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Abstract
Let k = k(n) be the largest integer such that there exists a k-wise uniform distribution over
{0, 1}n that is supported on the set Sm := {x ∈ {0, 1}n :

∑
i xi ≡ 0 mod m}, where m is any

integer. We show that Ω(n/m2 logm) ≤ k ≤ 2n/m + 2. For k = O(n/m) we also show that
any k-wise uniform distribution puts probability mass at most 1/m + 1/100 over Sm. For any
fixed odd m there is k ≥ (1−Ω(1))n such that any k-wise uniform distribution lands in Sm with
probability exponentially close to |Sm|/2n; and this result is false for any even m.
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1 Introduction and our results

A distribution on {0, 1}n is k-wise uniform if any k bits are uniform in {0, 1}k. Researchers
have analyzed various classes of tests that cannot distinguish distributions with k-wise
uniformity from uniform. Such tests include (combinatorial) rectangles [8] (cf. [4]), bounded-
depth circuits [1, 12, 2, 13], and halfspaces [6, 9, 7], to name a few. We say that such tests
are fooled by distributions with bounded independence.

In this work we consider the mod m tests, defined next.

I Definition 1. For an input length n, and an integer m, we define the set Sm := {x ∈
{0, 1}n :

∑
i xi ≡ 0 mod m}.

These tests have been intensely studied at least since circuit complexity theory hit the
wall of gates computing mod m for composite m in the 80’s. However, the effect of bounded
independence on mod m tests does not seem to have been known before this paper.

Our first main result is that there exist distributions with linear uniformity that are
supported on Sm.
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24:2 Bounded Independence vs. Moduli

I Theorem 2. There exists a c > 0 such that the following holds.
For every integer m ≥ 2, there exists a k ≥ cn/m2 logm and a k-wise uniform distribution

over {0, 1}n that is supported on Sm.

This proves a conjecture in [10] where this question is also raised. Their motivation was
a study of the “mod 3” dimension of k-wise uniform distributions, started in [11], which
is the dimension of the space spanned by the support of the distribution over GF(3). [10]
shows that k = 100 logn-wise uniformity with dimension ≤ n0.49 would have applications
to pseudorandomness. It also exhibits a distribution with dimension n0.72 and uniformity
k = 2. Theorem 2 yields a distribution with dimension n− 1 and Ω(n)-wise uniformity.

We then prove three results, summarized in the next theorem, that show that k-wise
uniformity does fool mod m when k is large. (1) shows that the largest possible value of
k in Theorem 2 is k ≤ 2(n + 1)/m + 2 ≤ (1 − Ω(1))n. (2) shows that when k is larger
than (1− γ)n for a constant γ depending only on m then k-wise uniformity fools Sm with
exponentially small error when m is odd. The proof of (2) however does not carry to the
setting of k < n/2, for any m. So we establish (3) which gives a worse error bound but
allows for k to become smaller for larger m, specifically k = O(n/m) for constant error. The
error bound in (3) and the density of Sm are such that (3) only provides a meaningful upper
bound on the probability that the k-wise uniform distribution lands in Sm, but not a lower
bound. In fact, we conjecture that no lower bound is possible in the sense that there is c > 0
such that for every m there is a cn-wise uniform distribution supported on the complement
of Sm.

The combination of (2) and (3) implies that for k = min{O(n/m), (1 − Ω(1))n} any
k-wise uniform distribution puts probability mass at most 1/m+ 1/100 over Sm for odd m.

I Theorem 3. Let m be an integer.
(1) For k ≥ 2n/m+ 2, a k-wise uniform distribution over {0, 1}n cannot be supported on

Sm.
(2) Suppose m is odd, then there is a γ > 0 depending only on m such that for any

(1− γ)n-wise uniform distribution D over {0, 1}n, |Pr[D ∈ Sm]− |Sm|/2n| ≤ 2−γn.
(3) There exists a universal constant c such that for every ε > 0, n ≥ cm2 log(m/ε), and

any c(n/m)(1/ε)2-wise uniform distribution D over {0, 1}n, Pr[D ∈ Sm] ≤ |Sm|/2n + ε.

In our results the sum s of n bits xi ∈ {0, 1} is constrained to be divisible by m. This
setting was chosen for convenience, but our techniques apply in greater generality. For
example we obtain the same results if we instead constrain s to be c mod m for any fixed c.

We also note that (2) is false for any even m because the uniform distribution on S2 has
uniformity k = n− 1 but puts about 2/m mass on Sm, a set which as we shall see later (cf.
Remark 7) has density about 1/m.

Organization

Theorem 3 is a little easier to prove than Theorem 2, but uses overlapping lemmas. So we
start by proving Theorem 3 in Section 2. Then in Section 3 we prove Theorem 2.

2 Proof of Theorem 3

In this section we prove Theorem 3. We start with the following theorem which will give (1)
in Theorem 3 as a corollary.
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I Theorem 4. Let I ⊆ {0, 1, . . . , n} be a subset of size |I| ≤ n/2. There does not exist a
2|I|-wise uniform distribution on {0, 1}n that is supported on S := {x ∈ {0, 1}n :

∑
i xi ∈ I}.

Proof. Suppose there exists such a distribution D. Consider the n-variate nonzero real
polynomial p defined by

p(x) :=
∏
i∈I

(−i+
n∑
j=1

xj).

Note that p(x) = 0 when x ∈ S. And so E[p2(D)] = 0 in particular. However, since p2 has
degree at most 2|I|, we have E[p2(D)] = E[p2(U)] > 0, where U is the uniform distribution
over {0, 1}n, a contradiction. J

Proof of (1) in Theorem 3. When I corresponds to the mod m test Sm, |I| ≤ n/m+ 1. J

We now move to (2) in Theorem 3. First we prove a lemma that estimates the sum∑
x∈Sm(−1)

∑k

i=1
xi . Similar bounds have been established elsewhere, cf. e.g. Theorem 2.9

in [15], but we do not know of a reference with an explicit dependence on m, which will be
used in the next section. (2) follows from bounding above the tail of the Fourier coefficients
of the indicator function of Sm.

I Lemma 5. For any 1 ≤ k ≤ n− 1, |
∑
x∈Sm(−1)

∑k

i=1
xi | ≤ 2n

(
cos π

2m
)n, while for k = 0

|
∑
x∈Sm(−1)

∑k

i=1
xi−2n/m| ≤ 2n

(
cos π

2m
)n. For odd m the first bound also holds for k = n.

Proof. Consider an expansion of

p(y) = (1− y)k(1 + y)n−k

into 2n terms indexed by x ∈ {0, 1}n where xi = 0 indicates that we take the term 1 from
the i’th factor. It is easy to see that the coefficient of yd is

∑
|x|=d(−1)

∑k

i=1
xi . Denote

ζ := e2πi/m as the m-th root of unity. Recall the identity

1
m

m−1∑
j=0

ζjd =
{

1 if d ≡ 0 mod m
0 otherwise.

Thus the sum we want to bound is equal to

1
m

m−1∑
j=0

p(ζj).

Note that p(ζ0) = p(1) = 0 for k 6= 0 while for k = 0, p(ζ0) = 2n. For the other terms we
have the following bound.

I Claim 6. For 1 ≤ j ≤ m− 1, |p(ζj)| ≤ 2n
(
cos π

2m
)k (cos π

m

)n−k.
Proof. As |1 + eiθ| = 2|cos(θ/2)| and |1− eiθ| = 2|sin(θ/2)| we have

|p(ζj)| = |1− ζj |k|1 + ζj |n−k

= 2n
(

sin jπ
m

)k (
cos jπ

m

)n−k
≤ 2n

(
cos π

2m

)k (
cos π

m

)n−k
,
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24:4 Bounded Independence vs. Moduli

where the last inequality holds for odd m because (1) sin jπ
m is largest when j = m−1

2 or
j = m+1

2 , (2) sin(π2 − x) = cosx, and (3) cos jπm is largest when j = 1 or j = m− 1. For even
m the term with j = m/2 is 0, as in this case we are assuming that k < n, and the bounds
for odd m are valid for the other terms. J

Therefore, for k 6= 0 we have∣∣∣∣∣ ∑
x∈Sm

(−1)
∑k

i=1
xi

∣∣∣∣∣ = m− 1
m

· 2n
(

cos π

2m

)k (
cos π

m

)n−k
≤ 2n

(
cos π

2m

)k (
cos π

m

)n−k
,

and we complete the proof using the fact that cos(π/m) ≤ cos(π/2m). For k = 0 we also
need to include the term p(1) = 2n which divided by m gives the term 2n/m. J

I Remark 7. Clearly the lemma for k = 0 simply is the well known fact that the cardinality
of Sm is very close to 2n/m. Equivalently, if x is uniform in {0, 1}n then the probability that∑
i xi ∈ Sm is very close to 1/m. The same holds for the probability that

∑
i xi ≡ c mod m

for any fixed c. This can be seen by using the polynomial y−cp(y) in the above proof.

Proof of (2) in Theorem 3. Let f : {0, 1}n → {0, 1} be the characteristic function of Sm.
We first bound above the nonzero Fourier coefficients of f . Let S = Sm. By Lemma 5, we
have for any β with |β| = k > 0,

|f̂β | = 2−n
∑
x∈S

(−1)
∑k

i=1
xi ≤

(
cos π

2m

)n
≤ 2−αn,

where α = − ln cos(π/2m) depends only on m. Thus, if D is k-wise uniform,

|E[f(D)]− E[f(U)]| ≤
∑
|β|>k

|f̂β | · |Ex∼D[(−1)
∑

xiβi ]|

≤
∑
|β|>k

|f̂β |

≤ 2−αn
n∑

t=k+1

(
n

t

)

= 2−αn
n−k−1∑
t=0

(
n

t

)
.

For k ≥ (1 − δ)n, we have an upper bound of 2n(H(δ)−α). Pick δ small enough so that
H(δ) ≤ α/2. The result follows by setting γ := min{α/2, δ}. J

Note that the above proof fails when m is even as we cannot handle the term with |β| = n.
Finally, we prove (3) in Theorem 3. We use approximation theory.

Proof of (3) in Theorem 3. Let f : {0, 1}n → {0, 1} be the characteristic function of Sm.
The proof amounts to exhibiting a real polynomial p in n variables of degree d = c(n/m)(1/ε)2

such that f(x) ≤ p(x) for every x ∈ {0, 1}n, and E[p(U)] ≤ ε for U uniform over {0, 1}n.
To see that this suffices, note that E[p(U)] = E[p(D)] for any distribution D that is d-wise
uniform. Using this and the fact that f is non-negative, we can write

0 ≤ E[f(U)] ≤ E[p(U)] ≤ ε and 0 ≤ E[f(D)] ≤ E[p(D)] ≤ ε.

Hence, |E[f(U)]− E[f(D)]| ≤ ε. This is the method of sandwiching polynomials from [1].
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Let us write f = g(
∑
i xi/n), for g : {0, 1/n, . . . , 1} → {0, 1}. We exhibit a univariate

polynomial q of degree d such that g(x) ≤ q(x) for every x, and the expectation of q under
the binomial distribution is at most ε. The polynomial p is then q(

∑
i xi/n).

Consider the continuous, piecewise linear function s : [−1, 1]→ [0, 1] defined as follows.
The function is always 0, except at intervals of radius a/n around the inputs x where g
equals 1, i.e., inputs x such that nx is divisible by m. In those intervals it goes up and down
like a ‘Λ’, reaching the value of 1 at x. We set a = εm/10.

By Jackson’s theorem, see e.g. [3, Theorem 7.4] or [5], for a degree d = O(nε−1a−1) =
O(nε−2m−1), there exists a univariate polynomial q′ of degree d that approximates s with
pointwise error ε/10. Our polynomial q is defined as q := q′ + ε/10.

It is clear that g(x) ≤ q(x) for every x ∈ {0, 1/n, . . . , 1}. It remains to estimate E[q(U)].
As q′ is a good approximation of s we have E[q(U)] ≤ 2ε/10 + E[s(U)]. We noted in

Remark 7 that the remainder modulo m of
∑
xi is δ-close to uniform for δ = cos(π/2m)n =

e−O(n/m2). Now the function s, as a function of
∑
xi, is a periodic function with period m

and if we feed the uniform distribution over {0, 1/n, . . . ,m/n} into s we have E[s] ≤ ε/10. It
follows that if n is at least a large constant times m2(log(1/ε) + logm), we have E[s(U)] ≤
2ε/10 and we conclude that E[q(U)] ≤ 4ε/10. J

3 Proof of Theorem 2

In this section we prove Theorem 2. Let I be a subset of {0, 1, . . . , n− 1, n} and S ⊆ {0, 1}n
be the subset of strings whose sum

∑
i xi belongs to I. Let US be the uniform distribution

over S. We are going to construct a k-wise uniform distribution starting from US and
changing the weights of k+ 1 slices of the Hamming cube. In particular, our distribution will
be symmetric. We note that since S is symmetric, if there is a k-wise uniform distribution
supported on it then by a simple symmetrization argument there must also be a symmetric
one.

Let εt be the bias of a parity of size t under US , i.e., εt := Ex∈US [(−1)
∑t

i=1
xi ]. Note

that because we are working with symmetric distributions, all parities of the same size have
the same bias. Now let ε(t, `) be the bias of a parity of size t over the uniform distribution
on strings that sum to `. Note that ε(t, `) is a scaled version of the Kravchuk polynomial of
degree t in the variable `.

We note that εt =
∑
`∈I Prx∼US [

∑
j xj = `] · ε(t, `).

Now let a0 < a1 < · · · < ak be k + 1 points in I that are closest to n/2 and let i∗ be an
index that maximizes |ai − n

2 |. Finally let pi be the probability over x drawn from US that
x sums to ai.

We are going to change the pi to pi − ∆i with the goal of making εt zero for every
1 ≤ t ≤ k. The effect of the substitution on εt is to decrease it by

∑
0≤i≤k ∆iε(t, ai).

Thus our goal is to find ∆i’s so that

k∑
i=0

∆iε(t, ai) = εt, ∀t ∈ {1, 2, . . . , k}

k∑
i=0

∆i = 0,

0 ≤ pi −∆i ≤ 1, ∀i ∈ {0, . . . , k}.

Let M be the (k + 1) × (k + 1) matrix Mt,i := ε(t, ai) where t, i ∈ {0, . . . , k}. Let ∆ :=

APPROX/RANDOM’16



24:6 Bounded Independence vs. Moduli

(∆0, . . . ,∆k)T and b := (0, ε1, . . . , εk)T . Then the first two conditions form the linear system

M∆ = b.

We will show that there is a unique solution ∆ to this system.
To satisfy the third condition, note that pi∗ is the smallest among all the pi’s. It will also

be the case that pi∗ ≤ 1/2. Thus if ‖∆‖∞ ≤ pi∗ we will also satisfy the third condition and
have a k-wise uniform distribution supported on S.

Consider the expression n−t(
∑n
j=1(−1)xj )t. If we expand this, cancel factors that appear

twice, and collect terms, we can rewrite it as

n−t(
n∑
j=1

(−1)xj )t =
t∑

r=0
γt,r

(
n

r

)−1 ∑
|β|=r

(−1)
∑

xiβi ,

for some choice of non-negative values γt,r, which by plugging in x1 = x2 = . . . = xn = 0 can
be seen to satisfy

∑t
r=0 γt,r = 1.

Let αi := (n − 2ai)/n. Taking expectation in the above equation over all the x’s with
sum equal to ai we have for every i ∈ {0, 1, . . . , k},

αti = ((n− 2ai)/n)t =
t∑

r=0
γt,r

(
n

r

)−1 ∑
|β|=r

E[(−1)
∑

xiβi ] =
t∑

r=0
γt,rε(r, ai). (A)

Let Mr be the r-th row of M . We construct a new matrix V from M by applying
the following row operations R to M : For every t, set Vt =

∑t
r=0 γt,rMr. It follows from

equation (A) that Vt,i = αti, and so V = RM is a Vandermonde matrix, which is invertible.
Hence,

∆ = V −1Rb

is a unique solution.
Therefore it suffices to show that ‖∆‖∞ ≤ pi∗ . Note that ‖∆‖∞ ≤ ‖V −1‖∞‖Rb‖∞, where

the ∞ norm of a matrix is the maximum sum of the absolute values along any one row.
Moreover, since (Rb)t =

∑t
r=0 γt,rbr and

∑t
r=0 γt,r = 1, we have ‖Rb‖∞ ≤ ‖b‖∞. Hence,

it suffices to bound above ‖V −1‖∞ and ‖b‖∞.

Roadmap for the following claims

To get an idea of the following claims, consider the case m = 3 and k = o(n). We first
show in Claim 8 that ‖V −1‖∞ ≤ 2o(n). Then we find it convenient to bound ‖b‖∞ and pi∗
multiplied by |S|. We show that |S|pi∗ ≥ 2n(1−o(1)) in Claim 9. We note that Claims 8, 9
and 10 hold for any symmetric subset S. Finally, in Claim 11 we use the definition of S to
obtain bounds on ai∗ and b, and show that |S|‖b‖∞ ≤ (2− Ω(1))n. Altogether,

‖V −1‖∞|S|‖b‖∞ ≤ 2o(n)(2− Ω(1))n ≤ 2n(1−Ω(1)) ≤ |S|pi∗ ,

as desired.

I Claim 8. ‖V −1‖∞ ≤ (k + 1)( 4en
k )k.

Proof. Since V is a Vandermonde matrix, we can specify the entries of its inverse explicitly.
As shown in e.g. [14] we have

V −1
i,k−j = (−1)k−j

∑
|β|=j
i6∈β

αβ

 ·
∏
s6=i

(αs − αi)−1

 .
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We now give an upper bound on each of the factors on the R.H.S.

Bounding
∑
|β|=j,i6∈β αβ

Since |αi| ≤ 1, this is bounded by the number of terms,
(
k
j

)
, and hence by 2k.

Bounding
∏
s 6=i(αs − αi)−1

Since the difference between every pair of distinct ai, aj is at least 1, we have∏
s6=i

(as − ai) ≥ (k/2)!2

when k is even and is at least (k+1
2 )(k−1

2 )!2 when k is odd. By a crude form of Stirling’s
formula, n! ≥ (n/e)n, and so we get the lower bound (k/2e)k in either case. Hence,∏

s6=i
(αs − αi)−1 ≤ nk

∏
s6=i

(as − ai)−1 ≤ (2en
k

)k.

Putting the bounds together, we have

‖V −1‖∞ ≤ (k + 1) max
i,j
|V −1
i,j | ≤ (k + 1)(4en

k
)k. J

Now we give a lower bound on pi∗ .

I Claim 9. pi∗ |S| ≥ 2n(1−α2
i∗)

n+1 .

Proof. Using the inequalities
(
n
i

)
≥ 2nH(i/n)

n+1 and H( 1−ε
2 ) ≥ 1− ε2, we have

pi∗ |S| =
(
n

ai∗

)
≥ 2nH

( 1−αi∗
2

)
n+ 1 ≥ 2n(1−α2

i∗)
n+ 1 . J

Therefore,

pi∗ |S|
‖V −1‖∞

≥ 2n(1−α2
i∗)

(n+ 1)(k + 1)( 4en
k )k

≥ enf(k,n,ai∗ ),

where

f(k, n, ai∗) := ln 2 ·
(
1− α2

i∗
)
− k

n

(
ln 4en

k

)
− o(1).

We conclude with the following claim.

I Claim 10. If enf(k,n,ai∗ ) ≥ max1≤t≤k
∑
x∈S(−1)

∑t

i=1
xi , then there exists a k-wise uniform

distribution supported on S.

Proof. We just showed

pi∗ |S|
‖V −1‖∞

≥ enf(k,n,ai∗ ) ≥ max
1≤t≤k

∑
x∈S

(−1)
∑t

i=1
xi = ‖b‖∞|S|.

Hence, ‖∆‖∞ ≤ ‖V −1‖∞‖b‖∞ ≤ pi∗ . J

APPROX/RANDOM’16



24:8 Bounded Independence vs. Moduli

3.1 Zero modulo m
We have that Sm consists of all strings with

∑
xi ≡ 0 mod m. If follows that |αi∗ | ≤

(k + 1)m/2n. We now give an upper bound on ‖b‖∞|S|.

I Claim 11. ‖b‖∞|S| ≤ eng(n,m), where g(n,m) := ln 2− 1
2
(
π

2m
)2
.

Proof. Note that ‖b‖∞|S| =
∑
x∈S(−1)

∑k

i=1
xi . By Lemma 5,∑

x∈S
(−1)

∑k

i=1
xi ≤ 2n

(
cos π

2m

)n
≤ eng(n,m),

where in the last two inequalities we used the fact that ln cos(x) ≤ −x
2

2 for x ∈ [0, π/2). J

We are now ready to prove Theorem 2.

Proof of Theorem 2. Recall that |αi∗ | ≤ (k+1)m/2n. By Claim 11 and Claim 10, it suffices
to show that f(k, n, ai∗)− g(n,m) is positive, where recall

f(k, n, a∗i ) = ln 2 ·
(
1− α2

i∗
)
− k

n

(
ln 4en

k

)
− o(1)

≥ ln 2 ·
(

1− ( (k + 1)m
2n )2

)
− k

n

(
ln 4en

k

)
− o(1)

and

g(n,m) := ln 2− 1
2

( π

2m

)2
.

Indeed, we have

f(k, n, ai∗)− g(n,m) ≥ 1
2

( π

2m

)2
− k

n

(
ln 4en

k

)
− ln 2 ·

(
(k + 1)m

2n

)2
− o(1),

and choosing k = εn
m2 lnm for a sufficiently small ε makes this quantity positive. J
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