Deterministic Regular Expressions with
Back-References

Dominik D. Freydenberger*! and Markus L. Schmid?

1 University of Bayreuth, Bayreuth, Germany
ddfyQddfy.de

2 University of Trier, Trier, Germany
MSchmid@uni-trier.de

—— Abstract

Most modern libraries for regular expression matching allow back-references (i.e., repetition
operators) that substantially increase expressive power, but also lead to intractability. In order
to find a better balance between expressiveness and tractability, we combine these with the notion
of determinism for regular expressions used in XML DTDs and XML Schema. This includes the
definition of a suitable automaton model, and a generalization of the Glushkov construction.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.3 Formal Languages
Keywords and phrases Deterministic Regular Expression, Regex, Glushkov Automaton

Digital Object Identifier 10.4230/LIPIcs.STACS.2017.33

1 Introduction

Regular expressions were introduced in 1956 by Kleene [26] and quickly found wide use
in both theoretical and applied computer science. While the theoretical interpretation of
regular expressions remains mostly unchanged (as expressions that describe exactly the class
of regular languages), modern applications use variants that vary greatly in expressive power
and algorithmic properties. This paper tries to find common ground between two of these
variants with opposing approaches to the balance between expressive power and tractability.
The first variant that we consider are reger, regular expressions that are extended
with a back-reference operator. This operator is used in almost all modern programming
languages (like e. g. Java, PERL, and .NET). For example, the regex (x: (aVb)*)- &z defines
{ww | w € {a,b}*}, as (aVDb)* can create a w € {a,b}*, which is then stored in the variable
x and repeated with the reference &x. Hence, back-references allow to define non-regular
languages; but with the side effect that the membership problem is NP-complete (cf. Aho [2]).
The other variant, deterministic reqular expressions (also known as 1-unambiguous reqular
expressions), uses an opposite approach, and achieves a more efficient membership problem
than regular expressions by defining only a strict subclass of the regular languages.
Intuitively, a regular expression is deterministic if, when matching a word from left to right
with no lookahead, it is always clear where in the expression the next symbol must be matched.
This property has a characterization via the Glushkov construction that converts every regular
expression « into a (potentially non-deterministic) finite automaton M/(«), by treating each
terminal position in « as a state. Then « is deterministic if M(«) is deterministic. As a
consequence, the membership problem for deterministic regular expressions can be solved

* Dominik D. Freydenberger was supported by DFG grant FR 3551/1-1.

© Dominik D. Freydenberger and Markus L. Schmid;

oY licensed under Creative Commons License CC-BY
34th Symposium on Theoretical Aspects of Computer Science (STACS 2017).
Editors: Heribert Vollmer and Brigitte Vallée; Article No. 33; pp. 33:1-33:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2017.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2

Deterministic Regular Expressions with Back-References

more efficiently than for regular expressions in general (more details can be found in [24]).
Hence, in spite of their limited expressive power, deterministic regular expressions are used
in actual applications: Originally defined for the ISO standard for SGML (see Briiggemann-
Klein and Wood [9]), they are a central part of the W3C recommendations on XML DTDs [7]
and XML Schema [22] (see Murata et al. [32]).

The goal of this paper is finding common ground between these two variants, by introducing
deterministic regex and an appropriate automaton model, the deterministic memory automata
with trap-state (DTMFA). To elaborate: We first introduce a new automaton model for
regex, the memory automata with trap-state (TMFA). While the TMFA is based on the
MFA that was proposed by Schmid [35], its deterministic variant, the DTMFA, is better
suited for complementation than the deterministic MFA. We then generalize the notion of
deterministic regular expressions to regex, and show that the Glushkov construction can
also be generalized. This allows us not only to efficiently decide the membership problem
for deterministic regex, but also whether a regex is deterministic. After this, we study the
expressive power of these models. Although deterministic regex share many of the limitations
of deterministic regular expressions (in particular, the inherent non-determinism of some
regular languages persists), their expressive power offers some surprises. Finally, we examine
a subclass of deterministic regexes and DTMFA for which polynomial space minimization is
possible, and we consider an alternative notion of determinism.

From the perspective of deterministic regular expressions, this paper proposes a natural
extension that significantly increases the expressive power, while still having a tractable
membership problem. From a regex point of view, we restrict regex to their deterministic
core, thus obtaining a tractable subclass. Hence, the authors intend this paper as a starting
point for further work, as it opens a new direction on research into making regex tractable.
For space reasons, detailed proofs are given in a full version of the paper [21].

Main contributions. The main conceptual contribution of this paper are the notion of
determinism in regex, and an appropriate deterministic automaton model. The main
challenge from this point of view was finding a natural extension of deterministic regular
expressions that preserves the following properties: A natural definition of determinism
that can be checked efficiently and also has an automata-theoretic characterization, and
an efficient Glushkov-style conversion to automata that decide the membership problem
efficiently. Regarding technical contributions, the authors would like to emphasize that, in
addition to the effort that was needed to accomplish the aforementioned goals, the paper uses
subtleties of the back-reference operator in novel ways. By using these, deterministic regex
can define non-deterministic regular languages (in particular, all unary regular languages),
as well as infinite languages that are not pumpable in the usual sense.

Related work. Regex were first examined from a theoretical point of view by Aho [2], but
without fully defining the semantics. There were various proposals for semantics, of which
we mention the first by CAmpeanu, Salomaa, Yu [10], and the recent one by Schmid [35],
which is the basis for this paper. Apart from defining the semantics, there was work on
the expressive power [10, 11, 20], the static analysis [11, 18, 19], and the tractability of the
membership problem (investigated in terms of a strongly restricted subclass of regex) [16, 17].
They have also been compared to related models in database theory, e. g. graph databases [4]
and information extraction [15, 19].

Following the original paper by Briiggemann-Klein and Wood [9], deterministic regular
expressions have been studied extensively. Aspects include computing the Glushkov au-

D. D. Freydenberger and M. L. Schmid

tomaton and deciding the membership problem (e.g. [8, 24, 34]), static analysis (cf. [31]),
deciding whether a regular language is deterministic (e.g. [12, 24, 30]), closure properties
and descriptional complexity [28], and learning (e.g. [5]). One noteworthy extension are
counter operators (e. g. [23, 24, 27]), which we briefly address in Section 7.

2 Preliminaries

We use € to denote the empty word. The subset and proper subset relation are denoted by C
and C, respectively. Let ¥ be a finite terminal alphabet. Unless otherwise noted, we assume
|X| > 2. Let = be an infinite variable alphabet with ZNYX = (. Let w € ¥*, then, for every i,
1 <i < |wl|, w[i] denotes the symbol at position i of w. We define w°
for all ¢ > 0, and, for w = aq - - - a,, with a; € X, let wm =w™ -ay---a; for all m > 0 and
all 1 with 0 <i <n. A v e X*isa factor of w if there exist uy,us € X* with w = ujvug. If
us = €, v is also a prefix of w.

We use the notions of deterministic and non-deterministic finite automata (DFA and NFA)
like [25]. If an NFA can have e-transitions, we call it an e-NFA. Given a class C of language
description mechanisms (e. g., a class of automata or regular expressions), we use £(C) to
denote the class of all languages £(C') with C' € C. The membership problem for C is defined
as follows: Given a C' € C and a w € ¥*, is w € L(C)?

c=cand wtl:=wt-w

2.1 Regex

» Definition 1 (Syntax of regex). We define RX, the set of regez over ¥ and E, recursively:
Terminals and e: ¢ € RX and var(a) = 0 for every a € (X U {e}).
Variable reference: &z € RX and var(&z) = {z} for every z € =.
Concatenation: (« - () € RX and var(a - 8) = var(a) Uvar(f) if o, 8 € RX.
Disjunction: (aV) € RX and var(aV) = var(a) Uvar(p) if o, 8 € RX.
Kleene plus: (a™) € RX and var(a™) = var(a) if o € RX.
Variable binding: (x: o) € RX and var({z: a)) = var(a) U{z} if & € RX with = € E\ var(a).
In addition, we allow () as a regex (with var()) = (), but we do not allow () to occur in any
other regex. An « € RX with var(a) = () is called a proper reqular expression, or just reqular
expression. We use REG to denote the set of all regular expressions.

We add and omit parentheses freely, as long as the meaning remains clear. We use the
Kleene star a* as shorthand for € V ", and A as shorthand for \/ . 4 a for non-empty A C ¥.

We define the semantics of regex using the ref-words (short for reference words) by Schmid [35].
A ref-word is a word over (X UZUT), where I': ={[, |, | # € Z}. Intuitively, the symbols
[and |, mark the beginning and the end of the match that is stored in the variable x,
while an occurrence of x represents a reference to that variable. Instead of defining the
language of a regex « directly, we first treat o as a generator of ref-words by defining

its ref-language R(a). If @ € B U {e}, R(a):={a}; and R(&=x):={x} for all x € E.
Furthermore, R(a - 3):=R(a) - R(B), R(aV3):=R(a) UR(B), and R(at):=R(a)*.

Finally, R((z: o)) :=([sR(a)]s). For regular expressions, L(a) = R(«a). Alternatively,
R(a):=L(ar), where the proper regular expression ag is obtained by replacing each
sub-regex (z:) of o with [;Sr]., and each &z with z.

Intuitively speaking, every occurrence of a variable x in some r € R(«) functions as a

pointer to the next factor [,v], to the left of this occurrence (or to € if no such factor exists).

In this way, a ref-word r compresses a word over X, the so-called dereference D(r) of r, which
can be obtained by replacing every variable occurrence x by the corresponding factor v (note

33:3

STACS 2017

334

Deterministic Regular Expressions with Back-References

that v might again contain variable occurrences, which need to be replaced as well), and
removing all symbols [;,], € T afterwards. See [35] for a more detailed definition, or the
following Example 2 for an illustration. Finally, we define £(«):={D(r) | r € R(a)}.

» Example 2. Let a:=((z: (aVb)Jr)&x)Jr. Then R(a) = {[zwils - T [sWn]s - T |
n > l,w; € {a,b}t}. Hence, L(a) = (Leopy)™, With Leopy : ={ww | w € {a,b}*}. Let
osq 1 =((z: &y)(y: & - a))*. Then R(asq) = {([o¥]z - [yz - a}y)z | ¢ > 0}. For example,
consider the ref word rs = [yls - [y@ - aly - [+¥]x - [y@ - aly - [2¥]s - [y - @], with D(r3) = a°.

Using induction, we can verify that D(r;) = a’ . Thus, L(asq) = {a"2 | n > 0}.

Hence, unlike regular expressions, regex can define non-regular languages. The expressive
power comes at a price: their membership problem is NP-complete (follows from Angluin [3]),
and various other problems are undecidable (Freydenberger [18]). Starting with Aho [2],
there have been various approaches to specifying syntax and semantics of regex. While [2]
only sketched the intuition behind the semantics, the first formal definition (using parse trees)
was proposed by Campeanu, Salomaa, Yu [10], followed by the ref-words of Schmid [35]. For
a comparison between these approaches and actual implementations, see the full version [21].

3 Memory Automata with Trap State

Memory automata [35] are a simple automaton model that characterizes £(RX). Intuitively
speaking, these are classical finite automata that can record consumed factors in memories,
which can be recalled later on in order to consume the same factor again. However, for our
applications, we need to slightly adapt this model to memory automata with trap-state.

» Definition 3. For every k € N, a k-memory automaton with trap-state, denoted by
TMFA(k), is a tuple M = (Q, %, 6, qo, F'), where @Q is a finite set of states that contains the
trap-state [trap], ¥ is a finite alphabet, qo € Q is the initial state, F C Q is the set of final states
and §: Q x (XU {e}U{1,2,...,k}) = P(Q x {o,c,r,o}F) is the transition function (where
P(A) denotes the power set of a set A), which satisfies §([trap],b) = {([trap],©,o,...,0)},
for every b € X U {e}, and d([trap],i) = 0, for every i, 1 <4 < k. The elements o, c, r and
o are called memory instructions (they stand for opening, closing and reseting a memory,
respectively, and ¢ leaves the memory unchanged).

A configuration of M is a tuple (¢, w, (u1,71),. ., (ug, 7)), where ¢ € @ is the current
state, w is the remaining input and, for every i, 1 < i <k, (u;,r;) is the configuration of
memory i, where u; € 3* is the content of memory i and r; € {0,C} is the status of memory
i (i.e., 7; = 0 means that memory i is open and r; = C means that it is closed). The initial
configuration of M (on input w) is the configuration (go,w, (¢,C),...,(g,C)), a configuration
(¢, w, (u1,71), ..., (uk, 7)) is an accepting configuration if w =€ and q € F.

M can change from a configuration ¢ = (q,vw, (uy,r1),..., (uk, 7)) to a configura-
tion ¢ = (p,w, (u},r)),...,(u},r})), denoted by ¢ Far ¢, if there exists a transition
d(q,b) > (p, s1,...,sk) with either (b€ (XU {e}) and v="0) or (b€ {1,2,...,k}, s, =cand
v =uy), and, for every i, 1 <i <k,

si=oAri =0 = (u,r]) = (wiv,r;), si=0Ar;=C = (u},r}) = (us,r:),
si=o0 = (uj,7;) = (v,0), si=c = (uj,7;) = (u;,C),
si=r1 = (uj,7;) = (g,0C).
Furthermore, M can change from a configuration (q,vw, (u1,71),- .., (uk, %)) to the con-

figuration ([trap],w, (u1,71),..., (uk,7k)), if (¢,b) > (p,$1,...,8k) for some p € Q, b €
{1,2,...,k} and s, = c, such that up = vv’ with v/ # ¢ and v'[1] # w[1].

D. D. Freydenberger and M. L. Schmid

A transition (g, b) > (p, s1, S2, ..., Sk) is an e-transition if b = ¢ and is called consuming,
otherwise (if all transitions are consuming, then M is called e-free). If b € {1,2,...,k}, it is
called a memory recall transition and the situation that a memory recall transition leads to
the state [trap], is called a memory recall failure.

The symbol 7}, denotes the reflexive and transitive closure of Fy;. A w € ¥* is accepted
by M if cinit F3; ¢f, Where ciny is the initial configuration of M on w and cy is an accepting
configuration. The set of words accepted by M is denoted by L(M).

Note that executing the open action o on a memory that already contains some word
discards the previous contents of that memory. For illustrations and examples for TMFA,
we refer to [35]. A crucial part of TMFA is the trap-state [trap], in which computations
terminate, if a memory recall failure happens. If [trap] is not accepting, then TMFA are
(apart from negligible formal differences) identical to the memory automata introduced in
[35], which characterize the class of regex language. If, on the other hand, [trap] is accepting,
then every computation with a memory recall failure is accepting (independent from the
remaining input). While it seems counter-intuitive to define the words of a language via
“failed” back-references, the possibility of having an accepting trap-state yields closure under
complement for deterministic TMFA (see Theorem 6). It will be convenient to consider the
partition of TMFA into TMFA™ and TMFA* (having a rejecting and an accepting trap-state,
respectively).

Every TMFA® can be transformed into an equivalent TMFA'™ | which implies £(TMFA) =
L(TMFA™); thus, it follows from [35] that TMFA characterize £(RX). The idea of this
construction is as follows. Every memory ¢ is simulated by two memories (i,1) and (¢,2),
which store a (nondeterministically guessed) factorisation of the content of memory ¢. This
allows us to guess and verify if a memory recall failure occurs, i.e., (,1) stores the longest
prefix that can be matched and (7,2) starts with the first mismatch. For correctness, it is
crucial that every possible factorisation of the content of a memory ¢ can be guessed.

» Theorem 4. £(TMFA) = £(TMFA™) = £(RX).

A consequence of the proof is that TMFA inherits the NP-hardness of the membership problem
from RX. We do not devote more attention to this, as we focus on deterministic TMFA: A
TMFA is deterministic (or a DTMFA, for short) if § satisfies [6(q,b)| < 1, for every ¢ € Q
and be X U{e}U{1,2,...,k} (for the sake of convenience, we then interpret § as a partial
function with range Q x {o,c,r,o}*), and, furthermore, for every q € Q, if §(¢,) is defined
for some x € {1,2,...,k} U{e}, then, for every y € (XU {e} U{1,2,...,k})\ {z}, d(q,y) is
undefined. Analogously to TMFA, we partition DTMFA into DTMFA2* and DTMFA™,

The algorithmically most important feature of DTMFA is that their membership can be
solved efficiently by running the automaton on the input word. However, for each processed
input symbol, there might be a delay of at most |Q| steps, due to e-transitions and recalls of
empty memories, which leads to O(]Q||w|). Removing such non-consuming transitions first,
is possible, but problematic. In particular, recalls of empty memories depend on the specific
input word and could only be determined beforehand by storing for each memory whether it
is empty, which is too expensive. However, by O(|Q|?) preprocessing, we can compute the
information that is needed in order to determine in O(k) where to jump if certain memories
are empty, and which memories are currently empty can be determined on-the-fly while
processing the input. This leads to a delay of only k, the number of memories:

» Theorem 5. Given M € DTMFA with n states and k memories, and w € X*, we can
decide in time O(n? + k|w|), whether or not w € L(M).

33:5

STACS 2017

33:6

Deterministic Regular Expressions with Back-References

Note that the preprocessing in the proof of Theorem 5 is only required once, so we can
solve the membership for several words w; in O(n? 4+ k>_ |w;|). Moreover, if it is guaranteed
that no empty memories are recalled, then membership can be solved in O(n + |w]|) (where
O(n) is needed in order to remove e-transitions).

Similar to DFA, it is possible to complement DTMFA by toggling the acceptance of states.
However, for DTMFA, we have to remove e-transitions and recalls of empty memories. In
particular, the construction for Theorem 6 uses the finite control to store whether memories
are empty or not, which causes a blow-up that is exponential in the number of memories.

» Theorem 6. L(DTMFA) is closed under complement.

We next discuss expressive power: If there is a constant upper bound on the lengths of
contents of memories that are recalled in accepting computations of an M € DTMFA, then
memories can be simulated by the finite state control; thus, £(M) € L(REG). Consequently,
it £L(M) ¢ L(REG), there is a word wvw that is accepted by recalling some memory with
an arbitrarily large content v. Moreover, if [trap] is non-accepting, then no word can be
accepted that contains u as a prefix, but not uwv, since this will cause a memory recall failure.
Intuitively speaking, a DTMFA™ for a non-regular language makes arbitrarily large “jumps”:

» Lemma 7 (Jumping Lemma). Let L € L(DTMFA™). Then either L is regular, or for every
m > 0, there exist n > m and p,,v, € X7 such that

1. |vy| =n,

2. v, is a factor of py,

3. ppuy is a prefix of a word from L,

4. for allu € ¥*, pyu € L only if v, is a prefiz of u.

» Example 8. Let L:={ww | w € ¥*} with |¥| > 2, which is well-known to be not regular.
Assume L € L(DTMFA™) and choose m:=1. Then there exist n > 1 and p,, v, € X* that
satisfy the conditions of Lemma 7. Choose a € ¥ that is not the first letter of v,, and define
w:=appa. Then v, is not a prefix of u, but p,u = (p,a)? € L, which is a contradiction.

» Example 9. Let L:={a’ba’ | i > j > 0}. Using textbook methods, it is easily shown that
L is not regular. Now, assuming that L € £L(DTMFA™), choose m:=4. Then there exist
n >4 and p,,v, € X7 that satisfy the conditions of Lemma 7. As p,v,, is a prefix of a word
in L, either p, = a’ or p,, = a’ba’/ with 4,5 >0 (and i >4 or i + j > 3). In the first case,
consider «:=ba. Then p,u = a’ba with i > 4; hence, p,u € L. But u starts with b, and
v, is a factor of p, = a’. Contradiction, as v,, cannot be a prefix of u. For the second case,
let w:=a. As p,v, is a prefix of a word in L, and as |v,| =mn, ¢ > j +n > j 4+ 4 must hold.
Hence, p,u = a’ba’*!, and p,u € L. Contradiction, as v,, is not a prefix of u.

For unary languages, there is an alternative to Lemma 7 that is easier to apply and
characterizes unary DTMFA™i-languages. It is built on the following definition: A language
L C {a}* is an infinite arithmetic progression if L = {a**¢|i > 0} for some b > 1, ¢ > 0.

» Lemma 10. Let L € L(DTMFA™) be an infinite language with L C {a}*. The following
conditions are equivalent:

1. L is regular.

2. L contains an infinite arithmetic progression.

3. There is b > 1 such that, for every n > 0, abiten ¢ [for some ¢, >0 and all 0 < i <mn.

» Example 11. Let a: =(x: aa™t)(&z)" (this regex is also known as “Abigail’s expression” [1]
in the PERL community). Then £(a) = {a™" | m,n > 2}. In other words, o generates the
language of all a® such that i is a composite number (i. e., not a prime number). As £() is not
regular and contains the arithmetic progression 2i +4, Lemma 10 yields £(«) ¢ £L(DTMFA™).

D. D. Freydenberger and M. L. Schmid

The following result is a curious consequence of Lemma 10:

» Proposition 12. Over unary alphabets, L(DTMFA™) N £L(DTMFA) = L(REG).

4 Deterministic Regex

In order to define deterministic regex as an extension of deterministic regular expressions,
we first extend the notion of a marked alphabet that is commonly used for the latter:
For every alphabet A, let fl::{a(n) | @ € A;n > 1}. For every a € RX, we define &
as a regex that is obtained by taking ax (the proper regular expression over X UZ U T
that generates the ref-language R(«)), and marking each occurrence of x € (XUZUT)
by a unique number (to make this well-defined, we assume that the markings start at
1 and are increased stepwise). For example, if a:=(y: (aV&z)* - (eVb-a)) - &y, then
a = [y(l)(a(g) Vag)) - (eVby - a(5))]y(6) -y(7y- We also use these markings in the ref-words:
For example, [y(l)a(g)a@)x(g)a(g)]y(G)y(7) € R(a).

Before we explain this definition and use it to define deterministic regex, we first discuss
the special case of deterministic regular expressions: A proper regular expression « is not
deterministic if there exist words u,v1,vs € 2%, a terminal a € ¥ and positions i # j such
that ua(;)v1 and ua;) vz are elements of £(&) (see e. g. [9, 24]). Otherwise, it is a deterministic
proper reqular expression (or, for short, just deterministic reqular expression).

The intuition behind this definition is based on the Glushkov construction for the
conversion of regular expressions into finite automata, as a regular expression « is deterministic
if and only if its Glushkov automaton M(«) is deterministic. Given a regular expression
a, we define M(«) in the following way: First, we use the marked regular expression & to
construct its occurrence graph' Gg, a directed graph that has a source node src, a sink node
snk, and one node for each a(;) in &. The edges are constructed in the following way: Each
node a(; has an incoming edge from src if a(;) can be the first letter of a word in £(&),
and an outgoing edge to snk if it can be the last letter of such a word. Furthermore, for
each factor a(;)b(;) that occurs in a word of £(&), there is an edge from a(;) to b(;). As a
consequence, there is a one-to-one-correspondence between marked words in £(&) and paths
from src to snk in G4. To obtain M(«), we directly interpret G4 as NFA over ¥: The source
src is the starting state, each node ag;) is a state g;, and an edge from a;) to b(;) corresponds
to a transition from ¢; to g¢; when reading b. The sink snk does not become a state; instead,
each node with an edge to snk is a final state (hence, M(a) contains the source state, and
one state for every terminal in «). This interpretation allows us to treat occurrence graphs
as an alternative notation for a subclass of NFA (namely those where the starting state is not
reachable from other states, and for each state g, there is a characteristic terminal a, such
that all transitions to g read aq). When doing so, we usually omit the occurrence markings
on the nodes in graphical representations.

Intuitively, M(«a) treats each terminal of « as a state. Recall that « is not deterministic if
there exists words ua ;v and ua(;)ve in £(&) with 7 # j. This corresponds to the situation
where, after reading u, M(a) has to decide between states a(;) and a(;y for the input letter a.

» Example 13. Let a:=(¢V((aVb)*a)). Then & = (¢V((a; Vbz)Ta3)), and M(a), the
Glushkov automaton of «, is defined as follows:

L Most literature, like [9], defines the occurrence graph only implicitly by using sets first, last, and follow,
which correspond to the edge from src, the edges to snk, or to the other edges of the graph, respectively.
The explicit use of a graph is taken from the k-occurrence automata by Bex et al. [5]. We shall see that
an advantage of graphs is that they can be easily extended by describing memory actions to the edges.

337

STACS 2017

33:8

Deterministic Regular Expressions with Back-References

To the left, M(«) is represented as an occurrence graph, to the right in standard NFA
notation. Then M(«a) and « are both not deterministic: For M(«), consider state 1; for a,
consider u = a(y), v1 = a(3), v2 = €, and the words ua()v1 and ua(z)yva.

As shown in [9], £(DREG) C L(REG) (also see [12, 30], or Lemma 23 below). Like for
determinism of regular expressions, the key idea behind our definition of deterministic regex
is that a matcher for the expression treats terminals (and variable references) as states.
Then an expression is deterministic if the current symbol of the input word always uniquely
determines the next state and all necessary variable actions. For regular expressions, non-
determinism can only occur when the matcher has to decide between two occurrences of the
same terminal symbol; but as regex also need to account for non-determinism that is caused
by variable operations or references, their definition of non-determinism is more complicated.

» Definition 14. An o € RX is not deterministic if there exist p1, p2 € R(&) such that any
of the following conditions is met for some r, s1, so € (f) UZU f‘)* and 71,72 € I

1. p =7-71-0a@) - s1and po =772 - ag) - 52 with a € ¥ and i # j,

2. pr=r-m-xG -siand po =717 X(y) - s2 withr € E, x € (BUE) and i # j,

3. pr=7r-71X@) st and pp =792 X(5) - S2 With x € (XU E) and 71 # e,

4. p1=r-v and py =7 -7y2 with 71 # 2.

Otherwise, a is deterministic. We use DRX to denote the set of all deterministic regex, and
define DREG: =DRXNREG as the set of deterministic regular expressions.

» Example 15. Let ag:=({z: a) Va), az:=(aV&z), ag:=({z: e) Ve)a, as:=((z: €) Ve).
None of these regex are deterministic, as each «; meets the i-th condition of Definition 14.
We discuss this for a;: Observe & = ([m(l)a(g)]z@) V a(4). Then choosing p; = [I(l)a(g)]m(g)
and p2 = ay), withr =¢, v1 = [w(1)v s1 =]I(B), and v2 = sy = € shows the condition is met.

Let 1 :=(z: (aVb)*)c-&z and Bo: =((z: &y)(y: &:c~a>)*. Both regex are deterministic,
with £(81): ={wcw | w € {a,b}*} and L(B2) = {a"2 | n > 0} (see Example 2).

Condition 1 of Definition 14 describes cases where non-determinism is caused by two
occurrences of the same terminal (y; and 7, are included for cases like o; in Example 15).
If restricted to regular expressions, it is equivalent to the usual definition of deterministic
regular expressions. Condition 2 expresses that the matcher has to decide between a variable
reference and any other symbol; while in condition 3, the symbol is unique, but there is a
non-deterministic choice between variable operations. Finally, condition 4 describes cases
where the behaviour of variables is non-deterministic after the end of the word (while one
could consider this edge case deterministic, this choice simplifies recursive definitions). In
conditions 3 and 4, the definition not only requires that it is clear which variables are reset, but
also that it is clear which part of the regex acts on the variables. Hence, ({(x:) V(z: €)) is also
not deterministic. This is similar to the notion of strong determinism for regular expressions,
see [23]. As one might expect, some non-deterministic regexes define DRX-languages:

» Example 16. Let ¥ = {0,1} and av: =17 (x: 0*)(1T&x)*1". This regex was introduced
by Fagin et al. [15], who call its language the “uniform-0-chunk language”. Obviously, « is
not deterministic (in fact, it satisfies conditions 1, 2, and 3 of Definition 14). Nonetheless, it
is possible to express £(a) with the deterministic regex 1(1F V(0(z: 0*)17(0 - &z - 17)*)).

D. D. Freydenberger and M. L. Schmid

We now discuss the conversion from DRX to DTMFA™, which generalizes the Glushkov
construction of M(a) for regular expressions. The core idea is extending the occurrence
graph to a memory occurrence graph Gg, which has two crucial differences: First, instead of
only considering terminals, each terminal and each variable reference of a regex o becomes a
node. Second, each edge is labelled with a ref-word from I'* that describes the memory actions
(hence, there can be multiple edges from one node to another). In analogy to the occurrence
graph, each memory occurrence graph can be directly interpreted as an e-free TMFA'™,

» Theorem 17. Let a € RX, and let n denote the number of occurrences of terminals and
variable references in . We can construct an n+2 state TMFA™ M () with L(M(a)) = L(«)
that is deterministic if and only if o is deterministic. In time O(|X||a|n), the algorithm
either

1. computes M(«) if a is deterministic, or

2. detects that o is not deterministic.

» Example 18. Consider the deterministic regex a:={x: (aVb)*)-d- &z. Applying the
markings yields a: =[5} (a() Vb(g))+}x(4) -ds) - (7), and M(a) is the following automaton:

To the left, M(«) is represented as the memory occurrence graph Gg, to the right as the
DTMFA that can be directly derived from this graph (which uses memory 1 for z).

The construction from the proof of Theorem 17 behaves like the Glushkov construction for
regular expressions, with one important difference: On regex that are not deterministic, its run-
ning time may be exponential in the number of variables; as there are non-deterministic regex
where conversion into a TMFA without e-transitions requires an exponential amount of transi-
tions. E.g., for k> 1,let a:=a-(eV(z1:€)) - (e V(zp: &) -band B:=a(\; ;@i 5})*b.
An automaton that is derived with a Glushkov style conversion then contains states ¢; and
g2 that correspond to the terminals; and between these two states, there must be 2% different
transitions to account for all possible combinations of actions on the variables. This suggests
that converting a regex into a TMFA without e-edges is only efficient for deterministic regex;
while in general, it is probably advisable to use a construction with e-edges.

By combining Theorems 17 and 5, due to n < |«|, we immediately obtain the following:

» Theorem 19. Given o € DRX with n occurrences of terminal symbols or variable references
and k variables, and w € ¥*, we can decide in time O(|X||a|n + k|w|), whether w € L(a).

If we ensure that recalled variables never contain € (or that only a bounded number of
variables references are possible in a row), we can even drop the factor k. For comparison, the
membership problem for DREG can be decided in time O(|X||a| + |w]) when using optimized
versions of the Glushkov construction (see [8, 34]), and in O(|a| + |w| - loglog |a]) with the
algorithm by Groz, Maneth, and Staworko [24] that does not compute an automaton.

33:9

STACS 2017

33:10

Deterministic Regular Expressions with Back-References

5 Expressive Power

While Campeanu, Salomaa, Yu [10] and Carle and Narendran [11] state pumping lemmas for a
class of regex, these do not apply to regex as defined in this paper. However, Lemmas 7 and 10,
introduced in Section 3, shall be helpful for proving inexpressibility. A consequence of
Lemma 10 is that there are infinite unary DTMFA™-languages that are not pumpable (in
the sense that certain factors can be repeated arbitrarily often), as this would always lead
to an arithmetic progression. It is also possible to demonstrate this phenomenon on larger
alphabets, without relying on a trivial modification of the unary case:

» Example 20. The Fibonacci word F,, is the infinite word that is the limit of the sequence
of words Fyy:=b, Fy:=a, and F,y5:=F,41 - F, for all n > 0. The Fibonacci word has a
number of curious properties. In particular, it includes no cubes (i.e., factors www, with
w # ¢). This and various other properties are explained throughout Lothaire [29]. Let

a:=a(xg: b){x: a)((xgz &x1&wo) (x5 &xi&xoderr) (vo: &xsders) (s : &xg&mg&a:3>)*.

Then L£(a) = {Fyiy3 | i > 0}. Hence, the words of £(«) converge towards F,,. The proof of
this equivalence is straightforward, but long. It uses that F, 43 = Fy,41 - F}, - Fio41 holds for
all n > 0 As F,, contains no cube, the same applies to all F,,. Thus, £(«a) is a DRX-language
that cannot be pumped by repeating factors of sufficiently large words arbitrarily often.

For further separations, we use the following language:

» Example 21. Let a:=a%-(v: a%)- ({y: &z-&a)-(z: &y-&y))". Then L(a) = {a*' |i>1}.
From this, we define an L € £L(TMFA) with neither L € L(DTMFA™), nor L € £L(DTMFA3):
» Lemma 22. Let L:={a**1 |i>0}U{a* |i>1}. Then L € L(TMFA)\ L(DTMFA).

While DTMFA-inexpressibility provides us with a powerful sufficient criterion for DRX-
inexpressibility, it is not powerful enough to cover all cases of DRX-inexpressibility. In
particular, there are even regular languages that are no DRX-languages:

» Lemma 23. Let L:=L((ab)*(aVe)) = {(ab)3’ | i > 0}. Then L € L(REG)\ L(DRX).

The language L from Lemma 23 is also known to be a non-deterministic regular language (see
e.g. [9]). Our proof can be seen as taking the idea behind the characterization of deterministic
regular languages from [9], applying it to the specific language L, and also taking variables
into account. While this accomplishes the task of proving that deterministic regex share
some of the limitations of deterministic regular expressions, the approach does not generalize
(at least not in a straightforward manner). In particular, deterministic regex can express
regular languages that are not deterministic regular, and are also quite similar to L:

» Example 24. Let L:={(ab)2’ | i > 0}. Then L is generated by the non-deterministic
regular expression (ababab)*(¢V(aba)), and one can show that L is not a deterministic
regular language by using the BKW-algorithm [9] (also [12, 30]) on the minimal DFA M
for L. But for a:=a(y: b)(z: a)((z: &y)(y: &z)(x: &z})*, a € DRX and L(«o) = L.

The “shifting gadget” that is used in Example 24 can be extended to show a far more general
result for unary languages. Considering that £L(DREG) C L£(REG) holds even over unary
alphabets (cf. Losemann et al. [28]), the following result might seem surprising:

» Theorem 25. For every reqular language L over a unary alphabet, L € L(DRX).

D. D. Freydenberger and M. L. Schmid

L(DREG)

. L(REG) —> £(DTMFA><) 7

Figure 1 The proper inclusions from Theorem 26. Arrows point from sub- to superset.

L(DTMFA) — £(TMFA) = £(RX)

L(DRX) — L(DTMFA™
- ()/(()\

As a DFA with n states is converted into a deterministic regex of length O(n), this construction
is even efficient. We summarize our observations (also see Figure 1):

» Theorem 26. L£(DREG) C £(DRX) C L(DTMFA™) C £(DTMFA) C L(TMFA) = L(RX).
The following pairs of classes are incomparable: L(DRX) and L(REG), L(DRX) and
L(DTMFA), as well as L(DTMFA™) and L£L(DTMFA3).

We can also use the examples from this section to show that £(DRX) and £(DTMFA")
are not closed under most of the commonly studied operations on languages:

» Theorem 27. £(DRX) and L(DTMFA™) are not closed under the following operations:
union, concatenation, reversal, complement, homomorphism, and inverse homomorphism.
L(DRX) is also not closed under intersection, and intersection with DREG-languages.

We leave open whether £(DTMFA™) is closed under intersection (with itself or with £(DREG)),
but we conjecture that this is not the case. We also leave open whether £(DRX) and
L(DTMFA™) are closed under Kleene plus or star.

6 Two Variants of Determinism

In this section, we examine a restriction and an extension of DRX and DTMFA. We begin
with the restriction, which we motivate with the following observation: As shown by Carle
and Narendran [11], the intersection problem for regex is undecidable. For DRX, that proof
cannot be used, but the result still holds (and by Theorem 17, this extends to DTMFA):

» Theorem 28. Given «, 8 € DRX, it is undecidable whether L(a) N L(B) = 0.

As a consequence, DTMFA intersection emptiness problem is also undecidable. Theorem 28
applies even to very restricted DRX, as no variable binding contains a reference to another
variable, |var(a)| = 2, and |var(8)| = 3. Hence, bounding the number of variables does not
make the problem decidable. Instead, the key part seems to be that the variables occur
under Kleene stars, which means that they can be reassigned an unbounded amount of times.
Following similar observations, Freydenberger and Holldack [20] introduced the following
concept: A regex is variable-star-free (vstar-free) if each of its plussed sub-regexes contains
neither variable references, nor variable bindings. Analogously, we call a TMFA memory-
cycle-free if it contains no cycle with a memory transition (a transition in a TMFA that is a
memory recall, or that contains memory actions other than ¢). Let RX,s be the set of all
vstar-free regex, and DRX,sf = RX,sf N DRX. Let TMFA ¢ be the set of all memory-cycle-free
TMFA, and define DTMFA s, TM FA:jcf,. .. analogously. The proof of Theorem 17 allows us
to conclude that M(a) € DTMFA s holds for every a € DRX,. Likewise, we can use the
proof of Theorem 4 to conclude L(TMFAf) = L(RX.sf). Note that for e-free DTMFA .,
the membership problem can be decided in time O(|Q| + |w]), as the preprocessing step of
Theorem 5 is not necessary (as only a bounded number of variable references is possible in
each run). Likewise, we can drop the factor & from Theorem 19 when restricted to DRXgf.

33:11

STACS 2017

33:12

Deterministic Regular Expressions with Back-References

As shown by Freydenberger [19], it is decidable in PSPACE whether (', L(a;) = 0
for ag,...,a, € RX,f. By combining the proof for this with some ideas from another
construction from [19], we encode the intersection emptiness problem for TMFA« in the
existential theory of concatenation with reqular constraints (a PSPACE-decidable, positive
logic on words, see Diekert [13], Diekert, Jez, Plandowski [14]). This yields the following;:

» Theorem 29. Given M, ..., M, € TMFAn, we can decide whether (_; L(M;) =0 in
PSPACE. The problem is PSPACE-hard, even if restricted to L(a) N L(B), o € DRX\sf and
B € DREG (if the size of ¥ is not bounded), or to L(a) N L(M), o € DRX\sf and M € DFA.

The unbounded size of ¥ comes from the PSPACE-hardness of the intersection emptiness
problem for DRX by Martens et al. [31], which has the same requirement. Using the existential
theory of concatenation for the upper bound might seem conceptually excessive — but this
cannot be avoided (see Section A.18 in the full version of the paper [21]).

We now combine the proofs of Theorems 6 and 29, and observe:

» Theorem 30. Given M, My € DTMFA¢, L(M;y) C L(M3) can be decided in PSPACE.

Obviously, this implies that equivalence for DTMFA, is decidable in PSPACE, and, further-
more, this also holds for DRX,sf, which is an interesting contrast to non-deterministic RXgf:
As shown by Freydenberger [18], equivalence (and, hence, inclusion and minimization) are
undecidable for RX,s (while [18] does not explicitly mention the concept, the regex in that
proof are vstar-free, as discussed in [20]). Hence, Theorem 30 also yields a minimization
algorithm for DRX,sf and DTMFA ¢ that works in PSPACE (enumerate all smaller candidates
and check equivalence). We leave open whether this is optimal, but observe that even for
DREG, minimization is NP-complete, see Niewerth [33].

Next, we discuss a potential extension of determinism. One could argue that Definition 14
is overly restrictive; e.g., consider a: =(z: a™)(y: b+)c(&z V &y). Then « is not determin-
istic; but as the contents of z and y always start with a or b (respectively), deterministic
choices between &z and &y are possible by looking at the current letter of the input word.
Analogous observations can be made for TMFA. More precisely, we define the notion of
{-deterministic TMFA as a relaxation of the criteria of DTMFA: In contrast to the latter, an
{-deterministic TMFA can have states ¢ with multiple memory recall-transitions, as long as
these recall distinct memories, and if ¢ is reached in some computation, then for each pair of
these recalled memories, the contents differ in the first ¢ positions. First, note that this does
not increase the expressive power (intuitively, storing the length ¢ prefixes of the memory
contents allows making ¢-deterministic memory recall transitions deterministic):

» Proposition 31. Let £ > 1. For every {-deterministic M € DTMFA, there is an M’ €
DTMFA with L(M) = L(M').

For the sake of the argument, let o € RX be ¢-deterministic if and only if M(a) is.

» Proposition 32. For every £ > 1, deciding whether a TMFA is £-deterministic is PSPACE-
complete. The problem is coNP-complete if the input is restricted to TMFAy . These lower
bounds hold even if we restrict the input to RX and RX,sf, respectively.

Hence, while we can decide efficiently whether a TMFA or a regex is deterministic, detecting /-
determinism is costly, even for £ = 1. The same holds if we adapt the definition to distinguish
between variables and terminals (see Section A.21 in the full version of the paper [21]).

D. D. Freydenberger and M. L. Schmid

7 Conclusions and Further Directions

Based on TMFA, an automaton model for regex, we extended the notion of determinism
from regular expressions to regex. Although the resulting language class cannot express all
regular languages, it is still rich; and by using a generalization of the Glushkov construction,
deterministic regex can be converted into a DTMFA, and the membership problem can then be
solved quite efficiently. Although we did not discuss this, the construction is also compatible
with the Glushkov construction with counters by Gelade, Gyssens, Martens [23]. Hence, one
can add counters to DRX and DTMFA without affecting the complexity of membership.

Many challenging questions remain open, for example: Can the more advanced results for
DREG be adapted to DRX, i.e., can M (a) be computed more efficiently (as in [8, 34]), or is
it even possible, like in [24], to avoid computing M(«)? Is effective minimization possible for
DTMFA or DRX? Is it decidable whether a DTMFA defines a DRX-language? Are inclusion
and equivalence decidable for DRX or DTMFA? Can determinism be generalized to larger
classes of regex without making the membership problem intractable?

Acknowledgements. The authors thank Wim Martens for helpful feedback, Matthias
Niewerth, for pointing out that v,, must be a factor of p,, in the jumping lemma, and Martin
Braun, for creating a library and tool for DRX and DTMFA (available at [6]).

—— References

1 Abigail. Re: Random number in perl. Posting in the newsgroup comp.lang.perl.misc,
October 1997. Message-ID slrn64sudh.qp.abigail@betelgeuse.wayne.fnx.com.

2 Alfred V. Aho. Algorithms for finding patterns in strings. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume A, chapter 5, pages 255-300. Elsevier,
Amsterdam, 1990.

3 Dana Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci., 21:46-62,
1980.

4 Pablo Barcel, Carlos A. Hurtado, Leonid Libkin, and Peter T. Wood. Expressive languages
for path queries over graph-structured data. In Proc. PODS 2010, 2010.

5 Geert Jan Bex, Wouter Gelade, Frank Neven, and Stijn Vansummeren. Learning determin-
istic regular expressions for the inference of schemas from XML data. ACM Trans. Web,
4(4):14, 2010.

6 Martin Braun. moar — Deterministic Regular Expressions with Backreferences, 2016. Ac-
cessed December 2016. URL: https://github.com/s4ke/moar.

7 Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Frangois Yergeau. Exten-
sible markup language XML 1.0 (fifth edition). W3C recommendation. Technical Report
https://www.w3.org/TR/2008/REC-xm1-20081126/, W3C, November 2008.

8 Anne Briiggemann-Klein. Regular expressions into finite automata. Theor. Comput. Sci.,
120(2):197-213, 1993.

9 Anne Briggemann-Klein and Derick Wood. One-unambiguous regular languages. Inf.
Comput., 142(2):182-206, 1998.

10 Cezar CAmpeanu, Kai Salomaa, and Sheng Yu. A formal study of practical regular expres-
sions. Int. J. Found. Comput. Sci., 14:1007-1018, 2003.

11 Benjamin Carle and Paliath Narendran. On extended regular expressions. In Proc. LATA
2009, 2009.

12 Wojciech Czerwinski, Claire David, Katja Losemann, and Wim Martens. Deciding de-
finability by deterministic regular expressions. In Proc. FOSSACS 2013, pages 289-304,
2013.

13 Volker Diekert. Makanin’s Algorithm. In Algebraic Combinatorics on Words [29], chap-
ter 12.

33:13

STACS 2017

https://github.com/s4ke/moar
https://www.w3.org/TR/2008/REC-xml-20081126/

33:14

Deterministic Regular Expressions with Back-References

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Volker Diekert, Artur Jez, and Wojciech Plandowski. Finding all solutions of equations in
free groups and monoids with involution. In Proc. CSR 2014, 2014.

Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Document span-
ners: A formal approach to information extraction. J. ACM, 62(2):12, 2015.

Henning Fernau and Markus L. Schmid. Pattern matching with variables: A multivariate
complexity analysis. Inform. Comput., 242:287-305, 2015.

Henning Fernau, Markus L. Schmid, and Yngve Villanger. On the parameterised complexity
of string morphism problems. Theory Comput. Syst., 59(1):24-51, 2016.

Dominik D. Freydenberger. Extended regular expressions: Succinctness and decidability.
Theory Comput. Sys., 53(2):159-193, 2013.

Dominik D. Freydenberger. A logic for document spanners. In Proc. ICDT 2017, 2017.
Accepted. Available at http://ddfy.de/publications/F-ALfDS.html.

Dominik D. Freydenberger and Mario Holldack. Document spanners: From expressive
power to decision problems. In Proc. ICDT 2016, 2016.

Dominik D. Freydenberger and Markus L. Schmid. Deterministic regular expressions with
back-references. A version of this paper that also includes the Appendix. URL: http:
//ddfy.de/publications/FS-DREwBR.html.

Shudi (Sandy) Gao, C. M. Sperberg-McQueen, and Henry S. Thompson. W3C XML schema
definition language (XSD) 1.1 part 1: Structures. Technical Report https://www.w3.org/
TR/2012/REC-xmlschemal1-1-20120405/, W3C, April 2012.

Wouter Gelade, Marc Gyssens, and Wim Martens. Regular expressions with counting:
Weak versus strong determinism. SIAM J. Comput., 41(1):160-190, 2012.

Benoit Groz, Sebastian Maneth, and Slawek Staworko. Deterministic regular expressions
in linear time. In Proc. PODS 2012, 2012.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

S. C. Kleene. Representation of events in nerve nets and finite automata. In C. E. Shannon,
J. McCarthy, and W. R. Ashby, editors, Automata Studies, pages 3-42. Princeton University
Press, Princeton, NJ, 1956.

Markus Latte and Matthias Niewerth. Definability by weakly deterministic regular expres-
sions with counters is decidable. In Proc. MFCS 2015, 2015.

Katja Losemann, Wim Martens, and Matthias Niewerth. Closure properties and descrip-
tional complexity of deterministic regular expressions. Theor. Comput. Sci., 627:54-70,
2016.

M. Lothaire. Algebraic Combinatorics on Words, volume 90 of Encyclopedia of mathematics
and its applications. Cambridge University Press, 2002.

Ping Lu, Joachim Bremer, and Haiming Chen. Deciding determinism of regular languages.
Theory Comput. Syst., 57(1):97-139, 2015.

Wim Martens, Frank Neven, and Thomas Schwentick. Complexity of decision problems for
XML schemas and chain regular expressions. STAM J. Comput., 39(4):1486-1530, 2009.
Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. Taxonomy of XML
schema languages using formal language theory. ACM TOIT, 5(4):660-704, 2005.
Matthias Niewerth. Data Definition Languages for XML Repository Management Sys-
tems. PhD thesis, TU Dortmund, 2015. URL: http://www.theoinf.uni-bayreuth.de/
en/downloads/PHD_Niewerth.pdf.

Jean-Luc Ponty, Djelloul Ziadi, and Jean-Marc Champarnaud. A new quadratic algorithm
to convert a regular expression into an automaton. In Proc. WIA’96, 1996.

Markus L. Schmid. Characterising REGEX languages by regular languages equipped with
factor-referencing. Inform. Comput., 249:1-17, 2016.

http://ddfy.de/publications/F-ALfDS.html
http://ddfy.de/publications/FS-DREwBR.html
http://ddfy.de/publications/FS-DREwBR.html
https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
http://www.theoinf.uni-bayreuth.de/en/downloads/PHD_Niewerth.pdf
http://www.theoinf.uni-bayreuth.de/en/downloads/PHD_Niewerth.pdf

	Introduction
	Preliminaries
	Regex

	Memory Automata with Trap State
	Deterministic Regex
	Expressive Power
	Two Variants of Determinism
	Conclusions and Further Directions

