
We consider a partitioning of the positive quadrant Rd>0 into regions of the form

R(x̄) :=
d∏
i=1

[λxi , λxi+1) for x̄ = (x1, . . . , xd) ∈ Zd.

On top of this partitioning we consider a grid, where each grid cell contains (τ − 1)d regions
and the grid boundaries are thick, i.e., two grid cells do not touch but have a region in
between. More precisely, for any offset ¯̀= (`1, . . . , `d) ∈ Zd, we define the grid cells

C¯̀(ȳ) :=
d∏
i=1

[λτ ·yi+`i+1, λτ(yi+1)+`i) for ȳ = (y1, . . . , yd) ∈ Zd.

Note that each grid cell indeed consists of (τ − 1)d regions, and the space not contained in
any grid cell (i.e., the grid boundaries) consists of all regions R(x̄) with xi ≡ `i (mod τ) for
some 1 ≤ i ≤ d.

5.1 Description of the algorithm
Our approximation algorithm works as follows.
(1) Iterate over all grid offsets ¯̀∈ [τ ]d. This is the key step of the shifting technique [21].
(2) For any choice of the offset ¯̀, remove all points not contained in any grid cell, i.e., remove

points contained in the thick grid boundaries. Call the remaining points P ′ ⊆ P .
(3) The grid cells now induce a partitioning of P ′ into sets P ′1, . . . , P ′m, where each P ′i is the

intersection of P ′ with a grid cell Ci (with Ci = C¯̀(ȳ(i)) for some ȳ(i) ∈ Zd). Note that
these grid cell subproblems P ′1, . . . , P ′m are not independent, since any two boxes have
a common intersection near the origin, no matter how different their coordinates are.
However, as shown below treating P ′1, . . . , P ′m as independent subproblems still yields an
approximation.

(4) We discretize by rounding down all coordinates of all points in P ′1, . . . , P ′m to powers of3
(1 − ε)1/d. We can remove duplicate points that are rounded to the same coordinates.
This yields sets P̃1, . . . , P̃m. Note that within each grid cell in any dimension the largest
and smallest coordinate differ by a factor of at most λτ−1. Hence, there are at most
log(1−ε)−1/d(λτ−1) = O(ε−2 log 1/ε) different rounded coordinates in each dimension, and
thus the total number of points in each P̃i is O(ε−2 log 1/ε)d.

(5) Since there are only few points in each P̃i, we can precompute all Volume Selection
solutions on each set P̃i, i.e., for any 1 ≤ i ≤ m and any 0 ≤ k′ ≤ |P̃i| we precompute
VolSel(P̃i, k′). We do so by exhaustively enumerating all 2|P̃i| subsets S of P̃i, and for
each one computing µ(S) by inclusion-exclusion in time O(2|S|) (see, e.g., [32, 33]). This
runs in total time O(m · 2O(ε−2 log 1/ε)d) = O(n · 2O(ε−2 log 1/ε)d).

3 Here we use that λ is a power of (1− ε)−1/d, to ensure that rounded points are contained in the same
cells as their originals.
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(6) It remains to split the at most k points that we want to choose over the subproblems
P̃1, . . . , P̃m. As we treat these subproblems independently, we compute

V (¯̀) := max
k1+...+km≤k

m∑
i=1

VolSel(P̃i, ki).

Note that if the subproblems would be independent, then this expression would yield
the exact result. We argue below that the subproblems are sufficiently close to being
independent that this expression yields a (1− ε)-approximation of VolSel(

⋃m
i=1 P̃i, k).

Observe that the expression V (¯̀) can be computed efficiently by dynamic programming,
where we compute for each i and k′ the following value:

T [i, k′] = max
k1+...+ki≤k′

i∑
i′=1

VolSel(P̃i′ , ki′).

The following rule computes this table:

T [i, k′] = max
0≤κ≤min{k′,|P̃i|}

(
VolSel(P̃i, κ) + T [i− 1, k′ − κ]

)
.

(7) Finally, we optimize over the offset ¯̀ by returning the maximal V (¯̀).

In pseudocode, this yields the following procedure:
(1) Iterate over all offsets ¯̀= (`1, . . . , `d) ∈ [τ ]d:

(2) P ′ := P . Delete any p from P ′ that is not contained in any grid cell C¯̀(ȳ).
(3) Partition P ′ into P ′1, . . . , P ′m, where P ′i = P ′ ∩ Ci for some grid cell Ci.
(4) Round down all coordinates to powers of (1− ε)1/d and remove duplicates, obtaining
P̃1, . . . , P̃m.

(5) Compute H[i, k′] := VolSel(P̃i, k′) for all 1 ≤ i ≤ m, 0 ≤ k′ ≤ |P̃i|.
(6) Compute V (¯̀) := maxk1+...+km≤k

∑m
i=1 VolSel(P̃i, ki) by dynamic programming.

(7) Return max ¯̀V (¯̀).

5.2 Running Time
Step (1) yields a factor τd = O( 1

ε )d in the running time. Since we can compute for each
point in constant time the grid cell it is contained in, step (2) runs in time O(n). For
the partitioning in step (3), we use a dictionary data structure storing all ȳ ∈ Zd with
nonempty P ′ ∩ C¯̀(ȳ). Then we can assign any point p ∈ P ′ to the other points in its
cell by one lookup in the dictionary, in time O(logn). Thus, step (3) can be performed in
time O(n logn). Step (4) immediately works in the same running time. For step (5) we
already argued above that it can be performed in time O

(
n2O(ε−2 log 1/ε)d). Finally, step (6)

can be implemented in time O(
∑m
i=1 |P̃i| · k) = O(nk). The total running time is thus

O
(
n · ε−d

(
logn+ k + 2O(ε−2 log 1/ε)d)).

5.3 Correctness
Combining the following lemmas we show that the above algorithm indeed computes a
(1±O(ε))-approximation of VolSel(P ).

I Lemma 5.2 (Removing grid boundaries). Let P be a point set and let 0 ≤ k ≤ |P |.
Remove all points contained in grid boundaries with offset ¯̀ to obtain the point set P¯̀ :=
P ∩

⋃
ȳ∈Zd C¯̀(ȳ). Then for all ¯̀ ∈ Zd we have VolSel(P¯̀, k) ≤ VolSel(P, k), and for

some ¯̀∈ Zd we have VolSel(P¯̀, k) ≥ (1− ε)VolSel(P, k).
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Proof Sketch. Since we only remove points, the first inequality is immediate. For the second
inequality we use a probabilistic argument. Consider an optimal solution, i.e., a set S ⊆ P of
size at most k with µ(S) = VolSel(P, k). Let S¯̀ := S ∩ P¯̀. For a uniformly random offset
¯̀∈ [τ ]d, the probability that a fixed point p ∈ S does not survive, i.e., we have p 6∈ S¯̀ is at
most d/τ ≤ ε. Hence, p survives with probability at least 1− ε.

Now for each point q ∈ U(S) identify a point s(q) ∈ S dominating q. Since s(q) survives
in S¯̀ with probability at least 1− ε, the point q is dominated by S¯̀ with probability at least
1− ε. By integrating over all q ∈ U(S) we thus obtain an expected volume of

E¯̀[µ(S¯̀)] =
∫
U(S)

Pr[q is dominated by S¯̀]dq ≥
∫
U(S)

(1− ε)dq = (1− ε)µ(S).

It follows that for some ¯̀ we have µ(S¯̀) ≥ E[µ(S¯̀)] ≥ (1 − ε)µ(S). For this ¯̀ we have
VolSel(P¯̀, k) ≥ (1− ε)VolSel(P, k). J

I Lemma 5.3 (Rounding down coordinates). Let P be a point set, and let P̃ be the same
point set after rounding down all coordinates to powers of (1− ε)−1/d. Then for any k

(1− ε)VolSel(P, k) ≤ VolSel(P̃ , k) ≤ VolSel(P, k).

In the proof of the next lemma it becomes important that we have used the thick grid
boundaries, with a separating region, when defining the grid cells.

I Lemma 5.4 (Treating subproblems as independent I). For any offset ¯̀, let S1, . . . , Sm be
point sets contained in different grid cells with respect to offset ¯̀. Then we have

(1− ε)
m∑
i=1

µ(Si) ≤ µ
( m⋃
i=1

Si

)
≤

m∑
i=1

µ(Si).

Proof Sketch. The second inequality is the union bound applied to U(S1), . . . ,U(Sm).
For the first inequality, we can decompose

⋃m
i=1 U(Si) to get

µ
( m⋃
i=1

Si

)
= vol

(
m⋃
i=1
U(Si)

)
=

m∑
i=1

(
µ(Si)− vol

(
U(Si) ∩

⋃
j<i

U(Sj)
))

. (1)

Now let C¯̀(ȳ(i)) be the grid cell containing Pi for 1 ≤ i ≤ m, where ȳ(i) = (y(i)
1 , . . . , y

(i)
d ) ∈

Zd. We may assume that these cells are ordered in non-decreasing order of y(i)
1 + . . .+ y

(i)
d .

Observe that in this ordering, for any j < i we have y(j)
t < y

(i)
t for some 1 ≤ t ≤ d. Recall

that C¯̀(ȳ) =
∏d
t=1[λτ ·yt+`t+1, λτ(yt+1)+`t). It follows that each point in

⋃
j<i U(Sj) has t-th

coordinate at most δt := λτ ·yt+`t for some 1 ≤ t ≤ d. Setting Dt := {(z1, . . . , zd) ∈ Rd≥0 |
zt ≤ δt}, we thus have

⋃
j<i U(Sj) ⊆

⋃d
t=1Dt, which yields

vol
(
U(Si) ∩

⋃
j<i

U(Sj)
)
≤ vol

(
U(Si) ∩

d⋃
t=1

Dt

)
≤

d∑
t=1

vol
(
U(Si) ∩Dt

)
. (2)

Let A be the (d− 1)-dimensional volume of the intersection of U(Si) with the plane xt = 0.
Since all points in Si have t-th coordinate at least λτ ·yt+`t+1 = λ · δt, we have µ(Si) ≥
A · λ · δt. Moreover, U(Si) ∩ Dt has d-dimensional volume A · δt. Together, this yields
vol(U(Si) ∩Dt) ≤ µ(Si)/λ. With (1) and (2), and using that λ ≥ d/ε, we thus obtain

µ
( m⋃
i=1

Si

)
≥

m∑
i=1

(
µ(Si)− d · µ(Si)/λ

)
≥ (1− ε)

m∑
i=1

µ(Si). J
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Leveraging the above lemma to VolSel yields the following.

I Lemma 5.5 (Treating subproblems as independent II). For any offset ¯̀, let P1, . . . , Pm be
point sets contained in different grid cells, and k ≥ 0. Then we have

(1−ε) · max
k1+...+km≤k

m∑
i=1

VolSel(Pi, ki) ≤ VolSel(P, k) ≤ max
k1+...+km≤k

m∑
i=1

VolSel(Pi, ki).

Note that the above lemmas indeed prove that the algorithm returns a (1 ± O(ε))-
approximation to the value VolSel(P, k). In step (2) we delete the points containing the the
grid boundaries, which yields an approximation for some choice of the offset ¯̀ by Lemma 5.2.
As we iterate over all possible choices for ¯̀and maximize over the resulting volume, we obtain
an approximation. In step (4) we round down coordinates, which yields an approximation by
Lemma 5.3. Finally, in step (6) we solve the problem maxk1+...+km≤k

∑m
i=1 VolSel(P̃i, ki),

which yields an approximation to VolSel(
⋃m
i=1 P̃i, k) by Lemma 5.5. All other steps do not

change the point set or the considered problem.

5.4 Computing an Output Set
The above algorithm, as described, only gives an approximation for the value VolSel(P, k).
However, by tracing the dynamic programming table we can reconstruct a subset S of P of
size at most k yielding a (1−O(ε))-approximation of the optimal volume VolSel(P, k).

Note that we do not compute the exact volume µ(S) of the output set S. Instead, the
value V (¯̀) only is a (1 + O(ε))-approximation of µ(S). To explain this effect, recall that
exactly computing µ(T ) for any given set T takes time nΘ(d) (under the Exponential Time
Hypothesis). As our running time is O(n2) for any constant d, ε, we cannot expect to compute
µ(S) exactly.

6 Conclusions

We considered the volume selection problem, where we are given n points in Rd>0 and want
to select k of them that maximize the volume of the union of the spanned anchored boxes.
We show: (1) Volume selection is NP-hard in dimension d = 2 (previously this was only
known when d is part of the input). (2) In 3 dimensions, we design an nO(

√
k) algorithm

(the previously best was Ω
((
n
k

))
). (3) We design an efficient polynomial time approximation

scheme for any constant dimension d (previously only a (1− 1/e)-approximation was known).
We leave open to improve our NP-hardness result to a matching lower bound under the

Exponential Time Hypothesis, e.g., to show that in d = 3 any algorithm takes time nΩ(
√
k)

and in any constant dimension d ≥ 4 any algorithm takes time nΩ(k). Alternatively, there
could be a faster algorithm, e.g., in time nO(k1−1/d). Finally, we leave open to figure out the
optimal dependence on n, k, d, ε of a (1− ε)-approximation algorithm.

Moving away from the applications, one could also study volume selection on general
axis-aligned boxes in Rd, i.e., not necessarily anchored boxes. This problem General
Volume Selection is an optimization variant of Klee’s measure problem and thus might
be theoretically motivated. However, General Volume Selection is probably much
harder than the restriction to anchored boxes, by analogies to the problem of computing an
independent set of boxes, which is not known to have a PTAS [1]. In particular, General
Volume Selection is NP-hard already in 2 dimensions, which follows from NP-hardness of
computing an independent set in a family of congruent squares in the plane [18, 22].
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