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Abstract
The problem of merging sorted lists in the least number of pairwise comparisons has been solved
completely only for a few special cases. Graham and Karp [18] independently discovered that
the tape merge algorithm is optimal in the worst case when the two lists have the same size.
Stockmeyer and Yao[28], Murphy and Paull[24], and Christen[6] independently showed when
the lists to be merged are of size m and n satisfying m ≤ n ≤ b 3

2mc + 1, the tape merge
algorithm is optimal in the worst case. This paper extends this result by showing that the tape
merge algorithm is optimal in the worst case whenever the size of one list is no larger than 1.52
times the size of the other. The main tool we used to prove lower bounds is Knuth’s adversary
methods [18]. In addition, we show that the lower bound cannot be improved to 1.8 via Knuth’s
adversary methods. We also develop a new inequality about Knuth’s adversary methods, which
might be interesting in its own right. Moreover, we design a simple procedure to achieve constant
improvement of the upper bounds for 2m− 2 ≤ n ≤ 3m.
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1 Introduction

Suppose there are two disjoint linearly ordered lists A and B: a1 < a2 < · · · < am and
b1 < b2 < · · · < bn respectively, where the m + n elements are distinct. The problem of
merging them into one ordered list is one of the most fundamental algorithmic problems which
has many practical applications as well as important theoretical significance. This problem
has been extensively studied under different models, such as comparison-based model [18],
parallel model [9], in-place merging model [11], etc. In this paper we focus on the classical
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comparison-based model, where the algorithm is a sequence of pairwise comparisons. People
are interested in this model due to two reasons. Firstly, it is independent to the underlying
order relation used, no matter it is "<" in R or another abstract order relation. Secondly, it
is unnecessary to access the value of elements in this model. Such a restriction could come
from security or privacy concerns where the only operation available is a zero-knowledge
pairwise comparison which reveals only the order relation between elements.

The main theoretical question in this merge problem is to determine M(m,n), the
minimum number of comparisons which is always sufficient to merge the lists[18]. Given
any algorithm g1 to solve the (m,n) merging problem (i.e. where |A| = m and |B| = n), let
Mg(m,n) be the number of comparisons required by algorithm g in the worst case, then

M(m,n) = min
g
Mg(m,n).

An algorithm g is said to be optimal on (m,n) if Mg(m,n) = M(m,n). By symmetry, it
is clear that M(m,n) = M(n,m). To much surprise, this problem seems quite difficult in
general, and exact values are known for only a few special cases. Knuth determined the
value of M(m,n) for the case m,n ≤ 10 in his book [18]. Graham [18] and Hwang and
Lin [16] completely solved the case m = 2 independently. The case m = 3 is quite a bit
harder and was solved by Hwang [15] and Murphy [25]. Mönting solved the case m = 4 and
also obtained strong results about m = 5 [26]. In addition, Smith and Lang [27] devised a
computer program based on game solver techniques such as alpha beta search to compute
M(m,n). They uncovered many interesting facts including M(7, 12) = 17, while people used
to believe M(7, 12) = 18.

Several different algorithms have been developed for the merge problem, among them
tape merge or linear merge might be the simplest and the most commonly used one. In this
algorithm, two smallest elements (initially a1 and b1) are compared, and the smaller one will
be deleted from its list and placed on the end of the output list. Then repeat the process
until one list is exhausted. It’s easy to see that this algorithm requires m+n− 1 comparisons
in the worst case, hence M(m,n) ≤ m + n − 1. However, when m is much smaller than
n, it is obvious that this algorithm becomes quite inefficient. For example, when m = 1,
the merging problem is equivalent to an insertion problem and the rather different binary
insertion procedure is optimal, i.e. M(1, n) = dlg(n+ 1)e.

One nature question is "when is tape merge optimal?". By symmetry, we can assume
n ≥ m and define α(m) be the maximum integer n(≥ m) such that tape merge is optimal,
i.e.

α(m) = max{n ∈ N | M(m,n) = m+ n− 1, n ≥ m}.

Assume a conjecture proposed by Knuth [18], which asserts thatM(m,n+1) ≤M(m,n)+1 ≤
M(m + 1, n), for m ≤ n, is correct, it’s easy to see tape merge is optimal if and only if
n ≤ α(m), and α(m) is monotone increasing.

Graham and Karp [18] independently discovered that M(m,m) = 2m − 1 for m ≥ 1.
Then Knuth [18] proved α(m) ≥ 4 for m ≤ 6. Stockmeyer and Yao[28], Murphy and
Paull[24], and Christen[6] independently significantly improved the lower bounds by showing
α(m) ≥ b 3

2mc + 1, that is M(m,n) = m + n − 1, for m ≤ n ≤ b 3
2mc + 1. On the other

hand, Hwang[14] showed that M(m, 2m) ≤ 3m − 2, which implies α(m) ≤ 2m − 1. For

1 We only consider deterministic algorithms in this paper.
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m ≤ n ≤ 2m− 1, the best known merge algorithm is tape merge algorithm. It is conjectured
by Fernandez et al. [8] that α(m) = 1+

√
5

2 m± o(m).
For general n ≥ m, Hwang and Lin[14] proposed an in-between algorithm called binary

merge, which excellently compromised between binary insertion and tape merge in such a
way that the best features of both are retained. It reduces to tape merge when n ≤ 2m, and
reduces to binary insertion when m = 1. Let Mbm(m,n) be the worst-case complexity of
this algorithm. They showed that

Mbm(m,n) = m(1 + blg n

m
c) + b n

2blg n
m c
c − 1.

Hwang and Deutsch[13] designed an algorithm which is optimal over all insertive al-
gorithms including binary merge, where for each element of the smaller list, the comparisons
involving it are made consecutively. However, the improvement for fixed n/m over binary
merge increases more slowly than linearly in m[23]. Here we say that algorithm A1 with
complexity MA1(m,n) is significantly faster for some fixed ratio n/m than algorithm A2 with
complexity MA2(m,n), if MA2(m,n) −MA1(m,n) = Ω(m). The first significant improve-
ment over binary merge was proposed by Manacher[23], which can decrease the number of
comparisons by 31

336m for n/m ≥ 8, and Thanh and Bui[31] further improved this number to
13
84m. In 1978, Christen[5] proposed an elegant algorithm, called forward testing and backward
insertion, which is better than binary merge when n/m ≥ 3 and saves at least

∑k
j=1b

m−1
4j c

comparisons over binary merging, for n ≥ 4km. Thus it saves about m/3 comparisons
when n/m → ∞. Moreover, Christen’s procedure is optimal for 5m − 3 ≤ n ≤ 7m, i.e.
M(m,n) = b(11m+ n− 3)/4c.

On the lower bound side, there are two main techniques in proving lower bounds. The
first one is the information theoretic lower bound I(m,n) = dlg

(
m+n

m

)
e. Hwang and Lin[14]

have proved that

I(m,n) ≤M(m,n) ≤Mbm(m,n) ≤ I(m,n) +m.

The second one is called Knuth’s adversary methods [18]. The idea is that the optimal
merge problem can be viewed as a two-player game with perfect information, in which the
algorithm chooses the comparisons, while the adversary chooses (consistently) the results of
these comparisons. It is easy to observe that M(m,n) is actually the min-max value of this
game. Thus a given strategy of the adversary provides a lower bound for M(m,n). Mainly
because of the consistency condition on the answers, general strategies are rather tedious to
work with. Knuth proposed the idea of using of "disjunctive" strategies, in which a splitting
of the remaining problem into two disjoint problems is provided, in addition to the result
of the comparison. With this restricted adversary, he used term .M.(m,n) to represent the
minimum number of comparisons required in the algorithm, which is also a lower bound of
M(m,n). The detail will be specified in Section 2.

1.1 Our Results
In this paper, we first improve the lower bounds of α(m) from b 3

2mc+ 1 to b 38
25mc by using

Knuth’s adversary methods.

I Theorem 1. M(m,n) = m+ n− 1, if m ≤ n ≤ 38
25m.

We then show limitations of Knuth’s adversary methods.

I Theorem 2. .M.(m,n) < m+ n− 1, if n ≥ 9dm/5e.

ISAAC 2016
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This means that by using Knuth’s adversary methods, it’s impossible to show α(m) ≥
9dm/5e ≈ 9

5m for any m.
When m ≤ n ≤ 3m, binary merge is the best known algorithm, which reduces to tape

merge for n ∈ [m, 2m] and gives Mbm(m, 2m+ k) = 3m+ bk/2c − 1 for k ∈ [0,m]. In this
paper, we give improved upper bounds for M(m,n) for 2m− 2 ≤ n ≤ 3m. In particular, it
also improves the upper bounds of α(m), that is, α(m) ≤ 2m− 3 for m ≥ 7.

I Theorem 3.
(a) M(m, 2m+ k) ≤ 3m+ bk/2c − 2 = Mbm(m, 2m+ k)− 1, if m ≥ 5 and k ≥ −1.
(b) M(m, 2m− 2) ≤ 3m− 4 = Mbm(m, 2m− 2)− 1, if m ≥ 7. That is α(m) ≤ 2m− 3 for

m ≥ 7.
(c) M(m, 2m) ≤ 3m− 3 = Mbm(m, 2m)− 2, if m ≥ 10.

1.2 Related work
Besides the worst-case complexity, the average-case complexity has also been investigated
for merge problems. Tanner [29] designed an algorithm which uses at most 1.06I(m,n)
comparisons on average. The average case complexity of insertive merging algorithms as well
as binary merge has also been investigated [7, 8].

Bui et al. [30] gave the optimal randomized algorithms for (2, n) and (3, n) merge problems
and discovered that the optimal expected value differs from the optimal worst-case value by
at most 1. Fernandez et al. [8] designed a randomized merging algorithm which performs well
for any ratio n/m and is significantly faster than binary merge for n/m > (

√
5+1)/2 ≈ 1.618.

More preciously, they showed that

MF (m,n) =
{
sn+ (1 + s)m, if 1 + s ≤ n/m ≤ 2 + s,

2
√
mn, if 2 + s ≤ n/m ≤ 2r,

(1)

where s = (
√

5− 1)/2 ≈ 0.618 and r = (
√

2− 1 +
√

2s)2 ≈ 1.659.
Nathan Linial [21] studied a more general problem where partial order relations are already

known. He showed the information-theoretic lower bound is good, that is, an algorithms
exists which merges A and B in no more than (lg(

√
5 + 1)/2)−1 lgN0 comparisons, where

N0 is the number of extensions of the partial order on A ∪B. They also pointed out that
this bound is tight, and the computation needed for finding the appropriate queries can be
done in time polynomial in m+ n.

Sorting, merging and searching are always closely related to each other. Manacher et
al. [22] used efficient merge algorithms to improve Ford-Johnson sorting algorithm, which
was conjectured to be optimal for almost twenty years. Linial and Saks [20] observed that
M(m,n) is equivalent to the minimum number of pairwise comparisons to determine whether
a given element is present in a m × n matrix in which distinct entries are known to be
increasingly ordered along rows and columns. They also studied the generalized problem in
monotone multi-dimensional arrays, and their result was further improved by Cheng et al. [4].
Ajtai et al. [1] considered the problem of sorting and selection with imprecise comparisons.
The non-uniform cost model has also been investigated [3, 10, 17, 12], for example, Huang et
al. [12] studied the sorting problem where only a subset of all possible pairwise comparisons
is allowed. For practical use, Brown and Tarjan [2] gave a merging procedure which runs in
O(I(m,n)) time on a real computer.

Organization. We introduce some notations and explain Knuth’s adversary methods in
Section 2. In Section 3 we provide some properties of Knuth’s adversary methods which will
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(a) Case 1, simple strategy (b) Case 2, complex strategy (c) Case 3, complex strategy

Figure 1 The Adversary’s Splitting Strategies.

be used. In Section 4 we improve the lower bounds for α(m) via Knuth’s adversary methods.
Then we show limitations of this method in Section 5. Section 6 improves the upper bounds
for M(m, 2m+ k). We conclude the paper with some open problems in Section 7.

2 Preliminaries

In this section, we introduce Knuth’s adversary methods and present some notations.
We use the notations λMρ proposed by Knuth in this paper. The detailed definitions

can be found in Knuth’s comprehensive monograph [18]. Yao et al. [28] gave an example to
illustrate the use of that. Here, we briefly introduce the idea.

The basic idea of Knuth’s adversary methods is to restrict the possible adversary strategies.
In general, the adversary can arbitrarily answer the comparison query from the algorithm as
long as there are no contradictions in his answer. But in Knuth’s adversary methods, after
each comparison query between ai and bj , the adversary is required to split each sorted list
into two parts A = A1 ∪ A2 and B = B1 ∪ B2 (Figure 1). The adversary guarantees that
each element in A1 or B1 is smaller than any element in A2 or B2. It is also guaranteed that
ai and bj are not in the same subproblem, i.e. neither ai ∈ A1, bj ∈ B1 nor ai ∈ A2, bj ∈ B2,
thus, the comparison result between ai and bj is determined after the splitting. Then the
merge problem will be reduced to two subproblems (A1, B1) and (A2, B2) with different left
or right constraints. For example, in case 2, the constraint for subproblem (A1, B1) is a right
constraint bl < ak since ak ∈ A2 while bl ∈ B1.

Knuth introduced notation λMρ to represent nine kinds of restrict adversaries, where
λ, ρ ∈ {., \, /} are the left and right constraint. In general, the constraint notation ′.′ means
no left (or right) constraint. Left constraint λ = \ or / means that outcomes must be
consistent with a1 < b1 or a1 > b1 respectively. Similarly, right constraint ρ = \(/) means
the outcomes must be consistent with am < bn (or am > bn respectively). Thus, merge
problem λMρ(A,B) will reduce to subproblem λM.(A1, B1) and .Mρ(A2, B2) in case 1, to
subproblem λM/(A1, B1) and \Mρ(A2, B2) in case 2, and to subproblem λM\(A1, B1) and
/Mρ(A2, B2) in case 3. For convenience, we say the adversary adopts a simple strategy if he
splits the lists in the way of case 1, otherwise the adversary adopts a complex strategy (case
2 or 3).

There are obvious symmetries, such as /M.(m,n) = .M\(m,n) = \M.(n,m) = .M/(n,m),
/M/(m,n) = \M\(m,n), and /M\(m,n) = \M/(n,m), which means we can deduce the
nine functions to four functions: .M., /M., /M\, and /M/. These functions can be calculated
by a computer rather quickly, and the values for all m,n ≤ 150 and the program are available
in [19].

Note M(m,n) ≥ .M.(m,n), but M(m,n) is not equal to .M(m,n). in general, since we
restrict the power of adversary in the decision tree model by assuming there is a (unknown)

ISAAC 2016
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division of the lists after each comparison. But this restrict model still covers many interesting
cases. For example, when m ≤ n ≤ b 3

2mc + 1 [6, 24, 28] or 5m − 3 ≤ n ≤ 7m [5],
.M(m,n). = M(m,n).

Let λMi,jρ(m,n) denote the number of comparisons resulted from adversary’s best
strategy if the first comparison is ai and bj , thus λMρ(m,n) = mini,jλMi,jρ(m,n).

The following notation is also used in our paper.

I Definition 4. Let .M.(m,n) be the difference of the number of comparisons required by
tape merge in the worst case and .M.(m,n), i.e. .M.(m,n) , m+ n− 1− .M.(m,n).

3 Inequalities about Knuth’s adversary methods

In this section, we list several inequalities about λMρ, which will be used in Section 4 and
Section 5.

I Lemma 5. For any λ, ρ ∈ {., /, \}, we have
(a) .Mρ(m,n) ≥ λMρ(m,n);
(b) /Mρ(m,n) ≤ .Mρ(m,n− 1) + 1.

Proof. Part (a) is obvious, the adversary can perform at least as well on less restrictions.
In Part (b), if the first comparison is a1 and b1 for /Mρ(m,n), the adversary has to claim
a1 > b1, thus it reduces to .Mρ(m,n− 1). Therefore we have /Mρ(m,n) ≤ /M1,1ρ(m,n) =
1 + .Mρ(m,n− 1). J

The following lemma shows that if .M.(m,n) = m+ n− 1, then tape merge is optimal
for any (m′, n′) satisfying m′ ≥ m, n′ ≤ n and m′ ≤ n′. The proof is in Appendix A.

I Lemma 6. For any m,n ≥ 0, m + n ≥ 1 and m ≤ n, we have .M.(m + 1, n) ≥
.M.(m,n) + 1 ≥ .M.(m,n+ 1) or .M.(m+ 1, n) ≤ .M.(m,n) ≤ .M.(m,n+ 1).

We can show a similar statement about /M. function as well. The proof is very similar, and
we omit it here.

I Lemma 7. For any m,n ≥ 1, we have
(a) /M.(m+ 1, n+ 1) ≥ /M.(m,n) + 2 [28];
and for any m,n ≥ 1 and m ≤ n, we have
(b) /M.(m,n+ 1) ≤ /M.(m,n) + 1;
(c) /M.(m+ 1, n) ≥ /M.(m,n) + 1, except (m,n) = (1, 1), (2, 2) or (3, 3).

4 Lower bounds for α(m)

The key step is to show that .M.(m+ 25, n+ 38) ≥ .M.(m,n) + 63, which directly implies
Theorem 1. Since it’s unavoidable to show similar statements for other restricted adversaries
λMρ, we prove them by induction in parallel. In addition, by symmetry, we have /M.(m,n) =
.M\(m,n), \M.(m,n) = .M/(m,n), and /M/(m,n) = \M\(m,n) , so the following theorem
is enough for our goal.

I Theorem 8. For m,n ≥ 0 and m+ n ≥ 1, we have
(a) .M.(m+ 25, n+ 38) ≥ .M.(m,n) + 63;
and for m,n ≥ 1, we have
(b) /M.(m+ 25, n+ 38) ≥ /M.(m,n) + 63;
(c) \M.(m+ 25, n+ 38) ≥ \M.(m,n) + 63;
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(d) /M\(m+ 25, n+ 38) ≥ /M\(m,n) + 63;
(e) \M\(m+ 25, n+ 38) ≥ \M\(m,n) + 63, except (m,n) = (1, 1);
(f) \M/(m+ 25, n+ 38) ≥ \M/(m,n) + 63, except (m,n) = (2, 1).

Proof. The proof is by induction on m and n. The starting values for m,n ≤ 50 are given
in [19]. Now suppose the theorem holds for any m′, n′ satisfying m′ ≤ m, n′ ≤ n and
m′ + n′ < m+ n, we then prove the case (m,n) where m ≥ 51 or n ≥ 51. Recall that our
task is to design a strategy for the adversary for (m+ 25, n+ 38).

Part (a). Suppose an algorithm begins by comparing ai and bj , if i ≤ m and j ≥ n + 1,
then the adversary claims ai < bj and follows the simple strategy, yielding

.Mi,j .(m+ 25, n+ 38) ≥ 1 + .M.(m,n) + .M.(25, 38) = .M.(m,n) + 63.

If i ≥ m+ 1 and j ≤ n, the adversary claims ai > bj and uses the simple strategy. This
leads to

.Mi,j .(m+ 25, n+ 38) ≥ 1 + .M.(m,n) + .M.(25, 38) = .M.(m,n) + 63.

If i ≤ m and j ≤ n, assume if we compare ai and bj in .M.(m,n), the adversary’s best
strategy is 1 + .Mρ(p, q) + λM.(s, t) where λ, ρ ∈ {., /, \}, then adversary uses the same
strategy here, and we get

.Mi,j .(m+ 25, n+ 38) ≥1 + .Mρ(p, q) + λM.(s+ 25, t+ 38)
≥1 + .Mρ(p, q) + λM.(s, t) + 63 ≥ .M.(m,n) + 63

by using the induction hypothesis.
If i ≥ m+ 1 and j ≥ n+ 1, then i ≤ 25 and j ≤ 38 cannot happen simultaneously, thus

there are only three possible cases: (i ≥ 26, j ≤ 38), (i ≤ 25, j ≥ 39), or (i ≥ 26, j ≥ 39).
Reversing the order of the elements in A and B maps all these three cases to the above ones,
so we can handle these cases as well by symmetry.

Therefore no matter which two elements are chosen to compare at the first step, the
adversary can always find a strategy resulting the value not smaller than .M.(m,n) + 63.
This completes the proof of Part (a).

Part (b). The proof for cases where (i ≤ m, j ≤ n), (i ≥ m + 1, j ≤ n), and (i ≤ m,
j ≥ n+ 1) is similar with Part (a).

If i ≥ m+ 1 and j ≥ n+ 1, then i ≤ 25 and j ≤ 38 cannot happen simultaneously, so we
only need to consider the following cases:

If i ≤ 25 and j ≥ 39, or i ≥ 26 and j ≤ 38, the adversary uses the simple strategy,
yielding

/Mi,j .(m+25, n+38) ≥ 1+/M.(25, 38)+ .M.(m,n) ≥ 1+62+ .M.(m,n) ≥ /M.(m,n)+63.

If i ≥ 26 and j ≥ 39: assume if we compare ai−25 and bj−38 in /M.(m,n), the adversary’s
best strategy is 1 + /Mρ(p, q) + λM.(s, t). If (p, q, ρ) 6= (1, 1, /), the adversary uses the same
strategy, and we get

/Mi,j .(m+ 25, n+ 38) ≥1 + /Mρ(p+ 25, q + 38) + λM.(s, t)
≥1 + /Mρ(p, q) + 63 + λM.(s, t) ≥ /M.(m,n) + 63

ISAAC 2016
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by the induction hypothesis. If (p, q, ρ) = (1, 1, /), then we know that i ≥ 27 and j = 39, and
the adversary can use the simple strategy, yielding

/Mi,j .(m+25, n+38) ≥ 1+/M.(25, 39)+.M.(m,n−1) = 1+63+.M.(m,n−1) ≥ 63+/M.(m,n).

The last inequality is due to Lemma 5.
Therefore the adversary can always find a strategy resulting the value not smaller than

/M.(m,n) + 63, no matter what the first comparison is. This completes the proof of Part (b).

Part (c). The proof for cases where (i ≤ m, j ≤ n), (i ≥ m + 1, j ≤ n), and (i ≤ m,
j ≥ n+ 1) is similar with Part (a).

Similar with the above argument, if i ≥ m+ 1 and j ≥ n+ 1, we only need to investigate
the following cases:

If i ≤ 25 and j ≥ 39, or i ≥ 27 and j ≤ 38, the adversary uses the complex strategy with
a26 in both subproblems. This leads to

\Mi,j .(m+25, n+38) ≥ 1+\M/(26, 38)+\M.(m,n) = 1+62+\M.(m,n) = \M.(m,n)+63.

If i = 26 and j ≤ 38, since i ≥ m+ 1 and j ≥ n+ 1, then m ≤ 25 and n ≤ 37 and these
cases have been checked as starting values.

If i ≥ 26 and j ≥ 39: assume if we compare ai−25 and bj−38 in \M.(m,n), the adversary’s
best strategy is 1 + \Mρ(p, q) + λM.(s, t). If (p, q, ρ) 6= (1, 1, \) or (2, 1, /), the adversary
uses the same strategy, yielding

\Mi,j .(m+ 25, n+ 38) ≥1 + \Mρ(p+ 25, q + 38) + λM.(s, t)
≥1 + \Mρ(p, q) + 63 + λM.(s, t) ≥ \M.(m,n) + 63

by the induction hypothesis. If (p, q, ρ) = (1, 1, \), we have i = 26 and j ≥ 40. The adversary
claims ai < bj and follows the simple strategy, yielding

\Mi,j .(m+25, n+38) ≥ 1+\M.(26, 38)+.M.(m−1, n) = 1+63+.M.(m−1, n) ≥ 63+\M.(m,n)

by using Lemma 5. If (p, q, ρ) = (2, 1, /), we have i ≥ 28 and j = 39 or i = 26 and j > 39,
since the case where i = 26 and j > 39 has already been considered, we only need to
investigate the case where i ≥ 28 and j = 39. Notice that j ≥ n + 1, i.e. n ≤ 38, hence
m ≥ 50. If i > 28, the adversary claims ai > bj and follows the complex strategy with a28 in
both subproblems. This leads to

\Mi,j .(m+ 25, n+ 38) ≥ 1 + \M/(28, 39) + \M.(m− 2, n− 1)
= 1 + 66 + \M.(m− 2, n− 1)
≥ 66 + \M.(m− 1, n− 1)
≥ 63 + 1 + \M/(2, 1) + \M.(m− 1, n− 1)
= 63 + \Mi−25,1.(m,n)
≥\M.(m,n) + 63.

The second inequality is according to Lemma 7 and the second equality is the assumption of
the best strategy for the adversary. If i = 28 and j = 39, we have m ≤ 27 and n ≤ 38, which
have been checked as starting values.

Therefore the adversary can always find a strategy resulting the value not smaller than
\M.(m,n) + 63. This completes the proof of Part (c).
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Part (d), (e), (f). Due to the space constraint, we put the proofs of Part (d), Part (e) and
Part (f) in Appendix B. J

Now, we are ready to prove Theorem 1.

Proof. The small cases 1 ≤ m ≤ 25 and 1 ≤ n ≤ 38 are given in [19]. Given any pair (m,n)
satisfying m ≤ n ≤ 38

25m, let m = 25p+ s, n = 38q + t where 0 < s ≤ 25, 0 < t ≤ 38, and
observe that m ≥ 25q + d 25

38 te, thus

.M.(m,n) = .M.(25p+ s, 38q + t) ≤ .M.(25q + d 25
38 te, 38q + t) ≤ .M.(d 25

38 te, t) = 0.

The first inequality is due to Lemma 6 and the second one is due to Theorem 8. J

5 Limitations of Knuth’s adversary methods

In this section, we prove Theorem 2, which shows Knuth’s adversary methods can not provide
lower bounds beyond α(m) ≥ 9dm/5e. Actually, we prove a stronger result:

I Theorem 9. .M.(5k, 9k + 12t) ≤ 14k + 11t− 2, for k, t ≥ 0 and t+ k ≥ 1.

With this theorem, Theorem 2 is obvious, since if n ≥ 9dm/5e, .M.(m,n) ≥ .M.(m, 9dm/5e) ≥
1.

Proof. The proof is by induction on k and t. We verify the case k ≤ 10 first: when
t ≥ k/10 + 2/5, we have

.M.(5k, 9k + 12t) ≤M(5k, 10k + 12t− k) ≤Mbm(5k, 10k + 12t− k) ≤ 14k + 11t− 2.

When t < k/10 + 2/5, these finite cases can be checked in [19].
Now suppose k ≥ 11 and we have already proven this theorem for any (k′, t′) satisfying

k′ < k, or k′ = k and t′ < t. Since .M.(m,n) = mini,j .Mi,j .(m,n) ≤ .M50,79.(m,n), thus
it’s enough to show .M50,79.(5k, 9k+ 12t) ≤ 14k+ 11t− 2. In other word, an algorithm which
begins by comparing a50 with b79 can "beat" the adversary. We’ll prove it by enumerating
the adversary’s best strategy.

Case(a). The adversary claims a50 < b79 and follows three possible strategies.
(i) The adversary uses the simple strategy, then

.M50,79.(5k, 9k+ 12t) = 1 + .M.(50 + x, 78− y) + .M.(5k− 50− x, 9k+ 12t− 78 + y),

where x, y ≥ 0. Thus it’s sufficient to show

.M.(50+x, 78−y)+.M.(5k−50−x, 9k+12t−78+y) ≥ .M.(5k−50, 9k−78+12t) ≥ t+2.

The first inequality is according to Lemma 6 and the second one is by the induction
hypothesis.

(ii) The adversary uses the complex strategy, with a51+x in both subproblems.

.M50,79.(5k, 9k + 12t)
= 1 + .M/(51 + x, 78− y) + \M.(5k − 50− x, 9k + 12t− 78 + y)
≤ 1 + .M.(51 + x, 78− y) + .M.(5k − 50− x, 9k + 12t− 78 + y),

where x, y ≥ 0. Thus it’s equivalent to show

.M.(51 + x, 78− y) + .M.(5k − 50, 9k + 12t− 78 + y)− 1
≥ .M.(5k − 50, 9k − 78 + 12t)− 1 ≥ t+ 1.
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(iii) The adversary uses the complex strategy with b78−y in both subproblems.

.M50,79.(5k,9k + 12t)
= 1 + .M\(50 + x, 78− y) + /M.(5k − 50− x, 9k + 12t− 77 + y)
≤ 1 + .M.(50 + x, 78− y) + .M.(5k − 50− x, 9k + 12t− 77 + y),

where x, y ≥ 0. Thus it’s equivalent to show

.M.(50 + x, 78− y) + .M.(5k − 50− x, 9k + 12t− 77 + y)− 1
≥ .M.(5k − 50, 9k − 78 + 12t)− 1 ≥ t+ 1.

Case(b). The adversary claims a50 > b79 and follows three possible strategies.
(i) The adversary uses the simple strategy, then

.M50,79.(5k, 9k+12t) = 1+ .M.(49−x, 79+y)+ .M.(5k−50+1+x, 9k+12t−79−y),

where x, y ≥ 0. Thus it’s sufficient to show

.M.(49− x, 79 + y) + .M.(5k − 50 + 1 + x, 9k + 12t− 79− y) ≥ t+ 2.

Let 5p ≤ x ≤ 5p+4 and 12q−10 ≤ y ≤ 12q+1, then we claim that .M.(49−x, 79+y) ≥
p+ q + 1. If q ≤ 2, these finite cases can be checked in [19]. Otherwise (q ≥ 3), then
79 +y > 2× (49−5p), and .M.(49−5p, 81 + 12(q−1)) ≤Mbm(49−5p, 81 + 12(q−1)) ≤
127+11(q−1)−6p. Therefore .M.(49−x, 79+y) ≥ .M.(49−5p, 81+12(q−1)) ≥ 1+p+q
due to Lemma 6.
Since .M.(49− x, 79 + y) ≥ p+ q+ 1, if p+ q ≥ t+ 1, we’ve done. If p+ q ≤ t, according
to Lemma 6 and the induction hypothesis, we have

.M.(5k − 50 + 1 + x, 9k + 12t− 79− y)
≥ .M.(5k − 50 + 5p+ 5, 9k − 90 + 9p+ 9 + 12(t− q − p))
≥ t− p− q + 1.

Thus .M.(49− x, 79 + y) + .M.(5k − 50 + 1 + x, 9k + 12t− 79− y) ≥ t+ 2.
(ii) The adversary uses the complex strategy with a49−x in both subproblems, then

.M50,79.(5k, 9k + 12t)
= 1 + .M/(49− x, 79 + y) + \M.(5k − 50 + 2 + x, 9k + 12t− 79− y)
≤ 2 + .M.(49− x, 79 + y) + 1 + .M.(5k − 50 + 1 + x, 9k + 12t− 79− y)
≤ 14k + 11t− 2,

where x, y ≥ 0.
(iii) The adversary uses the complex strategy with b80+y in both subproblems, then

.M50,79.(5k, 9k + 12t)
= 1 + .M\(49− x, 80 + y) + /M.(5k − 50 + 1 + x, 9k + 12t− 79− y)
≤ 2 + .M.(49− x, 79 + y) + .M.(5k − 50 + 1 + x, 9k + 12t− 79− y)
≤ 14k + 11t− 2,

where x, y ≥ 0.
J
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6 Upper bounds for α(m)

In this section, we give better upper bounds for α(m) by proposing a simple procedure. This
procedure only involves the first two elements in each A and B and can be viewed as a
modification of binary merge.

Algorithm 1 Modified Binary Merge
Compare a1 and b2
if a1 > b2 then
merge (m,n− 2).

else
compare a2 and b2
if a2 > b2 then
compare a1 and b1, then merge (m− 1, n− 2).

else
compare a2 and b1
if a2 > b1 then
compare a1 and b1, then merge (m− 2, n− 1) .

else
merge (m− 2, n).

end if
end if

end if

It is easy to see that this procedure induces the following recurrence relation:

M(m,n) ≤ max{M(m,n−2)+1,M(m−1, n−2)+3,M(m−2, n)+3,M(m−2, n−1)+4}.

In the following, we’ll use the induction to give better upper bounds for n ∈ [2m− 2, 3m].
The following proofs are very similar, but we give all the details for sake of completeness.

I Theorem 10. M(m, 2m+ 2k) ≤ 3m+ k − 2, for m ≥ 3 and k ≥ −1.

Proof. We induce on k and m. The case for k = −1 just follows tape merge algorithm. The
case for m = 3 are given by Hwang [15] and Murphy [25].

Now suppose that m ≥ 4 and k ≥ 0, and the claim has already been proven for any
(m′, k′) satisfying m′ + k′ ≤ m+ k − 1. According to the procedure, we have

M(m,2m+ 2k)
≤ max{M(m, 2m+ 2(k − 1)) + 1,M(m− 1, 2m+ 2k − 2) + 3,

M(m− 2, 2m+ 2k) + 3,M(m− 2, 2m+ 2k − 1) + 4}

≤ max{3m+k−2 (the induction hypothesis), 3(m−1)+k−2+3 (the induction hypothesis),
3(m− 2) + 1 + k + 3 (binary merge), 3(m− 2) + k + 4 (binary merge)} ≤ 3m+ k − 2. J

I Theorem 11. M(m, 2m+ 2k − 1) ≤ 3m+ k − 3, for m ≥ 5 and k ≥ −1.

Proof. We induce on k and m. The case for k = −1 just follows tape merge algorithm. The
case for m = 5 are given by Mönting [26].
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Now suppose that m ≥ 6 and k ≥ 0, and the claim has already been proven for any
(m′, k′) satisfying m′ + k′ ≤ m+ k − 1. According to the procedure, we have

M(m,2m+ 2k − 1)
≤ max{M(m, 2m+ 2(k − 1)− 1) + 1,M(m− 1, 2m+ 2k − 1− 2) + 3,

M(m− 2, 2m+ 2k − 1) + 3,M(m− 2, 2m+ 2k − 2) + 4}

≤ max{3m+k−3 (the induction hypothesis), 3(m−1)+k−3+3 (the induction hypothesis),
3(m− 2) + k + 3 (binary merge), 3(m− 2) + k − 1 + 4 (Theorem 10)} ≤ 3m+ k − 3. J

I Theorem 12. M(m, 2m− 2) ≤ 3m− 4, for m ≥ 7.

Proof. We induce on m. The case for m = 7 has been verified by Smith and Lang[27]. Now
suppose that m ≥ 8 and the claim has already been proven for m− 1. According to S, we
have

M(m,2m− 2)
≤ max{M(m, 2m− 4) + 1,M(m− 1, 2m− 4) + 3,

M(m− 2, 2m− 2) + 3,M(m− 2, 2m− 3) + 4}

≤ max{3m− 4(tape merge), 3(m− 1)− 4 + 3 (the induction hypothesis), 3(m− 2)− 1 + 3
(Theorem 10), 3(m− 2)− 2 + 4 (Theorem 11)} ≤ 3m− 4. J

I Theorem 13. M(m, 2m) ≤ 3m− 3, for m ≥ 10.

Proof. We do the induction on m. Smith and Lang[27] have verified the case for m = 10.
Now suppose that m ≥ 11 and the claim has already been proven for m− 1. According to
the procedure, we have

M(m,2m)
≤ max{M(m, 2m− 2) + 1,M(m− 1, 2m− 2) + 3,

M(m− 2, 2m) + 3,M(m− 2, 2m− 1) + 4}

≤ max{3m − 3 (Theorem 12), 3(m − 1) − 3 + 3 (the induction hypothesis), 3(m − 2) + 3
(Theorem 10), 3(m− 2)− 1 + 4 (Theorem 11)} ≤ 3m− 3. J

Finally, we put together the above theorems to get Theorem 3.
As we can see in the proofs, if better basic cases can be provided, we can get better

upper bounds by using this procedure. However, there is a barrier of this approach: if we
want to show α(m) ≤ 2m − k or M(m, 2m − k + 1) < 3m − k, it’s necessary to obtain
α(m − 1) ≤ 2(m − 1) − k or M(m − 1, 2m − 2 − k + 1) < 3m − 3 − k at first, thus it is
impossible to show α(m) ≤ 2m− ω(1) via this approach.

7 Conclusion

In this paper we improve the lower bounds for α(m) from b 3
2mc+ 1 to b 38

25mc via Knuth’s
adversary methods. We also show that it is impossible to get α(m) ≥ 9dm/5e ≈ 9

5m for any
m by using this methods. We then design an algorithm which saves at least one comparison
compared to binary merge for 2m − 2 ≤ n ≤ 3m. Specially, for the case M(m, 2m − 2),
our algorithm uses one comparison less than tape merge or binary merge, which means we
can improve the upper bounds of α(m) by 1. We wonder whether there exists a universal
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efficient algorithm to give significantly better upper bounds for M(m,n) in the case n ≤ 2m,
or maybe it’s intrinsically hard to compute M functions since there doesn’t exist general
patterns or underlying structures in the corresponding decision trees.

Besides that, we are also curious about the following conjectures proposed by Knuth [18]:

I Conjecture 14. M(m+ 1, n+ 1) ≥ 2 +M(m,n).

Via a similar proof with Lemma 7, the above conjecture implies the following conjecture
which has been mentioned in Section 1.

I Conjecture 15. M(m+ 1, n) ≥ 1 +M(m,n) ≥M(m,n+ 1), for m ≤ n.

In the attempt to prove these two conjectures, we introduced the notation .M (k).(m,n).
Roughly speaking, .Mk.(m,n) is the adversary which can delay k steps to give the splitting
strategy, and .M.(m,n) = .M0.(m,n) ≤ .M1.(m,n) · · · ≤ .Mm+n−2.(m,n) = M(m,n). In
the case k = 0, it is exactly Lemma 16 in appendix A, but it becomes much harder even for
k = 1.
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A Proof of Lemma 6

We show the following lemma first:

I Lemma 16. .M.(m+ 1, n+ 1) ≥ .M.(m,n) + 2, for any m,n ≥ 0 and m+ n ≥ 1.

Proof. The proof is by induction on m and n. The starting values for m,n ≤ 3 can be easily
checked in [18]. Now suppose the theorem holds for any m′, n′ satisfying m′ ≤ m, n′ ≤ n and
m′ + n′ < m+ n, we then prove the case (m,n). Note that our task is to design a strategy
for the adversary for (m+ 1, n+ 1).

Suppose an algorithm begins by comparing ai and bj , where i ≤ m, j = n + 1. The
adversary claims that ai < bj , and follows the simple strategy, yielding

.Mi,j .(m+ 1, n+ 1) ≥ 1 + .M.(m,n) + .M.(1, 1) ≥ .M.(m,n) + 2 .

If i = m+ 1 and j ≤ n, the adversary claims that ai > bj , and uses the simple strategy.
This leads to

.Mi,j .(m+ 1, n+ 1) ≥ 1 + .M.(m,n) + .M.(1, 1) ≥ .M.(m,n) + 2 .

http://theory.ict.ac.cn/liqian
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If i ≤ m and j ≤ n, assume that if we compare ai and bj in .M.(m,n), the adversary’s
best strategy is 1 + .Mρ(p, q) + λM.(s, t), where ρ, λ ∈ {., /, \} and s + t ≥ 1 if λ = . and
s, t ≥ 1 if λ = {/, \}. Then the adversary uses the same strategy here, and we get

.Mi,j .(m+ 1, n+ 1) ≥ 1 + .Mρ(p, q) + λM.(s+ 1, t+ 1)
≥ 1 + .Mρ(p, q) + λM.(s, t) + 2 = .M.(m,n) + 2

by applying the induction hypothesis and Lemma 7.
If i = m+ 1 and j = n+ 1, we can handle this case as well by reversing the order of the

elements in A and B.
Therefore adversary can always find a strategy which is not smaller than .M.(m,n) + 2,

no matter what the first comparison is. This completes our proof. J

Now we can give the proof of Lemma 6

Proof. We induce on m and n. The case for 1 ≤ m + n ≤ 10 are given in [18]. Now
suppose that m+ n ≥ 11 and the lemma is already established for any (m′, n′) satisfying
m′ + n′ < m+ n.

Part (a).
Ifm = 1, we have .M.(1, n+1) ≤ .M1,n+1.(1, n+1) = max{1, 1+.M.(1, n)} = 1+.M.(1, n).

If m ≥ 2, then .Mm,n+1.(m,n + 1) = max{.M.(m − 1, n + 1), .M.(m,n)} + 1, and by the
induction we know .M.(m,n) ≥ .M.(m− 1, n) + 1 ≥ .M.(m− 1, n+ 1), thus

.M.(m,n+1) ≤ .Mm,n+1.(m,n+1) ≤ max{.M.(m−1, n+1), .M.(m,n)}+1 = .M.(m,n)+1.

Part (b).
When m = n, .M.(m + 1,m) ≥ .M.(m,m − 1) + 2 ≥ .M.(m − 1,m − 2) + 4 ≥ · · · ≥

.M.(2, 1) + 2m− 2 = 2m according to Lemma 16, thus .M.(m+ 1,m) ≥ .M.(m,m) + 1, since

.M.(m,m) ≤ 2m− 1. When m < n, we have

.M.(m+ 1, n) ≥ .M.(m,n− 1) + 2 ≥ .M.(m,n) + 1.

The first inequality is due to Lemma 16, and the second one is by the induction hypothesis. J

B Proof of Theorem 8

Proof.
Part (d). The proof for cases where i ≤ 25 and j > 38, i > 25 and j ≤ 38, and i > 25 and
j > 38 is similar with Part (b).

If i ≤ 25 and j ≤ 38, reserving the order of the elements maps this case to the above
cases, thus we can handle this case as well by symmetry.

Therefore the adversary can always find a strategy which is not smaller than /M\(m,n) +
63, no matter which the first comparison is. So Part (d) is true.

Part (e). The adversary’s strategies for cases where (i ≤ m, j ≤ n), (i > m, j ≤ n), and
(i ≤ m, j > n) are similar with Part (d).

If i ≥ m+ 1 and j ≥ n+ 1, then i ≤ 25 and j ≤ 38 cannot happen simultaneously, so we
only need to investigate the following cases:

If i ≤ 25 and j > 38, or i ≥ 27 and j ≤ 38, the adversary uses the complex strategy with
a26 in both subproblems. This leads to

\Mi,j\(m+ 25, n+ 38) ≥ 1 + \M/(26, 38) + \M\(m,n) = \M\(m,n) + 63.
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If i = 26 and j ≤ 38, then m ≤ 25 and n ≤ 38, which have been checked as starting
values.

If i ≥ 26 and j ≥ 39: assume if we compare ai−25 and bj−38 in \M\(m,n), the adversary’s
best strategy is 1 + \Mρ(p, q) + λM\(s, t). If (p, q, ρ) 6= (1, 1, \) or (2, 1, /), the adversary
uses the same strategy, yielding

\Mi,j\(m+ 25, n+ 38) ≥ 1 + \Mρ(p+ 25, q + 38) + λM\(s, t) ≥ \M\(m,n) + 63

by the induction hypothesis. If (p, q, ρ) = (1, 1, \), we have i = 26 and j > 39. The adversary
claims ai < bj and uses the simple strategy, leading to

\Mi,j\(m+25, n+38) ≥ 1+\M.(26, 38)+.M\(m−1, n) = 64+.M\(m−1, n) ≥ 63+\M\(m,n)

by using Lemma 5.
If (p, q, ρ) = (2, 1, /), the case where i ≥ 28 and j = 39 is the only unconsidered case.

If we compare a2 with b1 in \M\(m,n), and the adversary claims a2 > b1 , then the best
strategy must be 1 + \M.(1, 1) + .M\(m− 1, n− 1), otherwise the adversary claims a2 < b1 ,
and the best strategy must be 1 + .M\(m− 2, n). So we get \M\(m,n) ≤ \M2,1\(m,n) =
max{1+ .M\(m−2, n), 2+ .M\(m−1, n−1)}. If .M\(m−2, n) ≥ 1+ .M\(m−1, n−1), then
.M\(m− 2, n) + 1 ≥ \M\(m,n), and the adversary splits the problem \M\(m+ 25, n+ 38)
into two independent subproblems \M.(27, 38) and .M\(m − 2, n) before the algorithm
begins, and this leads to

\M\(m+ 25, n+ 38) ≥ \M.(27, 38) + .M\(m− 2, n) ≥ 63 + \M\(m,n)

Otherwise (.M\(m−2, n) < 1 + .M\(m−1, n−1)), then 2 + .M\(m−1, n−1) ≥ \M\(m,n)
and the adversary claims ai > bj and uses the simple strategy, yielding

\M\(m+ 25, n+ 38) ≥ \M.(26, 39) + .M\(m− 1, n− 1) + 1 ≥ \M\(m,n) + 63.

Therefore the adversary can always find a strategy resulting the value not smaller than
\M\(m,n) + 63. This completes the proof of Part (e).

Part (f). If n > 50, we can assume j ≥ b 38+n
2 c ≥ 44 by symmetry. If i ≤ 25, the adversary

claims ai < bj and uses the complex strategy with a26 in both subproblems. This leads to

\M/(m+ 25, n+ 38) ≥ 1 + \M/(26, 38) + \M/(m,n) = 63 + \M/(m,n).

If i ≥ 26: assume that if we compare ai−25 and bj−38 in \M\(m,n), the adversary’s best
strategy is 1 + \Mρ(p, q) + λM/(s, t). If (p, q, ρ) 6= (1, 1, \), (2, 1, /), adversary uses the same
strategy, yielding

\Mi,j/(m+ 25, n+ 38) ≥ 1 + \Mρ(p+ 25, q + 38) + λM/(s, t) ≥ \M/(m,n) + 63

by using the induction hypothesis. If (p, q, ρ) = (1, 1, \), we have i = 26 and j ≥ 40. The
adversary claims ai < bj and use the simple strategy, yielding

\Mi,j/(m+25, n+38) ≥ 1+\M.(26, 28)+.M/(m−1, n) = 64+.M/(m−1, n) ≥ 63+\M/(m,n)

by using Lemma 5. If (p, q, ρ) = (2, 1, /), we have i ≥ 28 and j = 39, violating the assumption
j ≥ 44.
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If n ≤ 50, then m > 50 and we can assume i ≥ b 25+m
2 c ≥ 38 by symmetry. If j ≤ 38,

the adversary claims ai > bj , and uses the complex strategy with a26 in both subproblems,
yielding

\M/(m+ 25, n+ 38) ≥ 1 + \M/(26, 38) + \M/(m,n) ≥ 63 + \M/(m,n).

If j ≥ 39: assume if we compare ai−25 and bj−38 in \M\(m,n), the adversary’s best
strategy is 1 + \Mρ(p, q) + λM/(s, t). If (p, q, ρ) 6= (1, 1, \) or (2, 1, /), then adversary uses
the same strategy, thus

\Mi,j/(m+ 25, n+ 38) ≥ 1 + \Mρ(p+ 25, q + 38) + λM/(s, t) ≥ \M/(m,n) + 63

by using the induction hypothesis. If (p, q, ρ) = (2, 1, /), we have j = 39. Similar with
the argument in Part (e), we get \M/(m,n) ≤ \M2,1/(m,n) = max{1 + .M/(m− 2, n), 2 +
.M/(m−1, n−1)}. If .M/(m−2, n) ≥ 1+ .M/(m−1, n−1), the adversary splits the problem
\M/(m+25, n+38) into two independent subproblems \M.(27, 38) and .M/(m−2, n) before
the first comparison begins, and this leads to

\M/(m+ 25, n+ 38) ≥ \M.(27, 38) + .M/(m− 2, n) ≥ 63 + \M/(m,n).

Otherwise (.M/(m− 2, n) < 1 + .M/(m− 1, n− 1)), then the adversary claims ai > bj , and
uses the simple strategy, yielding

\M/(m+ 25, n+ 38) ≥ \M.(26, 39) + .M/(m− 1, n− 1) + 1 ≥ 65 + .M/(m− 1, n− 1)
≥ \M/(m,n) + 63

If (p, q, ρ) = (1, 1, \), then i = 26, violating the assumption i ≥ 38.
Therefore the adversary can always find a strategy resulting the value not smaller than

\M/(m,n) + 63. This completes the proof of Part (f). J
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