
Circuit Size Lower Bounds and #SAT Upper
Bounds Through a General Framework ∗

Alexander Golovnev1,2, Alexander S. Kulikov2,
Alexander V. Smal3, and Suguru Tamaki4

1 New York University, USA and
St. Petersburg Department of Steklov Institute of Mathematics of the Russian
Academy of Sciences, Russia
alex.golovnev@gmail.com

2 St. Petersburg Department of Steklov Institute of Mathematics of the Russian
Academy of Sciences, Russia
kulikov@logic.pdmi.ras.ru

3 St. Petersburg Department of Steklov Institute of Mathematics of the Russian
Academy of Sciences, Russia
smal@logic.pdmi.ras.ru

4 Kyoto University, Japan
tamak@kuis.kyoto-u.ac.jp

Abstract
Most of the known lower bounds for binary Boolean circuits with unrestricted depth are proved
by the gate elimination method. The most efficient known algorithms for the #SAT problem
on binary Boolean circuits use similar case analyses to the ones in gate elimination. Chen and
Kabanets recently showed that the known case analyses can also be used to prove average case
circuit lower bounds, that is, lower bounds on the size of approximations of an explicit function.

In this paper, we provide a general framework for proving worst/average case lower bounds
for circuits and upper bounds for #SAT that is built on ideas of Chen and Kabanets. A proof
in such a framework goes as follows. One starts by fixing three parameters: a class of circuits,
a circuit complexity measure, and a set of allowed substitutions. The main ingredient of a
proof goes as follows: by going through a number of cases, one shows that for any circuit from
the given class, one can find an allowed substitution such that the given measure of the circuit
reduces by a sufficient amount. This case analysis immediately implies an upper bound for #SAT.
To obtain worst/average case circuit complexity lower bounds one needs to present an explicit
construction of a function that is a disperser/extractor for the class of sources defined by the set
of substitutions under consideration.

We show that many known proofs (of circuit size lower bounds and upper bounds for #SAT)
fall into this framework. Using this framework, we prove the following new bounds: average case
lower bounds of 3.24n and 2.59n for circuits over U2 and B2, respectively (though the lower bound
for the basis B2 is given for a quadratic disperser whose explicit construction is not currently
known), and faster than 2n #SAT-algorithms for circuits over U2 and B2 of size at most 3.24n
and 2.99n, respectively. Here by B2 we mean the set of all bivariate Boolean functions, and by
U2 the set of all bivariate Boolean functions except for parity and its complement.

1998 ACM Subject Classification F.1.1 Models of Computation

∗ The research presented is Section 3.1 is supported in part by MEXT KAKENHI (24106003); JSPS
KAKENHI (26330011, 16H02782); the John Mung Advanced Program of Kyoto University. The research
presented in Section 3.2 is partially supported by NSF grant 1319051. The research presented in
Sections 4–5 is supported by Russian Science Foundation (project 16-11-10123). Part of the work was
performed while Suguru Tamaki was at Department of Computer Science and Engineering, University
of California, San Diego and the Simons Institute for the Theory of Computing, Berkeley.

© Alexander Golovnev, Alexander S. Kulikov, Alexander V. Smal, and Suguru Tamaki;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 45; pp. 45:1–45:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2 Circuit size lower bounds and #SAT upper bounds through a general framework

Keywords and phrases circuit complexity, lower bounds, exponential time algorithms, satisfia-
bility

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.45

1 Introduction

1.1 Background
In this paper, we study binary Boolean circuits with no restriction on the depth. This is
a natural model for computing Boolean functions that can be viewed as a simple program
where each instruction is just a binary Boolean operation. Shannon [56] showed that for
almost all Boolean functions of n variables the size of a smallest circuit (equivalently, the
minimal number of instructions) computing this function is Ω(2n/n). The proof is based on a
counting argument (the number 22n of all functions of n variables is larger than the number
of circuits of size o(2n/n)) and, for this reason, does not give an explicit function of high
circuit complexity. By saying “explicit” one usually means a function from NP. Showing a
superpolynomial lower bound for an explicit function would imply P 6= NP. However, despite
of many efforts [53, 47, 57, 8, 20, 26, 66, 3], currently we have only small linear lower bounds:
(3 + 1/86)n for the full binary basis B2 consisting of all binary Boolean functions [25] and
5n− o(n) for the basis U2 consisting of all binary Boolean functions except for parity and its
complement [38, 32].

Going to larger complexity classes, it is known that the classes MA/1 [50], Op2 [10], and
PprMA [11] require circuits of superlinear size and the class MAEXP [9] has superpolynomial
circuit complexity. Proving a superlinear lower bound on the circuit complexity of ENP

remains to be a major open problem.
Recently, Williams [60, 64] presented the following approach to prove circuit size lower

bounds against ENP or NE using SAT-algorithms: a super-polynomially faster than 2n
algorithm for the circuit satisfiability problem of a “reasonable” circuit class C implies either
ENP * C or NE * C, depending on C and the running time of the algorithm. The approach
has been strengthened and simplified by subsequent work [59, 61, 63, 7, 33], see also excellent
surveys [52, 45, 62] on this topic.

Williams’ result inspired lots of work on satisfiability algorithms for various circuit classes
[30, 63, 15, 2, 1, 43, 16, 58]. In addition to satisfiability algorithms, several papers [51, 29,
4, 54, 14, 12, 17, 49] also obtained average-case lower bounds (also known as correlation
bounds, see [35, 36, 28]) by investigating the analysis of algorithms instead of just applying
Williams’ result that yields worst-case lower bounds. In particular, Chen and Kabanets [13]
presented algorithms that count the number of satisfying assignments of circuits over U2
and B2 and run in time exponentially faster than 2n if input instances have at most 2.99n
and 2.49n gates, respectively (improving also the previously best known #SAT-algorithm by
Nurk [44]). At the same time, they showed that 2.99n sized circuits over U2 and 2.49n sized
circuits over B2 have exponentially small correlations with the parity function and affine
extractors having “good” parameters, respectively.

To prove a lower bound of ζn on the circuit size, one usually shows that for any circuit
there is a substitution xi ← f eliminating at least ζ gates from the circuit. For example, to
prove a lower bound of 3n− 3 on the circuit size over U2 of the parity function, Schnorr [53]
shows how to make a bit-fixing substitution (i.e., f = c for c ∈ {0, 1}) eliminating at least
3 gates from any U2-circuit. Demenkov and Kulikov [20] prove a lower bound of 3n− o(n)
on the circuit size over B2 of an affine disperser by showing that for any B2-circuit there

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.45

A. Golovnev, A.S. Kulikov, A.V. Smal, and S. Tamaki 45:3

is an affine substitution (f = ⊕j∈Jxj ⊕ c) eliminating at least three gates from the circuit.
Chen and Kabanets proved new average case lower bounds and #SAT upper bounds by
analyzing what happens in the complementary branch xi ← f ⊕ 1 of proofs by Schnorr and
by Demenkov and Kulikov.

1.2 Our Techniques and Results
The main qualitative contribution of this paper is a general framework for proving circuit
worst/average case lower bounds and #SAT upper bounds. This framework is separated
into conceptual and technical parts. The conceptual part is a proof that for a given circuit
complexity measure and a set of allowed substitutions, for any circuit, there is a substitution
that reduces the complexity of the circuit by a sufficient amount. This is usually shown by
analyzing the structure of the top of a circuit. The technical part is a set of lemmas that
allows us to derive worst/average case circuit size lower bounds and #SAT upper bounds
as one-line corollaries from the corresponding conceptual part. The technical part can be
used in a black-box way: given a proof that reduces the complexity measure of a circuit
(conceptual part), the technical part implies circuit lower bounds and #SAT upper bounds.
For example, by plugging in the proofs by Schnorr and by Demenkov and Kulikov, one
immediately gets the bounds given by Chen and Kabanets. We also give new proofs that
lead to the quantitatively better results. The main quantitative contribution of the paper is
the following new bounds which are currently the strongest known bounds:

average case lower bounds of 3.24n and 2.59n for circuits over U2 and B2 (though the
lower bound for the basis B2 is given for a quadratic disperser whose explicit construction
is not currently known), respectively, improving upon the bounds of 2.99n and 2.49n [13];
faster than 2n #SAT-algorithms for circuits over U2 and B2 of size at most 3.24n and
2.99n, respectively, improving upon the bounds of 2.99n and 2.49n [13].

These bounds are obtained by using non-standard circuit complexity measures and sets of
substitutions. We also show that obtaining non-linear lower bounds through a weak version
of this framework is unlikely as it would violate the Exponential Time Hypothesis [31] that
states the following: The satisfiability problem of 3-CNF formulas with n variables cannot be
solved in time 2o(n). ETH is widely used as a hardness assumption to prove the optimality
of many algorithms, see, e.g., [41, 42].

1.3 Framework
We prove circuit lower bounds (both in the worst case and in the average case) and upper
bounds for #SAT using the following four step framework.

Initial setting We start by specifying the three main parameters: a class of circuits C, a set S
of allowed substitutions, and a circuit complexity measure µ. A set of allowed substitutions
naturally defines a class of “sources”. For the circuit lower bounds we consider functions
that are non-constant (dispersers) or close to uniform (extractors) on corresponding sets
of sources. In this paper we focus on the following four sets of substitutions where each
set extends the previous one:

1. Bit fixing substitutions, {xi ← c}: substitute variables by constants.
2. Projections, {xi ← c, xi ← xj ⊕ c}: substitute variables by constants and other

variables and their negations.

MFCS 2016

45:4 Circuit size lower bounds and #SAT upper bounds through a general framework

3. Affine substitutions, {xi ←
⊕

j∈J xj ⊕ c}: substitute variables by affine functions of
other variables.

4. Quadratic substitutions, {xi ← p : deg(p) ≤ 2}: substitute variables by degree two
polynomials of other variables.

Case analysis We then prove the main technical result stating that for any circuit from
the class C there exists (and can be constructed efficiently) an allowed substitution
xi ← f ∈ S such that the measure µ is reduced by a sufficient amount under both
substitutions xi ← f and xi ← f ⊕ 1.

#SAT upper bounds As an immediate consequence, we obtain an upper bound on the
running time of an algorithm solving #SAT for circuits from C. The corresponding
algorithm takes as input a circuit, branches into two cases xi ← f and xi ← f ⊕ 1, and
proceeds recursively. When applying a substitution xi ← f ⊕ c, it replaces all occurrences
of xi by a subcircuit computing f ⊕ c. The case analysis provides an upper bound on the
size of the resulting recursion tree.

Circuit size lower bounds Then, by taking a function that survives under sufficiently many
allowed substitutions, we obtain lower bounds on the average case and worst case circuit
complexity of the function. Below, we describe such functions, i.e., dispersers and
extractors for the classes of sources under consideration.
1. The class of bit fixing substitutions generates the class of bit-fixing sources [18].

Extractors for bit-fixing sources find many applications in cryptography (see [22] for
an excellent survey of the topic). The standard function that is a good disperser and
extractor for such sources is the parity function x1 ⊕ · · · ⊕ xn.

2. Projections define the class of projection sources [46]. Dispersers for projections are
used to prove lower bounds for depth-three circuits [46]. It is shown [46] that a binary
BCH code with appropriate parameters is a disperser for n−o(n) substitutions. See [48]
for an example of extractor with good parameters for projection sources.

3. Affine substitutions give rise to the class of affine sources. Dispersers for affine
sources find applications in circuit lower bounds [19, 20, 25]. There are several known
constructions of dispersers [6, 55] and extractors [65, 39, 5, 40] that are resistant to
n− o(n) substitutions.

4. The class of quadratic substitutions generates a special case of polynomial sources [24, 5]
and quadratic varieties sources [23]. An explicit construction of disperser for quadratic
varieties sources would imply new circuit lower bounds [26]. Although an explicit
construction of a function resistant to sufficiently many quadratic substitutions is not
currently known, it is easy to show that a random function is resistant to any n− o(n)
quadratic substitutions.

Due to the page limit of this extended abstract, we have to omit many proofs, which can
be found in the full version [27].

2 Preliminaries

2.1 Boolean functions
We denote by Bn the set of all n-variate Boolean functions and define U2 = B2 \ {⊕,≡} as
the set of all binary Boolean functions except for parity and its complement.

The set of all sixteen binary Boolean functions f(x, y) ∈ B2 can be classified as follows:
1) two constant functions: 0 and 1; we also call them trivial; 2) four functions that depend
essentially on one of the arguments only: x, x ⊕ 1, y, y ⊕ 1; we call them degenerate; 3)

A. Golovnev, A.S. Kulikov, A.V. Smal, and S. Tamaki 45:5

eight and-type functions: (x⊕ a) · (y ⊕ b)⊕ c where a, b, c ∈ {0, 1}; 4) two xor-type functions:
x⊕ y ⊕ a, where a ∈ {0, 1}.

Hence U2 consists of all binary functions except for xor-type functions. An important
property of binary and-type functions (x⊕ a) · (y ⊕ b)⊕ c, useful for case analyses, is the
following: one can turn this function into a constant c by assigning x← a or y ← b.

2.2 Dispersers and Extractors
Let x1, . . . , xn be Boolean variables, and f ∈ Bn−1 be a function of n− 1 variables. We say
that xi ← f(x1, . . . , xi−1, xi+1, . . . , xn) is a substitution to the variable xi.

Let g ∈ Bn be a function, then the restriction of g under the substitution f is a
function h = (g|xi ← f) of n − 1 variables, such that h(x1, . . . , xi−1, xi+1, . . . , xn) =
g(x1, . . . , xi−1, xi, xi+1, . . . , xn), where xi = f(x1, . . . , xi−1, xi+1, . . . , xn). Similarly, if K ⊆
{0, 1}n is a subset of the Boolean cube, then the restriction of K under this substitution
is K ′ = (K|xi ← f), such that (x1, . . . , xn) ∈ K ′ if and only if (x1, . . . , xn) ∈ K and
xi = f(x1, . . . , xi−1, xi+1, . . . , xn).

For a family of functions F = {f : {0, 1}∗ → {0, 1}} we define a set of corresponding
substitutions S(F) that contains the following substitutions: for every 1 ≤ i ≤ n, c ∈
{0, 1}, f ∈ F , S contains the substitution xi ← f(x1, . . . , xi−1, xi+1, . . . , xn)⊕ c.

Let S be a set of substitutions. We say that a set K ⊆ {0, 1}n is an (S, n, r)-source1 if it
can be obtained from {0, 1}n by applying at most r substitutions from S.

A function f ∈ Bn is called an (S, n, r)-disperser2 if it is not constant on every (S, n, r)-
source. A function f ∈ Bn is called an (S, n, r, ε)-extractor if |Prx←K [f(x) = 1]− 1/2| ≤ ε
for every (S, n, r)-source K.

2.3 Circuits
A circuit over the basis Ω ⊆ B2 is a directed acyclic graph with the following properties:
1) the indegree of each node is either zero or two; 2) each node of zero indegree is labeled by
a variable and is called an input or an input gate; 3) each node of indegree two is labeled
with a binary Boolean function from Ω called an operation of this gate; the node itself is
called an internal gate or just a gate; 4) there is a unique node of outdegree zero and it is
called an output. Such a circuit computes in a natural way a function from Bn, where n is
the number of input gates of the circuit. In this paper, we consider circuits over the bases
Ω = B2 and Ω = U2.

An xor-gate (and-gate) is a gate computing an xor-type (and-type, respectively) operation.
A k-gate (k+-gate) is a gate of outdegree exactly k (at least k, respectively).

For a circuit C, by s(C) we denote the size of C, that is, the number of internal gates
of C. By i(C) and i1(C) we denote the total number of input gates of C and the number of
input 1-gates, respectively. For a function f ∈ Bn, by CΩ(f) we denote the minimal size of a
circuit over Ω computing f .

For two Boolean functions f, g ∈ Bn, the correlation between them is defined as

Cor(f, g) =
∣∣∣∣ Pr
x←{0,1}n

[f(x) = g(x)]− Pr
x←{0,1}n

[f(x) 6= g(x)]
∣∣∣∣ = 2

∣∣∣∣12 − Pr
x←{0,1}n

[f(x) 6= g(x)]
∣∣∣∣ .

1 Usually in the literature a source corresponds to a distribution over a subset of {0, 1}n. In this paper,
we focus only on uniform distributions, so we associate a source with its support.

2 In this paper, we consider only dispersers and extractors with one bit outputs.

MFCS 2016

45:6 Circuit size lower bounds and #SAT upper bounds through a general framework

For a function f ∈ Bn, and 0 ≤ ε ≤ 1, by CΩ(f, ε) we denote the minimal size of a circuit
over Ω computing function g such that Cor(f, g) ≥ ε.

2.4 Circuit normalization
A gate is called useless if it is a 1-gate and is fed by a predecessor of its successor:

A B

D
1

E

A B

E

In this case E actually computes a binary operation of A and B and this operation can be
computed in the gate E directly. This might require to change an operation at E (if this
circuit is over U2 then E still computes an and-type operation of A and B as an xor-type
binary function requires three gates in U2).

By normalizing a circuit we mean removing all gates that compute trivial or degenerate
operations and removing all useless gates. Note that normalization does not change the
function computed by a circuit. It might however change the operations at some gates and
outdegrees of some gates (in particular, input gates).

In the proofs of the paper we implicitly assume that if two gates are fed by the same
variable then either there is no wire between them or each of the gates feed also some other
gate (otherwise, one of the gates would be useless) and hence we do not care about this wire
between the gates.

2.5 Circuit complexity measures
A function µ mapping circuits to non-negative real values is called a circuit complexity
measure if for any circuit C,

normalization of C does not increase its measure, and
if µ(C) = 0 then C has no gates.

For a fixed circuit complexity measure µ, and function f ∈ Bn, we define µ(f) to be the
minimum value of µ(C) over circuits C computing f . Similarly, we define µ(f, ε) to be the
minimum value of µ(C) over circuits C computing g such that Cor(f, g) ≥ ε.

In this paper, we focus on the following two circuit complexity measures:

µ(C) = s(C) + α · i(C) where α ≥ 0 is a constant;
µ(C) = s(C) + α · i(C)− σ · i1(C) where α ≥ 0, σ ≤ 1 are constants.

It is not difficult to see that these two functions are indeed circuit complexity measures
if α ≥ 0 and σ ≤ 1. The condition σ ≤ 1 is needed to guarantee that if by removing
a degenerate gate we increase the outdegree of a variable, the measure does not increase
(an example is given on the next page).

Intuitively we include the term i(C) into the measure to handle cases like the one below
(throughout the paper, we use labels above the gates to indicate their outdegree):

xi
1+

xj
1

∧ A

A. Golovnev, A.S. Kulikov, A.V. Smal, and S. Tamaki 45:7

In this case, by assigning xi ← 0 we make the circuit independent of xj , so the measure
is reduced by at least 2α. Usually, our goal is to show that we can find a substitution
to a variable that eliminates at least some constant number k of gates, that is, to show a
complexity decrease of at least k + α. Thus, by choosing a large enough value of α we can
always guarantee that 2α ≥ α+ k. Thus, in the case above we do not even need to count the
number of gates eliminated under the substitution.

The measure µ(C) = s(C) + α · i(C) − σ · i1(C) allows us to get an advantage of new
1-variables that are introduced during splitting.

xi

2
xj

2

∧ AB

C

xi

2
xj

2

∧ AB

∨ C

D1 D2

xk

1

For example, by assigning xi ← 0 in a situation like the one in the left picture we reduce the
measure by at least 3 + α+ σ. As usual, the advantage comes with a related disadvantage.
If, for example, a closer look at the circuit from the left part reveals that it actually looks
like as shown on the right, then by assigning xi ← 0 we introduce a new 1-variable xj , but
also loose one 1-variable (namely, xk is now a 2-variable). Hence, in this case µ is reduced
only by (3 + α) rather than (3 + α+ σ). That is, our initial estimate was too optimistic. For
this reason, when use a measure with i1(C) we check carefully for each eliminated gate if
this elimination increases the degree of a 1-variable.

2.6 Splitting numbers and splitting vectors
Let µ be a circuit complexity measure and C be a circuit. Consider a recursive algorithm
solving #SAT on C by repeated substitutions. Assume that at the current step the algorithm
chooses k variables x1, . . . , xk and k functions f1, . . . , fk to substitute these variables and
branches into 2k possible situations: x1 ← f1 ⊕ c1, . . . , xk ← fk ⊕ ck for all possible
c1, . . . , ck ∈ {0, 1} (in other words, it partitions the Boolean hypercube {0, 1}n into 2k
subsets).3 For each substitution, we normalize the resulting circuit. Let us call the 2k circuits
C1, . . . , C2k . We say that the current step has a splitting vector v = (a1, . . . , a2k) w.r.t. µ if
for all i ∈ [2k], µ(C)− µ(Ci) ≥ ai > 0. That is, the splitting vector gives a lower bound on
the complexity decrease under the considered substitution. The splitting number τ(v) is the
unique positive root of the equation

∑
i∈[2k] x

−ai = 1.
Splitting vectors and numbers are heavily used to estimate the running time of recursive

algorithms. Below we assume that k is bounded by a constant. In all the proofs of this
paper either k = 1 or k = 2, that is, we always estimate the effect of assigning either one
or two variables. If an algorithm always splits with a splitting number at most β then its
running time is bounded by O∗(βµ(C)).4 To show this one notes that the recursion tree of
this algorithm is 2k-ary and k = O(1) so it suffices to estimate the number of leaves. The

3 Sometimes it is easier to consider vectors of length that is not a power of 2 too. For example, we can
have a branching into three cases: one with one substituted variable, and two with two substituted
variables. All the results from this paper can be naturally generalized to this case. For simplicity, we
state the results for splitting vectors of length 2k only.

4 O∗ suppresses factors polynomial in the input length.

MFCS 2016

45:8 Circuit size lower bounds and #SAT upper bounds through a general framework

number of leaves T (µ) satisfies the recurrence T (µ) ≤
∑
i∈[2k] T (µ− ai) which implies that

T (µ) = O(τ(v)µ) (we assume also that T (µ) = O(1) when µ = O(1)). See, e.g., [37] for a
formal proof.

For a splitting vector v = (a1, . . . , a2k) we define the following related quantities:

vmax = max
i∈[2k]

{ai
k

}
, vmin = min

i∈[2k]

{ai
k

}
, vavg =

∑
i∈[2k] ai

k2k .

Intuitively, vmax (vmin, vavg) is a (lower bound for) the maximum (minimum, average,
respectively) complexity decrease per single substitution.

We will need the following estimates for the splitting numbers. It is known that a balanced
binary splitting vector is better than an unbalanced one: 21/a = τ(a, a) < τ(a+ b, a− b) for
0 < b < a (see, e.g., [37]). There is a known upper bound on τ(a, b).

I Lemma 1. τ(a, b) ≤ 21/
√
ab.

In the following lemma we provide an asymptotic estimate of their difference.

I Lemma 2 (Gap between τ(a1+b, a2+b) and τ((a1+a2)/2+b, (a1+a2)/2+b) ≤ 2
1

(a1+a2)/2+b).
Let a1 > a2 > 0, a′ = (a1 + a2)/2 and δ(b) = τ(a1 + b, a2 + b) − 2

1
a′+b . Then, δ(b) =

O((a1 − a2)2/b3) as b→∞.

2.7 Azuma’s inequality

Following the approach from [13], we use a variant of Azuma’s inequality with one-sided
boundedness condition in order to obtain average case lower bounds. The standard version of
Azuma’s inequality requires the difference between two consecutive variables to be bounded,
[13] considers the case when the difference takes on only two values but is bounded only
from one side. For our results, we need a slightly more general variant of the inequality: the
difference between two consecutive variables takes on up to k values and is bounded from
one side.

A sequence X0, . . . , Xm of random variables is a supermartingale if for every 0 ≤ i < m,
E[Xi+1|Xi, . . . , X0] ≤ Xi.

I Lemma 3. Let X0, . . . , Xm be a supermartingale, let Yi = Xi −Xi−1. If Yi ≤ c and for
fixed values of (X0, . . . , Xi−1), the random variable Yi is distributed uniformly over at most
k ≥ 2 (not necessarily distinct) values, then for every λ ≥ 0:

Pr[Xm −X0 ≥ λ] ≤ exp
(

−λ2

2mc2(k − 1)2

)
.

Note that we have an extra factor of (k − 1)2 comparing with the normal form of Azuma’s
inequality, but we do not assume that Xi −Xi−1 is bounded from below.

3 Toolkit

3.1 Main theorem

In this subsection we prove the main technical theorem that allows us to get circuit complexity
lower bounds and #SAT upper bounds.

A. Golovnev, A.S. Kulikov, A.V. Smal, and S. Tamaki 45:9

I Definition 4. Let {v1, . . . , vm} be splitting vectors, and each vi is a splitting vector of
length 2ti ≥ 2. For a class of circuits Ω (e.g., Ω = B2 or Ω = U2), a set of substitutions S,
and a circuit complexity measure µ, we write

Splitting(Ω,S, µ) � {v1, . . . , vm}

as a shortcut for the following statement: For any normalized circuit C from the class Ω one
can find in time poly(|C|) either a substitution5 from S whose splitting vector with respect
to µ belongs to the set {v1, . . . , vm} or a substitution that trivializes the output gate of C.
A substitution always trivializes at least one gate (in particular, when we assign a constant
to a variable we trivialize an input gate) and eliminates at least one variable.

I Theorem 5. If Splitting(Ω,S, µ) � {v1, . . . , vm} and the longest splitting vector has length
2k, then

1. There exists an algorithm solving #SAT for circuits over Ω in time O∗(γµ(C)), where

γ = max
i∈[m]
{τ(vi)} .

2. If f ∈ Bn is an (S, n, r)-disperser, then

µ(f) ≥ βw · (r − k + 1) , where βw = min
i∈[m]
{vimax} .

3. If f ∈ Bn is an (S, n, r, ε)-extractor, then for every µ < βa · r,

µ (f, δ) ≥ µ, where βa = min
i∈[m]

{
viavg

}
and βm = min

i∈[m]
{vimin} ,

δ = ε+ exp
(

−(r · βa − µ)2

2r(βa − βm)2(2k − 1)2

)
.

3.2 Discussion
Many known lower bounds for circuits with unrestricted depth can be proved using this
framework, in particular, the strongest known lower bounds over B2 and U2. Schnorr [53]
proved a 2n−Θ(1) on CB2 for a wide class of functions using µ(C) = s(C) and bit fixing
substitutions. Stockmeyer [57] proved a 2.5n−Θ(1) lower bound for symmetric functions using
µ(C) = s(C) and a special case of projections: {xi ← c, {xi ← f, xj ← f ⊕ 1}} (the latter
“double” substitution essentially fixes xi⊕xj to 1; by applying such a substitution to, say, the
majority function one gets the majority function of fewer inputs). Kojevnikov and Kulikov [34]
improved the bound by Schnorr to 7n/3−Θ(1) using the measure µ(C) = 3x(C) + 2a(C)
assigning different weights to xor-gates and and-gates. Demenkov and Kulikov [20] proved a
3n−o(n) lower bound for an affine disperser for sublinear dimension using µ(C) = s(C)+i(C)
and affine substitutions. Recently, Find et al. [25] extended this approach to get a (3+1/86)n
lower bound for the same function using a few additional tricks (while the measure and the
set of allowed substitutions are not easy to describe).

For the basis U2, Schnorr [53] proved that the circuit size of parity is 3n− 3 using bit
fixing substitutions. Zwick [66] proved a 4n−Θ(1) lower bound for symmetric functions using

5 Here we assume that the circuit obtained from C by the substitution and normalization belongs to Ω
too.

MFCS 2016

45:10 Circuit size lower bounds and #SAT upper bounds through a general framework

bit-fixing substitutions and µ(C) = s(C)− i1(C). His measure was then used by Lachish and
Raz [38] and by Iwama and Morizumi [32] to prove 4.5n− o(n) and 5n− o(n) lower bounds
for strongly two-dependent functions. Recently, Demenkov et al. [21] gave a simpler proof of
a 5n − o(n) lower bound for a linear function with o(n) outputs. All these proofs use bit
fixing substitutions only, however the case analysis can be simplified using also projections
and a measure of the form µ = s+ α · i.

At the same time, there are known lower bound proofs that use additional tricks. E.g.,
Blum [8] to prove a 3n − o(n) lower bound over B2 first considers a few cases when it is
easy to remove three gates, and for all the remaining circuits shows a lower bound directly
by counting the number of gates using some particular properties of the function under
consideration.

Also, upper bounds for SAT and #SAT for various circuits classes (and for many other
NP-hard problems) are proved by making substitutions recursively and using a carefully
chosen measure to estimate the complexity decrease after substitutions.

The whole framework is a formalization of the following simple idea. To prove a lower
bound ζn on circuit size one usually shows that there always exists a substitution xi ← f

eliminating at least ζ gates from the circuit. By analysing also the complexity decrease under
the substitution xi ← f ⊕ 1 one gets an upper bound for #SAT and an average case lower
bound. Below we show an easy consequence of this: if one gets a very strong lower bound
via short splitting vectors in this framework, then the corresponding #SAT-algorithm is also
quite fast. That is, a superlinear circuit lower bound that uses only short splitting vectors in
the framework implies a subexponential time (with respect to the size) algorithm for #SAT,
which contradicts the Exponential Time Hypothesis.

I Theorem 6. If for some set of substitutions S, Splitting(Ω,S, s + αi) �
{(a1, b1), . . . , (am, bm)} , such that βw = mini∈[m] max{ai, bi} = ω(1) then #SAT can be
solved in time O∗(2o(s)).

Note that due to the Sparsification Lemma [31] such an algorithm even over the basis U2
contradicts the Exponential Time Hypothesis.

Although our “positive” results from Theorem 5 hold for splitting vectors of any length,
this “negative” result from Theorem 6 holds only for splitting vectors of length 2. The
authors do not know how to generalize this result to longer splitting vectors, and leave it as
an open question.

4 Bounds for the basis U2

4.1 Bit fixing substitutions: substituting variables by constants

We start with a well-known case analysis of a 3n − 3 lower bound for the parity function
over U2 due to Schnorr [53]. Using this case analysis we reprove the bounds given recently
by Chen and Kabanets [13] in our framework. The analysis is basically the same though the
measure is slightly different. We provide these results mostly as a simple illustration of using
the framework.

I Lemma 7. Splitting(U2, {xi ← c}, s+ αi) � {(α, 2α), (3 + α, 3 + α), (2 + α, 4 + α)} .

A. Golovnev, A.S. Kulikov, A.V. Smal, and S. Tamaki 45:11

I Corollary 8. 1. For any ε > 0 there exists δ = δ(ε) > 0 such that #SAT for circuits over
U2 of size at most (3− ε)n can be solved in time (2− δ)n.

2. CU2(x1 ⊕ · · · ⊕ xn ⊕ c) ≥ 3n− 6 .
3. CU2

(
x1 ⊕ · · · ⊕ xn ⊕ c, exp

(
−(t−9)2

18(n−1)

))
≥ 3n − t . This, in particular, implies that

Cor(x1 ⊕ · · · ⊕ xn ⊕ c, C) is negligible for any circuit C of size 3n− ω(
√
n logn).

4.2 Projections: substituting variables by constants and other variables

In this subsection, we prove new bounds for the basis U2.

I Lemma 9. For 0 ≤ σ ≤ 1/2,

Splitting(U2, {xi ← c, xi ← xj ⊕ c}, s+ αi− σi1) �
{(α, 2α), (2α, 2α, 2α, 3α), (3 + α + σ, 3 + α), (4 + α + σ, 2 + α)} .

I Corollary 10. 1. For any ε > 0 there exists δ = δ(ε) > 0 such that #SAT for circuits over
U2 of size at most (3.25− ε)n can be solved in time (2− δ)n.

2. Let f ∈ Bn be an
(
n, r(n) = n− logO(1)(n)

)
-projections disperser from [40]. Then

CU2(f) ≥ 3.5n− logO(1)(n).
3. Let f ∈ Bn be an

(
n, r(n) = n−

√
n, ε(n) = 2−nΩ(1)

)
-projections extractor from [48].

Then CU2(f, δ) ≥ 3.25n− t, where δ = 2−nΩ(1) + exp
(
−(t−10.25

√
n)2

190.125(n−
√
n)

)
. This, in particular,

implies that Cor(f, C) is negligible for any circuit C of size 3.25n− ω(
√
n logn).

5 Bounds for the basis B2

5.1 Affine substitutions: substituting variables by linear sums of other
variables

Here, we again start by reproving the bounds for B2 by Chen and Kabanets [13] by using
the case analysis by Demenkov and Kulikov [20].

I Lemma 11. Splitting(B2, {xi ← ⊕j∈Jxj ⊕ c}, µ = s+ αi) � {(α, 2α), (2 + α, 3 + α)} .

I Corollary 12. 1. For any ε > 0 there exists δ = δ(ε) > 0 such that #SAT for circuits over
B2 of size at most (2.5− ε)n can be solved in time (2− δ)n.

2. Let f ∈ Bn be an
(
n, r(n) = n− logO(1)(n)

)
-affine disperser from [40]. Then CB2(f) ≥

3n− logO(1)(n).
3. Let f ∈ Bn be an

(
n, r(n) = n−O(n/ log logn), ε(n) = 2−nΩ(1)

)
-affine extractor

from [39]. Then CB2(f, δ) ≥ 2.5n − t, where δ = 2−nΩ(1) + exp
(
−(t−O(n/ log logn))2

O(n)

)
.

This, in particular, implies that Cor(f, C) is negligible for any circuit C of size
2.5n− ω(n/ log logn).

MFCS 2016

45:12 Circuit size lower bounds and #SAT upper bounds through a general framework

5.2 Quadratic substitutions: substituting variables by degree 2
polynomials of other variables

I Lemma 13. For 0 ≤ σ ≤ 1/5,

Splitting(B2, {xi ← p : deg(p) ≤ 2}, s+ αi− σi1) �
{(α, 2α), (2α, 2α, 2α, 3α), (3 + α− 2σ, 3 + α− 2σ), (3 + α + σ, 2 + α)} .

I Corollary 14. 1. For any ε > 0 there exists δ = δ(ε) > 0 such that #SAT for circuits over
B2 of size at most (2.6− ε)n can be solved in time (2− δ)n.

2. Let f ∈ Bn be an (n, r(n) = n− o(n))-quadratic disperser. Then CB2(f) ≥ 3n− o(n).
3. Let f ∈ Bn be an

(
n, r(n) = n− o(n), ε(n) = 2−ω(logn))-quadratic extractor. Then

CB2(f, δ) ≥ 2.6n − t, where δ = 2−nΩ(1) + exp
(
−(t−7.8(n−r(n)))2

121.68r(n)

)
. This, in particu-

lar, implies that Cor(f, C) is negligible for any circuit C of size 2.6n − g(n) for some
g(n) = o(n).

I Remark 1. Note that it is an open problem to find an explicit construction of quadratic
disperser or extractor over F2 with r = n− o(n). Any disperser for a slightly more general
definition of quadratic varieties would also imply a new worst case lower bound [26].

I Remark 2. Note that the upper bound for #SAT can be improved using the following
“forbidden trick”, that is, a simplification rule that reduces the size of a circuit without
changing the number of its satisfying assignments, but changes the function computed by
the circuit.

In the proof of Lemma 13 set σ = 0 (that is, do not account for 1-variables). The set of
splitting vectors then turn into By inspecting all the cases, we see that the splitting vector
(3 + α, 2 + α) only appears in one case. We can handle this case differently: split on xi.
When A is trivialized, xj becomes a 1-variable feeding an xor-gate. It is not difficult to show
that by replacing this gate with a new variable x′j one gets a circuit with the same number
of satisfying assignments.

xi xj

∧A⊕B ⊕C

G

D E

xi ← 0

xj

⊕C

G

D E

simplify
x′j

G

D E

This additional trick gives us the following set of splitting vectors: {(α, 2α), (2α, 2α, 2α, 3α), (3+
α, 3+α), (4+α, 2+α)} . These splitting numbers give an algorithm solving #SAT in (2−δ(ε))n
for B2-circuits of size at most (3− ε)n for ε > 0.

Note that such a simplification rule does not fit into our framework since it changes the
function computed by a circuit. It would be interesting to adjust the framework to allow such
kind of simplifications (probably, by incorporating some new parameter to the measure).

6 Open problems

There are three natural questions left open in this paper.

1. Prove that a superlinear circuit lower bound in this framework violates the Exponential
Time Hypothesis.

A. Golovnev, A.S. Kulikov, A.V. Smal, and S. Tamaki 45:13

2. Give an explicit construction of quadratic dispersers (see Remark 1).
3. Adjust the framework to allow using natural simplification rules like replacing an xor

gate fed by a 1-variable for both upper bounds for #SAT and lower bounds for circuit
size (see Remark 2).

Acknowledgement. We would like to thank the anonymous reviewers for their helpful
comments.

References

1 Kazuyuki Amano and Atsushi Saito. A nonuniform circuit class with multilayer of threshold
gates having super quasi polynomial size lower bounds against NEXP. In Proceedings of the
9th International Conference on Language and Automata Theory and Applications (LATA),
pages 461–472, 2015.

2 Kazuyuki Amano and Atsushi Saito. A satisfiability algorithm for some class of dense depth
two threshold circuits. IEICE Transactions, 98-D(1):108–118, 2015.

3 Kazuyuki Amano and Jun Tarui. A well-mixed function with circuit complexity 5n: Tight-
ness of the Lachish-Raz-type bounds. Theor. Comput. Sci., 412(18):1646–1651, 2011.

4 Paul Beame, Russell Impagliazzo, and Srikanth Srinivasan. Approximating AC0 by small
height decision trees and a deterministic algorithm for #AC0 SAT. In Proceedings of the
27th Conference on Computational Complexity (CCC), pages 117–125, 2012.

5 Eli Ben-Sasson and Ariel Gabizon. Extractors for polynomial sources over fields of constant
order and small characteristic. Theory of Computing, 9:665–683, 2013.

6 Eli Ben-Sasson and Swastik Kopparty. Affine dispersers from subspace polynomials. SIAM
J. Comput., 41(4):880–914, 2012.

7 Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In Proceedings of
the 41st International Colloquium on Automata, Languages, and Programming (ICALP),
Part I, pages 163–173, 2014.

8 Norbert Blum. A Boolean function requiring 3n network size. Theor. Comput. Sci., 28:337–
345, 1984.

9 Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations. In
Proceedings of the 13th Annual IEEE Conference on Computational Complexity (CCC),
pages 8–12, 1998.

10 Venkatesan T. Chakaravarthy and Sambuddha Roy. Oblivious symmetric alternation. In
Proceedings of the 23rd Annual Symposium on Theoretical Aspects of Computer Science
(STACS), pages 230–241, 2006.

11 Venkatesan T. Chakaravarthy and Sambuddha Roy. Arthur and Merlin as oracles. Com-
putational Complexity, 20(3):505–558, 2011.

12 Ruiwen Chen. Satisfiability algorithms and lower bounds for Boolean formulas over finite
bases. In Proceedings of the 40th International Symposium on Mathematical Foundations
of Computer Science (MFCS), Part II, pages 223–234, 2015.

13 Ruiwen Chen and Valentine Kabanets. Correlation bounds and #SAT algorithms for small
linear-size circuits. In Proceedings of the 21st International Conference on Computing and
Combinatorics (COCOON), pages 211–222, 2015.

14 Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David Zuck-
erman. Mining circuit lower bound proofs for meta-algorithms. Computational Complexity,
24(2):333–392, 2015.

MFCS 2016

45:14 Circuit size lower bounds and #SAT upper bounds through a general framework

15 Ruiwen Chen, Valentine Kabanets, and Nitin Saurabh. An improved deterministic #SAT
algorithm for small De Morgan formulas. In Proceedings of the 39th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS), Part II, pages 165–176,
2014.

16 Ruiwen Chen and Rahul Santhanam. Improved algorithms for sparse MAX-SAT and MAX-
k-CSP. In Proceedings of the 18th International Conference on Theory and Applications of
Satisfiability Testing (SAT), pages 33–45, 2015.

17 Ruiwen Chen, Rahul Santhanam, and Srikanth Srinivasan. Average-case lower bounds and
satisfiability algorithms for small threshold circuits. In Proceedings of the 31th Conference
on Computational Complexity (CCC), pages 1:1–1:35, 2016.

18 Benny Chor, Oded Goldreich, Johan Håstad, Joel Friedman, Steven Rudich, and Roman
Smolensky. The bit extraction problem of t-resilient functions (preliminary version). In
Proceedings of the 26th Annual Symposium on Foundations of Computer Science (FOCS),
pages 396–407, 1985.

19 Gil Cohen and Igor Shinkar. The complexity of DNF of parities. In Proceedings of the 7th
Innovations in Theoretical Computer Science (ITCS) Conference, pages 47–58, 2016.

20 Evgeny Demenkov and Alexander S. Kulikov. An elementary proof of a 3n − o(n) lower
bound on the circuit complexity of affine dispersers. In Proceedings of the 36th International
Symposium on Mathematical Foundations of Computer Science (MFCS), pages 256–265,
2011.

21 Evgeny Demenkov, Alexander S. Kulikov, Olga Melanich, and Ivan Mihajlin. New lower
bounds on circuit size of multi-output functions. Theory of Computing Systems, 56(4):630–
642, 2015.

22 Yevgeniy Dodis. Exposure-resilient cryptography. PhD thesis, Massachusetts Institute of
Technology, 2000.

23 Zeev Dvir. Extractors for varieties. Computational Complexity, 21(4):515–572, 2012.
24 Zeev Dvir, Ariel Gabizon, and Avi Wigderson. Extractors and rank extractors for polyno-

mial sources. Computational Complexity, 18(1):1–58, 2009.
25 Magnus Gausdal Find, Alexander Golovnev, Edward Hirsch, and Alexander Kulikov. A

better-than-3n lower bound for the circuit complexity of an explicit function. Electronic
Colloquium on Computational Complexity (ECCC), TR15-166, 2015.

26 Alexander Golovnev and Alexander S. Kulikov. Weighted gate elimination: Boolean dis-
persers for quadratic varieties imply improved circuit lower bounds. In Proceedings of the
7th Innovations in Theoretical Computer Science (ITCS) Conference, pages 405–411, 2016.

27 Alexander Golovnev, Alexander S. Kulikov, Alexander Smal, and Suguru Tamaki. Cir-
cuit size lower bounds and #sat upper bounds through a general framework. Electronic
Colloquium on Computational Complexity (ECCC), TR16-022, 2016.

28 Johan Håstad. On the correlation of parity and small-depth circuits. SIAM J. Comput.,
43(5):1699–1708, 2014.

29 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for AC0. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 961–972, 2012.

30 Russell Impagliazzo, Ramamohan Paturi, and Stefan Schneider. A satisfiability algorithm
for sparse depth two threshold circuits. In Proceedings of the 54th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 479–488, 2013.

31 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

32 Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n − o(n) for Boolean
circuits. In Proceedings of the 27th International Symposium on Mathematical Foundations
of Computer Science (MFCS), pages 353–364, 2002.

A. Golovnev, A.S. Kulikov, A.V. Smal, and S. Tamaki 45:15

33 Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In Proceedings of
the 42nd International Colloquium on Automata, Languages, and Programming (ICALP),
Part I, pages 749–760, 2015.

34 Arist Kojevnikov and Alexander S. Kulikov. Circuit complexity and multiplicative com-
plexity of Boolean functions. In Proceedings of the 6th Conference on Computability in
Europe (CiE), pages 239–245, 2010.

35 Ilan Komargodski and Ran Raz. Average-case lower bounds for formula size. In Proceedings
of the 45th Symposium on Theory of Computing (STOC), pages 171–180, 2013.

36 Ilan Komargodski, Ran Raz, and Avishay Tal. Improved average-case lower bounds for De
Morgan formula size. In Proceedings of the 54th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 588–597, 2013.

37 Oliver Kullmann. Fundaments of branching heuristics. In Armin Biere, Marijn Heule, Hans
van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers
in Artificial Intelligence and Applications, pages 205–244. IOS Press, 2009.

38 Oded Lachish and Ran Raz. Explicit lower bound of 4.5n − o(n) for Boolean circuits. In
Proceedings on 33rd Annual ACM Symposium on Theory of Computing (STOC), pages
399–408, 2001.

39 Xin Li. A new approach to affine extractors and dispersers. In Proceedings of the 26th
Annual IEEE Conference on Computational Complexity (CCC), pages 137–147, 2011.

40 Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic entropy.
Electronic Colloquium on Computational Complexity (ECCC), TR15-125, 2015.

41 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the expo-
nential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

42 Dániel Marx. Consequences of ETH: Tight bounds for various prob-
lems. In Fine-Grained Complexity and Algorithm Design Boot Camp, 2015.
“https://simons.berkeley.edu/talks/daniel-marx-2015-09-03” (abstract, slides and archived
video).

43 Atsuki Nagao, Kazuhisa Seto, and Junichi Teruyama. A moderately exponential time
algorithm for k-IBDD satisfiability. In Proceedings of the 14th International Symposium,
on Algorithms and Data Structures (WADS), pages 554–565, 2015.

44 Sergey Nurk. An O(20.4058m) upper bound for circuit SAT. Technical report, PDMI, 2009.
45 Igor Carboni Oliveira. Algorithms versus circuit lower bounds. Electronic Colloquium on

Computational Complexity (ECCC), TR13-117, 2013.
46 Ramamohan Paturi, Michael E. Saks, and Francis Zane. Exponential lower bounds for

depth three boolean circuits. Computational Complexity, 9(1):1–15, 2000.
47 Wolfgang J. Paul. A 2.5n-lower bound on the combinational complexity of Boolean func-

tions. SIAM J. Comput., 6(3):427–443, 1977.
48 Anup Rao. Extractors for low-weight affine sources. In Proceedings of the 24th Annual

IEEE Conference on Computational Complexity (CCC), pages 95–101, 2009.
49 Takayuki Sakai, Kazuhisa Seto, Suguru Tamaki, and Junichi Teruyama. Bounded depth

circuits with weighted symmetric gates: Satisfiability, lower bounds and compression. In
Proceedings of the 41st International Symposium on Mathematical Foundations of Com-
puter Science (MFCS), 2016, to appear.

50 Rahul Santhanam. Circuit lower bounds for Merlin-Arthur classes. SIAM J. Comput.,
39(3):1038–1061, 2009.

51 Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and QBF
satisfiability. In Proceedings of the 51th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 183–192, 2010.

52 Rahul Santhanam. Ironic complicity: Satisfiability algorithms and circuit lower bounds.
Bulletin of the EATCS, 106:31–52, 2012.

MFCS 2016

45:16 Circuit size lower bounds and #SAT upper bounds through a general framework

53 Claus-Peter Schnorr. Zwei lineare untere schranken für die komplexität boolescher funktio-
nen. Computing, 13(2):155–171, 1974.

54 Kazuhisa Seto and Suguru Tamaki. A satisfiability algorithm and average-case hardness
for formulas over the full binary basis. Computational Complexity, 22(2):245–274, 2013.

55 Ronen Shaltiel. Dispersers for affine sources with sub-polynomial entropy. In Proceedings
of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
247–256, 2011.

56 Claude E. Shannon. The synthesis of two-terminal switching circuits. The Bell System
Technical Journal, 28(1):59–98, 1949.

57 Larry J. Stockmeyer. On the combinational complexity of certain symmetric Boolean
functions. Mathematical Systems Theory, 10:323–336, 1977.

58 Avishay Tal. #SAT algorithms from shrinkage. Electronic Colloquium on Computational
Complexity (ECCC), TR15-114, 2015.

59 Fengming Wang. NEXP does not have non-uniform quasipolynomial-size ACC circuits of
o(loglogn) depth. In Proceedings of the 8th Annual Conference on Theory and Applications
of Models of Computation (TAMC), pages 164–170, 2011.

60 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
J. Comput., 42(3):1218–1244, 2013.

61 Ryan Williams. Natural proofs versus derandomization. In Proceedings of the 45th ACM
Symposium on Theory of Computing Conference (STOC), pages 21–30, 2013.

62 Ryan Williams. Algorithms for circuits and circuits for algorithms. In Proceedings of the
29th Annual IEEE Conference on Computational Complexity (CCC), pages 248–261, 2014.

63 Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
In Proceedings of the 46th Symposium on Theory of Computing (STOC), pages 194–202,
2014.

64 Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2, 2014.
65 Amir Yehudayoff. Affine extractors over prime fields. Combinatorica, 31(2):245–256, 2011.
66 Uri Zwick. A 4n lower bound on the combinational complexity of certain symmetric Boolean

functions over the basis of unate dyadic Boolean functions. SIAM J. Comput., 20(3):499–
505, 1991.

	Introduction
	Background
	Our Techniques and Results
	Framework

	Preliminaries
	Boolean functions
	Dispersers and Extractors
	Circuits
	Circuit normalization
	Circuit complexity measures
	Splitting numbers and splitting vectors
	Azuma's inequality

	Toolkit
	Main theorem
	Discussion

	Bounds for the basis U2
	Bit fixing substitutions: substituting variables by constants
	Projections: substituting variables by constants and other variables

	Bounds for the basis B 2
	Affine substitutions: substituting variables by linear sums of other variables
	Quadratic substitutions: substituting variables by degree 2 polynomials of other variables

	Open problems

