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Abstract
Equivalence of deterministic pushdown automata is a famous problem in theoretical computer
science whose decidability has been shown by Sénizergues. Our first result shows that decidability
no longer holds when moving from finite words to infinite words. This solves an open problem
that has recently been raised by Löding. In fact, we show that already the equivalence problem
for deterministic Büchi one-counter automata is undecidable. Hence, the decidability border is
rather tight when taking into account a recent result by Löding and Repke that equivalence
of deterministic weak parity pushdown automata (a subclass of deterministic Büchi pushdown
automata) is decidable.

Another known result on finite words is that the universality problem for vector addition
systems is decidable. We show undecidability when moving to infinite words. In fact, we prove
that already the universality problem for nondeterministic Büchi one-counter nets (or equivalently
vector addition systems with one unbounded dimension) is undecidable.
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1 Introduction

One of the most prominent results in theoretical computer science is the decidability of the
equivalence problem for deterministic pushdown automata, shown by Sénizergues [17]. Stirling
proved the first complexity bound for this problem [18], namely a tower of exponentials
of elementary height, see also [8] for a more recent proof by Jančar. Still there remains
a remarkable complexity gap for this problem, to the best of the authors’ knowledge the
best-known lower bound is P-hardness, which trivially follows from the emptiness problem.

Although a doubly-exponential upper bound has been proved during the nineteen seventies
by Valiant [19], too, the regularity problem for deterministic pushdown automata seems to
be far from being understood: to the best of the authors’ knowledge the best-known lower
bound is P-hardness, again trivially following from the emptiness problem.
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14:2 On Büchi One-Counter Automata

Although it is unclear whether to lower the upper bound or to raise the lower bound for
these central problems, it seems fair to say that we lack techniques to show lower bounds for
them. Indeed, the presence of determinism seems to be too restrictive to encode computations
of Turing machines into instances of the respective problems. To date, we do not even know
if equivalence of deterministic pushdown automata is hard for NP – the upper bound of a
tower of exponentials of elementary height leaves a huge complexity gap for this problem.

Therefore, subclasses have been studied in the literature for which tight complexity
bounds have been obtained, such as deterministic 1-counter [2], 1-counter nets [7], visibly
pushdown automata [1], normed context-free processes [3, 4, 6, 5], and height-deterministic
pushdown automata [12], to mention a few.

One should bear in mind that for deterministic models universality is typically equally
hard as emptiness. For nondeterministic models however universality becomes undecidabile
very quickly, for instance already for 1-counter automata. Decidability of universality can
be regained for such a nondeterministic model by disallowing the automata to test for zero:
even universality of vector addition systems can be shown decidable by applying standard
well-quasi order arguments. For its subclass 1-counter nets (i.e. 1-counter automata that
cannot test for zero) universality has recently been proven to be Ackermann-complete by
Hofman and Totzke [7].

The situation on infinite words. Unfortunately, equivalence and universality have not
gained much attention on infinite words beyond ω-regular languages so far, in particular for
pushdown automata. Recently Löding and Repke have studied the equivalence problem of
deterministic pushdown automata on infinite words and proved that this problem is decidable
for weak parity conditions [10, 9, 15] (this is a strict subclass of deterministic Büchi pushdown
automata). In fact they showed that given two deterministic weak parity pushdown automata
A and B one can effectively construct two deterministic pushdown automata A′ and B′
running on finite words such that A and B accept the same infinite words if, and only if,
A′ and B′ accept the same finite words. Extending this decidability result to deterministic
parity pushdown automata, or first to the class of deterministic Büchi pushdown automata
did not seem to be achievable that easily. In a recent article [9] Löding explicitly raised the
question if equivalence of deterministic parity pushdown automata is decidable.

Our contributions. In this paper we show that two central decision problems that are
decidable on finite words, become undecidable on infinite words. First, we prove that the
equivalence problem is already undecidable for deterministic 1-counter automata with a
Büchi acceptance condition (even without ε-transitions). This solves the above-mentioned
question raised by Löding in [9]. This undecidability result can be considered as rather tight
since, as mentioned above, equivalence of deterministic weak parity pushdown automata is
decidable [10].

Our proof heavily exploits the infinity of the input words and we are confident that our
proof technique may be applied to related problems on infinite words. As mentioned before,
significant lower bounds involving deterministic automata are typically difficult to prove. In
fact, to the best of our knowledge, there are no handy lower bound techniques known for
equivalence problem of deterministic automata.

Moreover, we consider this undecidability result as somewhat surprising since from a
given deterministic 2-counter automaton we construct a deterministic 1-counter automaton
such that for all two of its configurations all ω-words that distinguish the two configurations
must end in the quite restrictive form (w#)ω, where w is the unique halting computation of
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the initial deterministic 2-counter automaton, if it exists. We contrast our undecidability
result on infinite words with a recent NL-completeness result for deterministic 1-counter
automata on finite words [2].

As a second result we show that on infinite words universality becomes undecidable
on Büchi 1-counter nets. This is shown by a sequence of reductions starting from the
boundedness problem for decremental-error vector addition systems, which is undecidable
due to Schnoebelen [16]. In the final step of these reductions we again heavily rely on the
fact that we employ a Büchi condition.

To the best of the authors’ knowledge comparable jumps from decidability on finite words
to undecidability on infinite words appear for satisfiability of metric temporal logic [13, 14].

Organization of this paper. In Section 2 we introduce the necessary definitions and state
our main results. The equivalence problem for deterministic Büchi 1-counter automata is
shown to be undecidable in Section 3. Universality of Büchi 1-counter nets is shown to
be undecidable in Section 4. We conclude in Section 5. Some of the proofs appear in the
appendix due to space restrictions.

2 Preliminaries

By N = {0, 1, . . . , } we denote the non-negative integers. For each non-negative integer k we
denote by [1, k] the set {1, . . . , k}. If X is a non-empty set and x = (x1, . . . , xk) ∈ Xk we
write x(i) to denote xi, i.e. the i-th component of x. We use bold-face font only to denote such
vectors. For every integer z ∈ Z we denote its signum by sgn(z) = −1 if z < 0, sgn(z) = 0
if z = 0 and sgn(z) = 1 if z > 0. Given a set Σ and some finite word w = a1 · · · an ∈ Σn

with ai ∈ Σ we define the infix w[i, j] = aiai+1 · · · aj and w[i] = w[i, i] = ai. Similar remarks
apply to infinite words w = a1a2 · · · ; moreover we write w[i,∞] to denote aiai+1ai+2 · · · .

For each k ≥ 1 a k-counter automaton is a tuple A = (QA,ΣA, δA, q0, FA), where QA is a
finite set of states, ΣA is a non-empty finite alphabet, δA ⊆ QA×ΣA×{0, 1}k×{−1, 0, 1}k×QA
is a set of transitions, q0 ∈ QA is an initial state, and FA ⊆ δA is a set of final transitions. It
is worth mentioning that typically the accepting condition is given by a set of states rather
than by a set of transitions. But it is not hard to see that the two formalisms are effectively
equivalent: indeed one can translate one formalism to the other in polynomial time.

When it is not of importance we sometimes also drop the last component of A. We say
A is deterministic if for every (q, a,σ) ∈ QA × ΣA × {0, 1}k there is at most one transition
τ = (p, b,µ,u, p′) ∈ δA with p = q, b = a and µ = σ. A configuration of A is an element
(q,n) ∈ QA × Nk that we also write as q(n) in the following. The bit vector σ ∈ {0, 1}k
that appears in a transition determines which sign each counter is expected to have for
the transition to be applicable. More formally, for two configurations p(m) and q(n) and
a transition of the form τ = (p, a,σ,u, q) we write p(m) τ−→ q(n) if σ(i) = sgn(m(i)) and
n(i) = m(i) + u(i) for all i ∈ [1, k]. The relation τ−→ is extended to finite words over δA
inductively as follows, where ρ ∈ δ∗A and τ ∈ δA: p(m) ε−→ p(m) for all configurations p(m)
and p(m) ρτ−→ q(n) if p(m) ρ−→ r(`) and r(`) τ−→ q(n) for some configuration r(`). We write
p(m) ∗−→ q(n) if p(m) ρ−→ q(n) for some ρ ∈ δ∗A. The following decision problem is well-known
to be undecidable in its full generality by [11].

Reachability
Input: A k-counter automaton A = (QA,ΣA, δA, q0) and a control state qf ∈ QA.
Question: q0(0) ∗−→ qf (0)?

STACS 2017



14:4 On Büchi One-Counter Automata

For every transition τ = (p, a,σ,u, q) let Read(τ) = a denote the letter of the transition.
We extend Read to a (letter-to-letter) morphism from δ∗A to Σ∗A in the usual way.

For words w ∈ Σ∗A we write p(m) w−→ q(u) if p(m) ρ−→ q(n) for some ρ ∈ δ∗A with
Read(ρ) = w. In this case we also say that ρ is a run of A for the word w from p(m) to
q(n). We say that a finite run ρ is accepting if ρ ∈ δ∗AFA, i.e. the last transition of ρ is
accepting, otherwise we say ρ is rejecting.

The only acceptance condition on infinite words that we study in this paper is the Büchi
acceptance condition. Given an infinite word w ∈ ΣωA an ω-run of A for w from configuration
p(m) is an infinite sequence ρ ∈ δωA such that every finite prefix π of ρ is a run from p(m)
to some configuration, and Read(π) is a prefix of w. We say that the ω-run ρ is accepting
if ρ[i] ∈ FA for infinitely many i ≥ 1, otherwise we say ρ is rejecting. The language of a
configuration p(m) of A is defined as

L(A, p(m)) = {w ∈ Σ∗A | there is an accepting run from p(m) for w}.

Similarly the ω-language of a configuration p(m) of A is defined as

Lω(A, p(m)) = {w ∈ ΣωA | there is an accepting ω-run from p(m) for w}.

We sometimes just write L(p(m)) or Lω(p(m)) if A is clear from the context.
Given a finite alphabet ΣA and a language L ⊆ Σ∗A (resp. ω-language R ⊆ ΣωA) we say L

(resp. R) is universal if L = Σ∗A (resp. R = ΣωA).
We say k-counter automaton A = (QA,ΣA, δA, q0, FA) is a k-counter net if the test for

zero is not allowed, formally for any transition (p, a,σ,u, q) ∈ δA and for any µ ∈ {0, 1}k
the transition (p, a,µ,u, q) is in δA as well. As the third component of any transition of a k-
counter net no longer plays a role we omit it, i.e. we stipulate δA ⊆ QA×ΣA×{−1, 0, 1}k×QA.
The following monotonicity property holds immediately by definition of k-counter nets (see
for instance [7]).

I Lemma 1. L(B, p(m)) ⊆ L(B, p(n)) if m ≤ n (and where ≤ is meant component-wise)
and B is a one-counter net.

The following problems will be of central interest in this paper, where the latter is a special
case of the former.

ω-Language Equivalence
Input: A k-counter automaton A and two configurations p(m) and q(n).
Question: Lω(p(m)) = Lω(q(n))?

Our first main result is the following.

I Theorem 2. ω-Language Equivalence is undecidable for deterministic 1-counter
automata.

ω-Universality
Input: A k-counter automaton A and a configuration p(m).
Question: Lω(p(m)) = ΣωA?

Our second main result is the following.

I Theorem 3. ω-Language Universality is undecidable for 1-counter nets.
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3 The equivalence problem for deterministic Büchi 1-counter
automata is undecidable

We reduce from Reachability for deterministic 2-counter automata, which is undecidable
[11]. Our construction does not rely on the fact that our 2-counter automaton is deterministic
but it makes the constructions easier to state as distuingishing words of two configurations
of the constructed deterministic Büchi 1-counter automaton must repeatedly encounter the
unique sequence of transitions from the initial configuration q0(0, 0) to the configuration
qf (0, 0).

Let us therefore fix some deterministic 2-counter automaton A = (QA,ΣA, δA, q0) and
some state qf ∈ QA. We show how to construct a deterministic 1-counter automaton
B = (Q,Σ, δ, q0, F ), where Q will contain state q(1)

0 and q(2)
0 such that

q0(0, 0) ∗−→ qf (0, 0) if, and only if, Lω(q(1)
0 (0)) 6= Lω(q(2)

0 (0)) .

We can assume without loss of generality that ΣA = {a} is a singleton and that there is no
(q, a,σ,u, q′) ∈ δA with q = qf . Under this assumption and the fact that A is deterministic
we have that if q0(0, 0) ∗−→ qf (0, 0), then there exists a unique run q0(0, 0) ρ−→ qf (0, 0).
Let Q(1) = {q(1) | q ∈ QA} and Q(2) = {q(2) | q ∈ QA} be fresh copies of QA. We set
Q = Q(1) ]Q(2) ] {p(1), p(2)}, where p(1) and p(2) are two fresh control states. A mode is an
element from (Q(1) ∪Q(2))× {0, 1}.

The idea is that B’s configuration in states Q(1) are there to mimic the first counter of A,
whereas the configurations in states Q(2) are there to mimic the second counter of A. To this
end, we define that a mode (q(i), σ) ∈ (Q(1) ∪Q(2))× {0, 1} is compatible with a transition
τ = (r, a,σ,u, r′) if q = r and σ is the same signum as τ ’s signum of the counter that is to
be mimicked, formally σ = σ(i). Moreover, those configurations with control state in p(1) or
in p(2) are denoted to be erroneous. Let us define the remaining components of B.

We define the alphabet to be Σ = δA ] {#}, where # is a fresh symbol. The transitions
are defined as δ = δsim ∪ δrestart ∪ δreset ∪ δerr, whose components we successively list
and comment on below; in addition a general structure of the construction is presented in
Figure 1.

The transitions in δsim correspond to faithful simulations of transitions in A in which, as
already mentioned above, a state q(i) is supposed to mimic the behavior on counter i:

δsim = {(q(i), τ,σ(i),u(i), r(i)) | (q(i),σ(i)) is comp. with τ = (q, a,σ,u, r), i ∈ {1, 2}}

The letter # is to be understood as a letter to restart the simulation of the machine A
and is only treated as non-erroneous when executed from the configurations {p(1)(0), p(2)(0)}
or from {q(1)

f (0), q(2)
f (0)}.

δrestart = {(p(i),#, 0, 0, q(3−i)
0 ) | i ∈ {1, 2}} ∪ {(q(i)

f ,#, 0, 0, q(i)
0 ) | i ∈ {1, 2}} (1)

The next type of transitions are transitions that are executed in order to reset the
simulation, that is to lead back to a simulation of A from configuration q0(0, 0), possibly by
decrementing the counter for it to eventually equal zero.

δreset = {(p(i), τ, 1,−1, p(i)), (p(i), τ, 0, 0, p(i)) | τ ∈ δA, i ∈ {1, 2}} (2)
∪ {(p(i),#, 1,−1, p(i)) | i ∈ {1, 2}} (3)

The last type of transitions that remain are erroneous transitions – they all lead to erro-
neous configurations. The first kind of erroneous transitions can be applied at configurations
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QA
q0qf

q′

q

τ = (q, a,σ,u, q′)

Q(1)

q
(1)
0 q

(1)
f

q′(1)

q(1)

p(1)

(q(1)
f
,#, 0, 0, q(1)

0 )

(q(1), τ,σ(1),u(1), q′(1))

incompatible

(q(1)
0 ,#, 1, 0, p(1))

(q(1)
f
, τ,σ(1), 0, p(1))

(q(1),#,σ(1), 0, p(1))

(p(1), τ, 1,−1, p(1))

(p(1),#, 1,−1, p(1))
(p(1), τ, 0, 0, p(1))

Q(2)
q

(2)
0q

(2)
f

q′(2)

q(2)

p(2)

(q(2)
f
,#, 0, 0, q(2)

0 )

(q(2), τ,σ(2),u(2), q′(2))

incompatible

(p(2), τ, 1,−1, p(2))

(p(2),#, 1,−1, p(2))
(p(2), τ, 0, 0, p(2))

(p(2),#, 0, 0, q(1)
0 )

(p(1),#, 0, 0, q(2)
0 )

Figure 1 On the left hand side there is a cloud that is an emblematic description of the
deterministic 2-counter automaton A with the set of states QA. On the right hand side the structure
of the automaton B is presented. Two clouds stand for two copies of QA, where the bottom copy
that represents Q(2) is graphically flipped. Red dashed arrows are elements of δerr, blue arrows are
elements of δreset, thick green arrows are accepting.

of the form q(i)(n) ∈ (Q(1) ∪Q(2))× N whose mode (q(i), sgn(n)) is incompatible with the
letter τ ∈ δA to be read. The second kind of erroneous transitions are transitions that read
the symbol # in a moment when a restart was not expected.

δerr = {(q(i), τ, σ, 0, p(i)) | (q(i), σ) is incompatible with τ ∈ δA, i ∈ {1, 2}} (4)
∪ {(q(i),#, σ, 0, p(i)) | q ∈ QA \ {qf}, σ ∈ {0, 1}, i ∈ {1, 2}} (5)

∪ {(q(i)
f ,#, 1, 0, p(i)) | i ∈ {1, 2}} (6)

Since A is deterministic it is readily checked that B is deterministic as well. The set of
final transitions is defined to be F = {(q(1)

f ,#, 0, 0, q(1)
0 ), (p(2),#, 0, 0, q(1)

0 )}.
For any two sets X and Y let ∆(X,Y ) = X \Y ∪Y \X denote their symmetric difference.

I Lemma 4. If q0(0, 0) ∗−→ qf (0, 0), then Lω(q(1)
0 (0)) 6= Lω(q(2)

0 (0)).

Proof. Assume there exists a run q0(0, 0) ρ−→ qf (0, 0) inA. Since B is deterministic there exists

a unique run q(1)
0 (0) π(1)

−−→ q
(1)
f (0) and a unique run q(2)

0 (0) π(2)

−−→ q
(2)
f (0) with Read(π(1)) =
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Read(π(2)) = ρ in B. Since ρ ∈ δ∗A it follows π(1), π(2) ∈ (δ \ F )∗, i.e. neither π(1) nor

π(2) contains any final transition. Moreover we have q(1)
f (0)

(q(1)
f
,#,0,0,q(1)

0 )
−−−−−−−−−−→ q

(1)
0 (0) and

q
(2)
f (0)

(q(2)
f
,#,0,0,q(2)

0 )
−−−−−−−−−−→ q

(2)
0 (0), by construction of B, where the former used transition is final

and the latter used transition is not final.
Hence, on the infinite word (ρ#)ω the unique ω-run from q

(1)
0 (0) encounters infinitely many

final transitions, whereas the unique ω-run from q
(2)
0 (0) does not encounter any final transition.

Thus (ρ#)ω ∈ ∆(Lω(q(1)
0 (0)), Lω(q(2)

0 (0))) and hence Lω(q(1)
0 (0)) 6= Lω(q(2)

0 (0)). J

Let us fix a sequence of transitions π ∈ δω. For j ∈ {1, 2} we say π is j-pure if
π[i] ∈ Q(j) × Σ× {0, 1} × {−1, 0, 1} ×Q(j) for all i ≥ 1.

I Lemma 5. Let π be the ω-run from some configuration in B such that # appears infinitely
often in Read(π). Then π is rejecting if, and only if, π[`,∞] is 2-pure for some ` ≥ 1.

Proof.
“If”: If π is 2-eventually, then clearly is π rejecting since every accepting transition has q(1)

0
as last component.

“Only-if”: Assume π is a rejecting ω-run from the configuration q(i)(n) in B. Since # appears
infinitely often in Read(π) a simple inspection of the rules in B (in particular the resetting
behavior at states p(1) and p(2), see also Figure 1) shows that π must contain infinitely many
occurrences of at least one of the following transitions:

τ1 = (p(1),#, 0, 0, q(2)
0 )

τ2 = (p(2),#, 0, 0, q(1)
0 )

τ3 = (q(1)
f ,#, 0, 0, q(1)

0 )
τ4 = (q(2)

f ,#, 0, 0, q(2)
0 )

Surely, both τ2 and τ3 can only appear finitely often in π since F = {τ2, τ3} and π is assumed
to be rejecting. Bearing in mind that Read(π) contains infinitely many #’s one further
observes that by construction of B the transition τ1 can only appear infinitely often if the
transition τ2 appears infinitely often. Therefore all the transitions τ1, τ2 and τ3 can only
appear finitely often in π. Hence there exists some ` ∈ N such that π[`,∞] contains neither
of the transitions τ1, τ2 nor τ3. Since Read(π[`,∞]) still contains infinitely many #’s it
follows that π[`,∞] is 2-pure by construction of B. J

Let π be a run or an ω-run of B. For any state r ∈ Q, we say that π is r-free if none
of the transitions that appears in π contains r as first or as last component. The following
lemma shows that in case an infinite word lies in the symmetric difference of the language of
any two configurations of B, then it eventually repeatedly simulates the unique run from
q0(0, 0) to qf (0, 0) with a separating symbol # in between, if such a run exists.

I Lemma 6. Let s(m) and t(n) be two arbitrary configurations of B. Then the following
holds:
1. Every w ∈ ∆(Lω(s(m)), Lω(t(n))) contains infinitely many #’s.
2. Let w ∈ ∆(Lω(s(m)), Lω(t(n))), let α be the unique run from s(m) and let β be the unique

run from t(n) such that Read(α) = Read(β) = w. Then there is some j ∈ {1, 2} such
that
(a) α[h1,∞] is j-pure and β[h1,∞] is (3− j)-pure for some h1 ≥ 1 and moreover
(b) q0(0, 0) ∗−→ qf (0, 0) and w ∈ Σ∗(ρ#)ω, where q0(0, 0) ρ−→ qf (0, 0) is the unique run

from q0(0, 0) to qf (0, 0).
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14:8 On Büchi One-Counter Automata

Proof. Point (1) immediately follows from the fact that Read(τ) = # for all τ ∈ F .
Let us show (2). Let us fix an arbitrary w ∈ ∆(Lω(s(m)), Lω(t(n))). Let s(m) α−→

be the unique run from s(m) and let t(m) β−→ be the unique run from t(n) such that
Read(α) = Read(β) = w. Without loss of generality let us assume that α is accepting and
that β is rejecting. Then there exists a position h0 ∈ N such that

β[h0,∞] is 2-pure, due to Lemma 5. (7)

This in turn, by construction of B and recalling that any transition having p(2) as source or
target state is not 2-pure, implies that every transition in β that reads a # must lead to the
configuration q(2)

0 (0), i.e.:

∀i ≥ h0 : (Read(β[i])) = # =⇒ β[i] = (q(2)
f ,#, 0, 0, q(2)

0 ) (8)

For establishing (2.a), it suffices to show that α[h1,∞] is 1-pure for some h1 ≥ h0. For
this, we prove the following claim, whose proof we postpone to the end.

I Claim 7. α[h0,∞] is p(1)-free.

We will show that α[h1,∞] is 1-pure for some h1 ≥ h0. As α is accepting and α[h0,∞] is
p(1)-free the only possible accepting transition that appears infinitely often in α must be the
transition (q(1)

f ,#, 0, 0, q(1)
0 ). Hence there exists some h1 ≥ h0 such that α[h1,∞] does not

contain the other accepting transition, namely (p(2),#, 0, 0, q(1)
0 ). Altogether we have that

the only transition labeled with # in α[h1,∞] is (q(1)
f ,#, 0, 0, q(1)

0 ). So α[h1,∞] is 1-pure
which immediately follows from construction of B and from the fact that Read(α[h1,∞])
contains infinitely many #’s. This shows (2a.).

Let us finally prove (2b.). Still, the word w[h1,∞] contains infinitely many #’s. That is,
we can uniquely factorize w[h1,∞] as

w[h1,∞] = w0#w1# · · ·

where w` ∈ δ∗A for each ` ≥ 0. Since α[h1,∞] is 1-pure and therefore p(1)-free and β[h1,∞]
is 2-pure and therefore p(2)-free it follows from construction of B that for all ` ≥ 0:

s(m) w[1,h1−1]w1#w2···#w`−−−−−−−−−−−−−−−→ q
(1)
f (0) #−→ q

(1)
0 (0) and

t(n) w[1,h1−1]w1#w2···#w`−−−−−−−−−−−−−−−→ q
(2)
f (0) #−→ q

(2)
0 (0).

Therefore

∀` ≥ 1 : q
(1)
0 (0) w`−−→ q

(1)
f (0) and q

(2)
0 (0) w`−−→ q

(2)
f (0) . (9)

Recall that Read(α[h1,∞]) = Read(β[h1,∞]) = w1#w2# · · · Again since α[h1,∞] is
1-pure and β[h1,∞] is 2-pure we can conclude from (9) and the construction of B that

∀` ≥ 1 : q0(0, 0) w`−−→ qf (0, 0) .

But since A is assumed to be deterministic and the latter is clearly only possible when
q0(0, 0) ∗−→ qf (0, 0) we must therefore have w` = ρ for all ` ≥ 1, where ρ denotes the unique
run from q0(0, 0) to qf (0, 0). Hence Point (2b.) follows.

Proof of the Claim. Assume by contradiction that α[h0,∞] is not p(1)-free. Then there
exists some k ≥ h0 such that α[k] = (q, x, σ, u, p(1)) ∈ δ α[k] = (p(1), x, σ, u, q) ∈ δ for some
q ∈ Q, some x ∈ Σ, some σ ∈ {0, 1}, and some u ∈ {−1, 0, 1}. We only treat the case α[k] =
(q, x, σ, u, p(1)) ∈ δ here, the other case is analogous. Hence, s(m) α[1,k]−−−−→ p(1)(m1) for some
m1 ∈ N. In the same moment (recalling that β[h0,∞] is 2-pure) we have t(n) β[1,k]−−−→ q(2)(n1)
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for some n1 ∈ N and some q(2) ∈ Q(2). Of course w[k + 1,∞] still contains infinitely many
#’s. Let z be the shortest finite prefix of w[k + 1,∞] of length at least m1 + 1 that ends
with a #. Note that w[1, k]z is a finite prefix of our infinite word w.

We have p(1)(m1) z−→ q
(2)
0 (0) by definition of z and the construction of B and therefore

s(m) w[1,k]z−−−−→ q
(2)
0 (0). Moreover, since z ends with a # we have t(n) w[1,k]z−−−−→ q(2)(0) by (8).

Thus, both s(m) w[1,k]z−−−−→ q
(2)
0 (0) and t(n) w[1,k]z−−−−→ q(2)(0). Since B is deterministic this clearly

contradicts w ∈ ∆(Lω(s(m)), Lω(t(n))) and ends the proof of the claim. J
J

Lemma 4 and Lemma 6 together imply that q0(0, 0) ∗−→ qf (0, 0) if, and only if, Lω(q(1)
0 (0)) 6=

Lω(q(2)
0 (0)). Hence Theorem 2 follows.

4 The universality problem for 1-counter nets

In this section we will work with k-counter automata that have incremental errors. For
this it is convenient to denote for each i ∈ [1, k] the unit vector ei ∈ Nk, i.e. ei(i) = 1 and
ei(j) = 0 for all j ∈ [1, k] \ {i}. We define E = {ei | i ∈ [1, k]}. Given a k-counter automaton
A = (QA,ΣA, δA, q0, FA) we define an incrementing-error transition relation τ−→+ as follows,
where τ ranges over δA ∪ E and p(m) and q(n) are configurations:

p(m) τ−→+ q(n) if
{

τ ∈ δA and p(m) a−→ q(n), or
τ = ei and p = q and n = m+ ei

The relation τ−→+ is naturally extended to words over δA ∪E. An inc-run is a run of the form
p(m) ρ−→+ q(n) for some ρ ∈ (δA ∪E)∗. We say that q(n) is inc-reachable from p(m) (and
also write p(m) ∗−→+ q(n) for this) if p(m) ρ−→+ q(n) for some ρ ∈ (δA ∪ E)∗. Finally, for a
word w ∈ (ΣA ∪ E)∗ we write p(m) w−→+ q(n) if there is ρ an inc-run p(m) ρ−→+ q(n) such
that Read(ρ) = w where Read is defined like in Section 2 and stipulating Read(ei) = ei
for every 1 ≤ i ≤ k.

Let qf ∈ Q. We write q0(N, 0, . . . , 0) ∗−→+ qf (0) if for all n ∈ N we have q0(n, 0, . . . , 0) ∗−→+
qf (0). We also say that qf is forall inc-reachable from q0.

The following lemma can be proven by reduction from the boundedness problem for
decremental-error k-counter automata (a.k.a. lossy counter machines) [16].

I Lemma 8. Given a k-counter automaton and two of its states q0 and qf , the question if
qf is forall inc-reachable from q0 is undecidable.

The following lemma states that one can simulate inc-runs of k-counter automata in
terms of a universality problem for 1-counter nets. The construction was essentially already
present in Theorem 3 in [7], however we need a more general simulation lemma since we are
interested in simulating runs that start in particular configurations (and not in configurations
that have all its counters zero).

I Lemma 9. For a given k-counter automaton A = (QA,ΣA, δA, q0) and a state qf ∈ QA
one can construct a 1-counter net B = (QB,ΣB, δB, qB, δB) with a state qz ∈ QB such that
for every n ∈ N the two following statements are equivalent.

q0(n, 0 . . . 0) ∗−→+ qf (0) in A.
L(B, qB(n)) ∪ L(B, qz(0)) is not universal.

STACS 2017
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B

C

qD

p

p+

qC

u

qz

qB

phase 1

phase 2
phase 3

(q,♥, 0, u)
(q,♥, 0, u)

(q,♥, 0, u)

(q,♥, 0, u)

(qD,ΣB, 0, qD)

(qD,♥, 0, p)

(qD,♥, 0, p+)

(qD, {♥} ∪ ΣB, 0, qC)

(p,ΣB ∪ {♥}, 0, p)

(p+,ΣB, 0, p+)

(p+,♥, 1, p+)

(p,♥, 0, qz)

(p+,♥, 0, qB)

(u,ΣB, 0, u)

(u,♥, 0, u)

Figure 2 Picture of the one counter net D. The green thick transitions are accepting (the
accepting transitions in C are hidden). Transitions that have a set of letters instead of a single letter,
like (qD,ΣB, 0, qD), denotes a set of transitions, one for every element of the set of letters.

I Remark. Note that all transitions in the constructed net B are accepting. Thus, if a word
w does not belong to the language L(B, qz(0)) ∪ L(B, qB(n)), then there is no run for the
word w in B that starts in qz(0) or in qB(n). This will be used in the proof of Claim 12.

Lemma 8 and Lemma 9 immediately imply the following undecidability result.

I Corollary 10. Given a 1-counter net B = (QB,ΣB, δB, qB, δB) and a state qz ∈ QB it is
undecidable if for all n ∈ N we have that L(B, qB(n)) ∪ L(B, qz(0)) is not universal.

4.1 Proof of Theorem 3
We reduce the problem proven to be undecidable in Corollary 10 to ω-universality of
1-counter nets.

Formally, for a given 1-counter net B = (QB,ΣB, δB, qB, δB) we construct a 1-counter net
D = (QD,ΣD, δD, qD, FD) such that the ω-language Lω(D, qD(0)) is universal if, and only if,
L(B, qB(n)) ∪ L(B, qz(0)) is universal for some n ∈ N.

We first define the following gadget: given the finite alphabet ΣB and a symbol ♥ 6∈ ΣB
we construct the Büchi 1-counter net C = (QC ,ΣB ∪{♥}, δC , qC , FC) such that Lω(C, qC(0)) =
(ΣB ∪ {♥})∗ΣωB, which is in fact even an ω-regular language.

Define C as follows:

QC = {qC , q1}
δC = {(qC , a, 0, qC), (qC , a, 0, q1), (q1, a, 0, q1) | a ∈ ΣB} ∪ {(qC ,♥, 0, qC)}
FC = {(q1, a, 0, q1) | a ∈ ΣB}.

It is easy to check that the language accepted by C is indeed (Σ∗B♥)∗ΣωB.
Figure 2 depicts the construction of D. The idea is that we introduce a special symbol ♥

such that the only relevant words are those that contain infinitely many ♥’s. We filter out all
words with finite number of ♥ using the gadget C. Next, the net D has three phases between
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which we switch reading the symbol ♥. The first phase is responsible for setting up the
inputs to the net B. It reads ♥’s and nondeterministically decides to increment the counter
or go to the second phase. The second phase tests if L(B, qB(n))∪L(B, qz(0)) is not universal
for a given n. The third phase is to accept if it happens that for a given n the language
L(B, qB(n)) ∪ L(B, qz(0)) is universal. Now observe that if there is some n ∈ N such that
L(B, qB(n)) ∪ L(B, qz(0)) is universal, then for every run with infinitely many occurrences
of ♥ we can increment the counter to the value n then go to the second phase in which we
cannot get stuck due to the universality of L(B, qB(n)) ∪ L(B, qz(0)). Finally, seeing the
next ♥ we jump to the third phase where we accept. Conversely, if for all n ∈ N we have
L(B, qB(n))∪L(B, qz(0)) is not universal, then one can build an ω-word such that no matter
how long we wait in the first phase incrementing the counter, when we decide to jump to
the second phase we will get stuck in it before having the possibility to jump to phase 3; so
there is no possibility of accepting this specially designed word.

Formally, the 1-counter net D is defined as follows:

QD = {qD, p, p+, u} ∪QC ∪QB
ΣD = ΣB ∪ {♥}
δD = δC ∪ δB

∪ {(u, a, 0, u), (p, a, 0, p), (p+, a, 0, p+), (qD, a, 0, qD) | a ∈ ΣB}
∪ {(u,♥, 0, u), (p,♥, 0, p), (p+,♥, 1, p+)}
∪ {(qD,♥, 0, p), (qD,♥, 0, p+), (qD,♥, 0, qC)}
∪ {(p,♥, 0, qz), (p+,♥, 0, qB)}
∪ {(q,♥, 0, u) | q ∈ QB}

FD = FC ∪ {(u,♥, 0, u)}

We start with a general observation on D. The language Lω(D, qD(0)) can be partitioned into
two sets, each of them being accepted by a different subset of the set of accepting transitions.
1. The set of words in which the letter ♥ appears finitely often. They are indeed all accepted

by D, namely by runs in which one of the transitions (qD,♥, 0, qC) or (qD, a, 0, qC) for
a ∈ ΣB is used, finally allowing transitions in FC to be used infinitely often.

2. The set of words in which the letter ♥ appears infinitely often. In this case acceptance
has to be due to an infinite number of occurrences of the transition (u,♥, 0, u).

Due to case 1 universality of Lω(D, qD(0)) holds if, and only if, (Σ∗B♥)ω ⊆ Lω(D, qD(0)).

I Claim 11. If L(B, qB(n)) ∪ L(B, qz(0)) is universal for some n ∈ N, then (Σ∗B♥)ω ⊆
Lω(D, qD(0)).

Let w ∈ (Σ∗B♥)ω, i.e. w contains infinitely many ♥’s. Let w′ be the infix of w that is strictly
in between the (n+ 2)-th and (n+ 3)-th occurrence of the letter ♥. Due to our assumption
w′ belongs to L(B, qz(0)) or to L(B, qB(n)).

If w′ ∈ L(B, qz(0)), then w is accepted by the following run. We wait for the first ♥
in state qD and then we use transition (qD,♥, 0, p). Next, we loop in the state p until the
(n+ 2)-th occurrence of the letter ♥ on which we move to the configuration qz(0) using the
transition (p,♥, 0, qz). At this point, we follow an accepting run in B starting from qz(0) for
the word w′ and then on the next occurrence of ♥ we move to state u via the transition
(q,♥, 0, u) for some q ∈ QB. Finally, in u we accept by performing the transition (u,♥, 0, u)
infinitely often.
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If w′ ∈ L(B, qB(n)), then w is accepted by the following run. We wait for the first
occurrence of ♥ in state qD. Next we use transition (qD,♥, 0, p+) ,then we stay in state p+

just before the (n+ 2)-th occurrence of ♥, increasing the counter value to n. Now on upon
reading ♥ we move to the configuration qB(n) using transition (p+,♥, 0, qB). At this moment
we follow an accepting run in B starting from qB(n) for the word w′ and then on the next
occurrence of ♥ we move to state u via the transition (q,♥, 0, u) for some q ∈ QB. Finally,
in u we accept performing transition (u,♥, 0, u) infinitely often. This finishes the proof of
the claim.

I Claim 12. If L(B, qB(n)) ∪ L(B, qz(0)) is not universal for all n ∈ N, then (Σ∗B♥)ω 6⊆
Lω(D, qD(0)).

First, observe for every n ∈ N there is a finite word wn ∈ Σ∗B such that wn 6∈ L(B, qz(0)) ∪
L(B, qB(n)).

Let vω = ♥♥w0♥w1♥w2♥ · · · . Since vω contains infinitely many ♥’s, it can only be
accepted by infinitely many transitions of the form (u,♥, 0, u), due to construction of D.
Moreover, a run using the transition (u,♥, 0, u) infinitely often must exactly once use
either (p,♥, 0, qB) or (p+,♥, 0, qz). Each of these two transitions read the letter ♥. For
the sake of contradiction, suppose vω ∈ Lω(D, qD(0)) is accepted by the run ρ. We split
ρ into three parts ρ = ρ0ρ1ρ2, where ρ0 is the longest prefix of ρ that does not contain
(p,♥, 0, qB) or (p+,♥, 0, qz), ρ1 is either of the latter two transitions (length one), and ρ2
is a remaining infinite suffix. Suppose, the symbol ♥ appears (i + 2) times in Read(ρ0),
then the configuration of the net B after reading ρ0 can be p(0) or p+(i). So after reading
ρ0ρ1 the run has reached either qz(0) or qB(i). Moreover we have Read(ρ2) = wi♥wi+1 . . ..
However, we know that there is no run for word wi in the net B, neither one starting from
qz(0) nor one starting from qB(i), thus ρ2 cannot be a run in D starting from qz(0) or qB(i).
Concluding, we have established a contradiction to the fact that ρ was an accepting run.
Thus, vω(Σ∗B♥)ω \ Lω(D, qD(0)).

5 Conclusion and outlook

In this paper we have shown that the following two problems are undecidable on infinite
words although being decidable finite words. First, we showed that the equivalence problem
of deterministic Büchi 1-counter automata is undecidable (Theorem 2). Second, we have
shown that the universality problem for Büchi 1-counter nets is undecidable (Theorem 3)
by a sequence of reductions from the boundedness problem for incremental-error k-counter
machines.

The exact recursive complexity of both problems is yet unclear to us and is planned to
be investigated in the full version of this paper.
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