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Abstract
The stable marriage problem (SMP) can be seen as a typical game, where each player wants
to obtain the best possible partner by manipulating his/her preference list. Thus the set Q of
preference lists submitted to the matching agency may differ from P, the set of true preference
lists. In this paper, we study the stability of the stated lists in Q. If Q is not Nash equilibrium,
i.e., if a player can obtain a strictly better partner (with respect to the preference order in P)
by only changing his/her list, then in the view of standard game theory, Q is vulnerable. In
the case of SMP, however, we need to consider another factor, namely that all valid matchings
should not include any “blocking pairs” with respect to P. Thus, if the above manipulation of
a player introduces blocking pairs, it would prevent this manipulation. Consequently, we say Q
is totally stable if either Q is a Nash equilibrium or if any attempt at manipulation by a single
player causes blocking pairs with respect to P. We study the complexity of testing the total
stability of a stated strategy. It is known that this question is answered in polynomial time if
the instance (P,Q) always satisfies P = Q. We extend this polynomially solvable class to the
general one, where P and Q may be arbitrarily different.
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1 Introduction

Matching under preferences is an extensively studied area of theoretical and empirical research
that has a wide range of applications in economics and social sciences. One of the most
popular and standard problems in this field is the stable marriage problem (SMP) introduced
by Gale and Shapley [4], where there are two parties; a set of men and a set of women. Each
man has a list that orders women according to his preference, and similarly each woman also
has a preference ordering for the men. The goal is to find a stable matching. A matching is
said to be stable if it does not have a blocking pair, that is, a pair of a man and a woman who
prefer each other to their current matching partners. Existence of blocking pairs poses threat
to the “stability of the marriage”. It is important to note that a matching may be stable
in terms of one set of preference lists, but not in terms of another. Hence, whenever there
is a possibility of confusion when referring to a stable matching or blocking pairs, we will
specify the corresponding preference lists, like “Q-stable” and “Q-blocking pairs” for a set Q
of preference lists. It is well-known that there may be more than one stable matching for a
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23:2 Total Stability in Stable Matching Games

given set of preference lists, where the men-optimal and women-optimal stable matchings
represent the two extremes. These matchings derive their names from the property that, in
the men-optimal (women-optimal) stable matching, every man (woman) receives the best
possible partner among all the stable matchings. It is well-known that the men-proposing
Gale-Shapley algorithm (GS-M, for short) finds the men-optimal stable matching in linear
time [4, 6]. Throughout this paper, we focus on only GS-M.

SMP can be seen as a game, in the sense that each player is selfish and wants to obtain
the best possible partner, even at the cost of stealing one from the other players. Thus,
several game-theoretic issues come into play in this scenario. These issues have been studied
mainly from the point of view of economic and market theories (see Roth and Sotomayor
[12] for detailed discussions). A fundamental axiom of the selfish game is that players cheat
to maximize their individual outcomes. There are a lot of work in this context. Dubins and
Freedman [2] showed that, when GS-M is used, no man or a subset of men can misstate their
true preference and thereby improve the outcome for all its members. On the other hand,
women can manipulate to get better partners when GS-M is used (see [6] for example). Teo
et al. [13] considered a manipulation by a single woman, and gave an O(n3) time algorithm
that computes the best matching partner of w who is attainable by applying GS-M to one of
the n! permutations of her preference list.

The above approach assumes that the stated preference lists are the same as the true
preference lists. As observed above, however, this may be true for men but not for women; a
woman w may use a list Q(w) in the game, which is different from her true preference list
P (w), in the hope of obtaining a better partner than she obtains when using P (w). This
motivates us to consider the case where there are true preferences P = (P (M), P (W )) and
stated strategy Q = (P (M), Q(W )), where P (M) and P (W ) are the sets of true preference
lists of men and women, respectively, and Q(W ) is the set of stated preference lists of women.
Our aim is to check if Q is Nash equilibrium. A strategy Q is said to be a Nash equilibrium
with respect to strategy P, if no single player can get a strictly better partner (in terms of the
true preference list in P) by changing his/her list in Q while all others use their respective
lists in Q.

In this case, we need to consider another factor. Suppose that a woman w, with the true
preference P (w) and the stated preference Q(w), may be able to obtain a better partner by
using Q′(w) than the one she obtains when Q(w) is used. However, if the resulting matching
(which is of course stable with respect to the used preferences) is unstable with respect to P,
the matching may be broken and w may lose a partner, so we cannot say this manipulation
successful. Therefore, for w’s manipulation to be successful, we have to add the condition
that the resulting matching is stable with respect to P.

Model. In this article, we study SMP in the following game theoretic model. Our game
consists of four elements,
(i) a true strategy P,
(ii) an arbitrary stated strategy Q, and
(iii) two different notions of stability for Q:

(a) one based on the absence of P-blocking pairs, and
(b) the other based on Nash equilibrium with respect to P.

In this paper, we incorporate all these elements in our model, making it the most general
model for stable marriage problems. Throughout this paper, we will only deal with strategies
that contain the complete and strict preference lists of every man and woman, and so the
misstated preferences can only be a permutation of the true preference list.
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Men P (M) Women P (W ) Q(W )
1 : a b c d a : 2 3 1 4 3 4 1 2
2 : b a c d b : 1 2 3 4 1 2 3 4
3 : b c a d c : 2 3 4 1 2 3 4 1
4 : a d b c d : 4 1 2 3 4 1 2 3

True strategy P = (P (M), P (W )) and stated strategy Q = (P (M), Q(W )).

Figure 1 The men-optimal Q-stable matching is not P-stable, has a blocking pair (2, a).

For a given a strategy Q = (P (M), Q(W )), µQ denotes its men-optimal stable matching.
Also, for a player a, we define S(Q,a) = {(Q(−a), Q′(a)) | Q′(a) is a permutation of Q(a)}
to be the family of strategies obtained by changing the list of a in Q, while all others retain
their respective lists in Q. A strategy Q with respect to the (true) strategy P is said to
be totally stable if (a) µQ is P-stable, and (b) for any woman w ∈W , if Q′ ∈ S(Q,w), then
either µQ′ is not P-stable or µQ(w) � µQ′(w) in P (w), i.e., Q′ yields no better partner for w
in terms of P. In plain words, there is no woman who can improve her outcome by changing
her list in Q, while the resulting matching is P-stable.

There is a long history of research on the stability of the first kind (discussed while
introducing our model), that is matchings that have no blocking pair with respect to a given
(fixed) strategy. This includes a beautiful mathematical structure that describes the entire
set of stable matchings (see [6], e.g.). However, this knowledge is only applicable when there
is only one strategy (i.e., P = Q, in our model). The situation is considerably different when
P 6= Q.

We illustrate the difference between the cases P = Q and P 6= Q by way of a small
example presented in Figure 1. Strategies P and Q differ only in the list of a, and the men-
optimal P-stable matching is µP = {(1, a), (2, b), (3, c), (4, d)}. Note that the men-optimal
Q-stable matching µQ ={(1, b), (2, c), (3, a), (4, d)} is preferred by a to µP, in terms of both
P and Q, since 3 � 1 in P (a) and Q(a). By definition, µQ is Q-stable, but as evidenced by
the blocking pair (2, a), it is not P-stable.

In comparison, our knowledge about the stability of the second kind, mentioned in our
model, is considerably less. As mentioned earlier, it has been known for a long time that
when GS-M is used, stating their true preferences is the best strategy for men, but a woman
may be able to obtain a better matching partner by manipulating her true list. All these
improvements are in terms of the manipulating player’s true list. The initial research into
the strategic manipulation by women primarily dealt with strategies that were obtained by
truncating a player’s true list. The possibility of manipulation by permuting the true list
(assumed to contain all n players of the opposite kind) has been known for decades (see [6,
pg 65]), but to the best of our knowledge, its time complexity was not analysed until Teo
et al. [13], who gave an O(n3) time algorithm to compute the best matching partner of a
given woman w. An immediate corollary is that we can test whether the true strategy P is
itself a Nash equilibrium in time O(n4). However, [13] does not discuss the stability of the
matching obtained by manipulation.

In our case, the situation becomes much more complicated since we have to consider
two distinct strategies P and Q, their respective stabilities, and the interaction between
them. We illustrate this scenario by way of a small example in Figure 2. The men-optimal
Q-stable matching µQ matches (1, a). The algorithm from [13] applied to a and Q yields
Q′(a) = [3, 4, 1, 2]. But, as shown in the earlier example, (2, a) is a P-blocking pair. Thus,
seeking efficient algorithms for testing the total stability of a stated strategy seems to be a
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Men P (M) Women P (W ) Q(W )
1 : a b c d a : 2 3 1 4 3 2 1 4
2 : b a c d b : 1 2 3 4 1 2 3 4
3 : b c a d c : 2 3 4 1 2 3 4 1
4 : a d b c d : 4 1 2 3 4 1 2 3

True strategy P = (P (M), P (W )) and stated strategy Q = (P (M), Q(W ))

Figure 2 Algorithm in [13] applied to Q yields a matching that is not P-stable.

nice algorithmic challenge in the field of matchings under preferences.
By combining [13] and [12, Thm 4.16], we can obtain a polynomial time algorithm to test

the total stability when P = Q. In other words our problem is polynomial time tractable for
the special case of P = Q. The main goal of this paper is to extend this tractability result
to the most general setting of P 6= Q.

1.1 Our Contribution
We show that total stability can be tested in polynomial time. As stated in the Introduction,
men do not have any incentive to misstate their true preference ([2] and [12, Theorem 4.10]);
consequently, our analysis only considers manipulations by women. Specifically, for two
strategies P = (P (M), P (W )) and Q = (P (M), Q(W )) containing complete lists for every
man and woman, with P assumed to be the true strategy, our output should be No if
there is a woman w and a strategy Q′ = (Q(−w), Q′(w)) ∈ S(Q,w) (the family of strategies
derived from Q where only w permutes her preference list) such that (a) µQ′ is P-stable,
and (b) w obtains a strictly better partner in µQ′ , in terms of P (w) (notationally expressed
as µQ′(w) � µQ(w), in P (w)). If there is no such strategy Q′ ∈ S(Q,w) for any woman w,
then the answer should be Yes.

The obvious brute-force method is to check all the n! permutations as the list Q′(w);
once Q′(w) is fixed, computing µQ′ and checking if it is P-stable can be done in O(n2) time.
For a polynomial time algorithm, we need to do the following two computations without
examining all the n! permutations for Q′(w): (i) obtaining all possible (by changing only her
list) partners of w who are better (in terms of P ) than w’s partner in µQ, and (ii) for a man
m found in (i), we need to search for a permutation Q′(w) such that w is matched to m and
µQ′ is P-stable.

We wish to point out that the result in [13] is not enough for the first task, since it only
gives the best partner in terms of Q, and the matching outcome may not be P-stable in
general, as depicted by Figure 1. Note that if a is satisfied with the second best partner,
2, then she could use a list [2, 3, 4, 1] and the resulting matching, (a, 2), (b, 1), (c, 3), (d, 4),
is now P-stable. Thus it does not suffice to merely detect the best possible partner of a.
Also, note that potential partners of women other than w may be arbitrary and there can be
(exponentially) many lists for w that result in matching w to m, some of which may yield a
P-stable matching, while others may not, even if m is fixed as a target.

The basic idea of our algorithm is as follows: For task (ii), we obtain a result (Theorem 5)
which proves that if two permutations Q′1(w) and Q′2(w) are available as Q′(w) (both
matching w to m), then µQ′1 = µQ′2 . Hence, if any one list gives a P-stable outcome, then so
do the others. Thus, for algorithmic purposes, it is enough to consider any arbitrary single
permutation as Q′(w). We believe that this result is interesting in its own right, and could
be useful in other scenarios. For task (i) we can use an algorithm based on the same idea as
[13], but its correctness proof is quite different from the original one, that heavily relies on
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the fact that they are only interested in the best manipulated partner of w. For our purpose,
we need to detect all attainable partners.

1.2 Related Work
In addition to [13] that we have discussed in details, there are other relevant works that we
can point to.

For a stated strategy Q, Dubins and Freedman [2] proved that there is no coalition C
of men who have a manipulation strategy P′ = (P (−C), P ′(C)), so that the outcome is
P′-stable and is strictly better than µP in terms of P, for each m ∈ C. Demange et al. [1]
extend this result to include women in the coalition C, showing that there is no P′-stable
matching µ′ such that every player a ∈ C prefers µ′(a) (in terms of P (a)) to his/her partner
in every P-stable matching.

For truncation strategies, it was shown by Gale and Sotomayor [5] that if there are at
least two P-stable matchings, then there is a woman w who has a unilateral manipulation
strategy Q′ ∈ S(Q,w) that gives a strictly better outcome than µP. If C = W , then there
is a truncation strategy P′ = (P (M), P ′(W )) such that µP′ is the women-optimal P-stable
matching. Considerable work on truncation strategies have been undertaken (see [3, 11] for
motivations and applications). In fact, up until the late 1980s, analyses of manipulation
strategies of women centred almost exclusively around truncation strategies.

Immorlica and Mahidian [7] show that with high probability, truthfulness is the best
strategy for any individual player, assuming everybody else is being truthful as well. In
their model, the men’s preference lists may have ties but the lengths are bounded by a
constant, and are drawn from an arbitrary probability distribution, while the women’s lists
are arbitrary and complete.

Kobayashi and Matsui [8] consider the possibility that a coalition C of women have a
manipulation strategy P′ = (P (M), P ′(W )) containing complete lists, such that µP′ yields
specific partnerships for the members of C. The situation manifests in two specific forms,
depending on the nature of the input. In the first case, the input consists of the complete
lists of all men, a partial matching (some agents may be unmatched) µ′, and complete lists
of the subset of women who are unmatched in µ′, denoted by W \ C. The problem is to
test whether there exists a permutation strategy for each woman in C, such that for the
combined strategy P′ = (P (−C), P ′(C)), µP′ is a perfect matching that extends µ′. In the
second case, the input consists of the lists of all men, a perfect matching µ, and lists for
women in W \ C. The problem is to test if there are permutation strategies for the women
in C such that strategy P′ = (P (−C), P ′(C)) yields µ′P = µ. They present polynomial-time
algorithms for both problems.

Pini et al. [9] show that for an arbitrary instance of SMP, there is a stable matching
mechanism for which it is NP-hard to find a manipulation strategy.

Roth [10] had shown that if a strategy Q = (P (M), Q(W )) is a Nash equilibrium with
respect to P, then the matching µQ is P-stable. The proof discussed in [12] allows women
to truncate their preference lists as a means of manipulation. This result holds even if all
players are restricted to using complete lists in their true, stated and manipulated strategies.
We use this result without a proof, as it is similar to the second approach described in [12,
pg 101].

2 Preliminaries

We will always useM to denote the set of n men {m1,m2, . . . ,mn} andW the set of n women
{w1, w2, . . . , wn}. Our matching mechanism is the men-proposing Gale-Shapley algorithm
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(GS-M in short), which proceeds as follows: On the men’s side, a man who is not yet matched
to a woman, proposes to the woman who is at the top of his current list, which is obtained
by removing all the women who have already rejected him. On the woman’s side, when
a woman w receives a proposal from a man m, she accepts the proposal if it is her first
proposal, or if she prefers m to her current partner m′. If w prefers her current partner m′
to m, then w rejects m. If m is rejected by w, then m will start issuing proposals, and this
process continues until there is no man left who is unmatched. For more details, see [6]. At
any stage of GS-M, if there are two or more unmatched men, then we set the convention
that in this group the man with the smallest index is the first to propose. This removes the
possibility of arbitrary tie-breaking, and thus, makes the algorithm purely deterministic.

A strategy Q is a set of preference lists (or simply lists) of all the men in M and all the
women in W . For a person x in M ∪W , Q(x) denotes the x’s list in the strategy Q. For
a given strategy Q, suppose that only w changes her list from Q(w) to Q′(w). We denote
the resulting strategy by Q′ = (Q(−w), Q′(w)), and use S(Q,w) to denote the family of all
such strategies Q′. Note that all lists considered in this article are complete, i.e., they are
permutations of n men or n women.

Let Q be a strategy. If w prefers m1 to m2 in Q(w), then we write “m1 � m2 in Q(w)”.
We use m1 � m2 if m1 � m2 or m1 = m2. Let µ be a (perfect) matching between M and W .
Then µ(p) denotes the partner of a person p. A pair (m,w) of a man and a woman is called
a Q-blocking pair if w � µ(m) in Q(m) and m � µ(w) in Q(w). We say that µ is Q-stable if
there is no Q-blocking pair.

For a strategy Q, µQ denotes the man-optimal stable matching, computed by the Gale-
Shapley algorithm. If a man m proposes to a woman w during this procedure, then we say
that m is active in Q(w) (formally speaking we should say m is active in Q(w) during the
computation of µQ, but for the sake of brevity, we will omit strategy Q when it is obvious
from the context.)

Recall that a woman w changes her list Q(w) for the purpose of manipulation. For a subset
M ′ ⊆M , let I be an ordering of men in M ′. Then, Q(I;w) denotes a permutation of Q(w),
where the men in M ′ are at the front in the order in which they appear in I. An ordered
(sub)list, such as I, is called a tuple, and for any given tuple I, we define Q(I;w) = [I,Q(w)\I].
For example, if Q(w) = [1, 2, 3, 4, 5, 6] and I = [5, 2], then Q(I;w) = [5, 2, 1, 3, 4, 6]. Now we
are ready to introduce our main concept.

We are given a strategy Q and a true strategy P. Then for a woman w ∈W , a strategy
Q′ ∈ Qw is said to be a unilateral manipulation strategy of w, if µQ′(w) � µQ(w) in P (w),
i.e., w strictly prefers the outcome of µQ′ to µQ with respect to her true preference/strategy.
If, furthermore, µQ′ is a P-stable matching, then Q′ is said to be a P-stable manipulation
strategy of w. A strategy Q is said to be totally stable if there does not exist a w ∈W who
has a P-stable manipulation strategy (Q(−w), Q′(w)) ∈ Qw. In this paper, we consider the
following problem.

Problem: Total Stability
Input: True strategy P = (P (M), P (W )) and stated strategy Q = (P (M), Q(W ))
Question: Is Q totally stable?

3 Listing active men

Now our goal is to design an algorithm that, for two given strategies, a stated strategy Q and
a true strategy P, answers if Q is totally stable. To do so, we first design an algorithm that



S. Gupta, K. Iwama, and S. Miyazaki 23:7

Algorithm 1: A(Q, w) [13]
Input: Strategy Q = (P (M), Q(W )), and a woman w ∈W
Output: Sets Nw(Q) = {m ∈M | ∃ Q′ ∈ S(Q,w) that yieldsµQ′(w) = m}, and

Lw(Q) = {Q′(m;w) | m ∈ Nw(Q), Q′=(Q(−w), Q′(m;w)) yields µQ′(w) = m}

1 Let x1 be the first active man in Q(w)
2 Let N ← {x1} and L← {Q(x1;w)}
3 Explore(Q(x1;w))
4 return (N,L)

Procedure Explore(Q′(x, I;w))

1 Let A← {men who are active in Q′(x, I;w) after x}
2 foreach y ∈ A \N do
3 N ← N ∪ {y} and L← L ∪ {Q′(y, x, I;w)}
4 Explore(Q′(y, x, I;w))

outputs the set Nw(Q) of all possible partners m of a given fixed woman w such that there is
a (manipulated) strategy Q′ = (Q(−w), Q′(w)), for which the men-optimal stable matching
will match w to m. By using this algorithm n times, we can obtain Nw1(Q), . . . , Nwn(Q).
The use of this set to prove our main result is explained in the next section.

Let us consider Algorithm 1, which is basically the same as the one given by Teo et al. [13]:
Suppose that Q(w) = [1, 2, 3, 4, 5, 6, 7, 8] and the first proposal comes from man 5. Then
the algorithm adds 5 to N and calls Explore(Q(5;w)): it executes the men-proposing
Gale-Shapley algorithm (GS-M, in short) after moving 5 to the front of the list Q(w). In
general, procedure Explore takes as a parameter Q(x, I;w), a preference list of w. As per
our notation, x is at the front of this list, followed by the sublist I and then the rest of the
men, thus, defining the strategy Q′ = (Q(−w), Q(x, I;w)). Explore(Q(x, I;w)) executes
GS-M for the strategy Q′ and produces the set of men A who propose to w after x. Now
for each y ∈ A, we check if y is “new” (i.e., not yet in N). If so, we add y to N and call
Explore recursively after moving y to the top of Q(x, I;w); else, we do nothing.

Since Explore is called only once for each man in N , its time complexity is obviously
at most n × T (GS), where T (GS) is the time complexity of one execution of GS-M, thus,
overall it is O(n3). The nontrivial part is the correctness of the argument, which we shall
prove now.

I Theorem 1. For a strategy Q and a woman w ∈W , Algorithm 1 produces
N = {m ∈M | ∃Q′ ∈ Qw, s.t. µQ′(w) = m} and for each m ∈ N , a list Q(m, I;w) such
that, for some partial list I, m is active in Q(I;w).

Proof. Let Q′(w) be an arbitrary permutation of n men and Q′ the strategy (Q(−w), Q′(w)).
It is enough to prove if a man x ∈M proposes to w during the computation of µQ′ (i.e., x is
active in Q′(w)), then x is added to N during the execution of Algorithm 1.

Here we need two new definitions: Suppose that x1, x2, . . . , xt is a sequence of men
who proposed to w (in this order) during the computation of µQ′ . Then this sequence
is called an active sequence for Q′(w), denoted by AS′(w). Also define y1, y2, . . . , ys as a
maximal subsequence of AS′(w) such that y1 = x1 and for i ≥ 2, yi is the first element
after yi−1 such that yi � yi−1 in Q′(w). This is called the increasing active subsequence
for Q′(w) and is denoted by IAS′(w). As an example, let Q′(w) = [1, 2, 3, 4, 5, 6, 7, 8, 9]
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23:8 Total Stability in Stable Matching Games

and AS′(w) = 5, 6, 3, 4, 2, 8. Then IAS′(w) = 5, 3, 2. Now consider a different list Q′′(w) =
[1, 2, 3, 5, 9, 8, 4, 6, 7], thus, Q′(w) 6= Q′′(w). However, we can observe that the active sequence
and the increasing active subsequence for Q′′(w) are identical to those of Q′(w), for the
following reasons. The lists in Q′ and Q′′ are the same except that of w’s, so the first
proposal for w must come from the same man regardless of w’s list. Since the man 5 is
accepted by w in both executions, the next proposal should also be from the same man 6.
Now since 5 � 6 in both Q′(w) and Q′′(w), 6 is rejected in both Q′(w) and Q′′(w) and thus,
the next proposal must also be same, and so on. This observation leads us to the following
lemma.

I Lemma 2. For strategies Q′,Q′′ ∈ Qw, let x1, x2, . . . , xp and u1, u2, . . . , uq denote the
active sequences for Q′(w) and Q′′(w) respectively, and let y1, y2, . . . , ys and v1, v2, . . . , vt

denote the corresponding increasing active subsequence. Then, the following conditions must
hold.
(a) x1 = y1 = u1 = v1.
(b) For an arbitrary l (l ≤ p and l ≤ q), we consider the prefixes of the active sequences

up to position l and the prefixes of the corresponding increasing active subsequences,
denoted by y1, ..., yj and v1, ..., vj. Then, if xi = ui for all i ≤ l and yk = vk for all
k ≤ j, then xl+1 = ul+1.

Proof. By definition, x1 = y1 and u1 = v1. Recall that all the lists in Q′ and Q′′ are the same
except those for w. Furthermore, we use a fixed tie-breaking protocol in the deterministic
GS algorithm. Hence, x1 = u1 follows directly.

To prove condition (b), let y2 = xi1+1, y3 = xi2+1, . . ., and so on. Then we can write
AS′(w) as follows, where x2, . . . , xi1 , xi1+2, . . . , xi2 , . . . may be empty.

AS′(w) = y1, x2, . . . , xi1 , y2, xi1+2, . . . , xi2 , . . . , yj , xij−1+2, . . . , xl, xl+1, . . .

Now one can see that y1 is accepted, all of x2 . . . , xi1 are rejected since they are after y1
in the list by definition. This continues as y2 is accepted, xi1+2, . . . , xi2 rejected, and so on.
Now, consider AS′′(w), depicted below.

AS′′(w) = v1, u2, . . . , ui1 , v2, ui1+2, . . . , ui2 , . . . , vj , uij−1+2, . . . , ul, ul+1, . . .

By the assumption, these two sequences are identical up to position l, so acceptance or
rejection for each proposal follows identically, as discussed above. Therefore, the configuration
(see below) of GS-M for Q′ at the moment when xl proposes to w and the configuration
for Q′′ when ul proposes to w are exactly the same. A configuration consists of (i) the lists
of all men (recall that some entries are removed when proposals are rejected), (ii) the set
of single men, and (iii) the current temporal matching partner of each woman. (Formally
this should be shown by induction, but it is straightforward and is omitted). Also the
acceptance/rejection for xl and ul is the same. Thus in either case, the execution of the
(deterministic) GS-M is exactly the same for Q′ and Q′′ until w receives proposal from xl+1
and ul+1, respectively. Hence, xl+1 and ul+1, should be equal and the lemma is proved. J

Now let us look at the execution sequence of Algorithm 1 while comparing it with the
execution sequence of GS-M on Q′. Let the active sequence and increasing active sequence
for Q′ be AS′(w) = x1, x2, . . . , xp and IAS′(w) = y1, y2, . . . , ys, respectively. By Lemma 2,
the first proposal to w is always y1, so the algorithm starts with Explore(Q(y1;w)) (we
simply say the algorithm invokes Q(y1;w)), and N = {y1}, at the very beginning.
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Now we note that it is quite easy to see that the active sequence for Q(y1;w) should be
y1, x2, . . . , xi1 , . . ., i.e., it should be identical to that of Q′(w) up to the position i1, with i1
defined as in the proof of Lemma 2. The reason is as follows. We already know the first
active man is always y1 and that is also the first symbol in the increasing active sequence of
both. Thus we can use Lemma 2 to conclude that the second symbol should also be the same,
since x2 is not in IAS′(w), meaning that it is rejected, which is also the same in Q(y1;w)
since y1 is at the top of the sequence. Thus the third symbol is the same in both and so
on up to position i1. Then the next symbol in AS′(w) is y2 and it is also active in Q(y1;w),
meaning Q(y2, y1;w) is invoked by the algorithm. (The algorithm also invokes Q(x2, y1;w),
Q(x3, y1;w), . . . , Q(xi1 , y1;w), but these are not important for us at this moment.)

We again consider the active sequence for Q(y2, y1;w) and by the same argument presented
earlier, we can conclude that it is identical to AS′(w) up to position i2 and so y3 is found
to be an active man. Hence, Q(y3, y2, y1;w) is invoked if y3 was not already present in N .
Continuing like this, we note that if Q(ys, ys−1, . . . , y1;w) is invoked, then we are done since
its active sequence is identical to that of Q′(w). However, this case happens only if each yi

(2 ≤ i ≤ s), is a brand new active man found during the invocation of Q(yi−1, . . . , y1;w). If
one of them is not new then the subsequent lists are not invoked, and yet, we are assured
due to Lemma 3 that Algorithm 1 will detect all the active men in Q′(w).

Lemma 3 is rather surprising and may be of independent interest. For two lists Q′(w)
and Q′′(w), that are distinct and arbitrary orderings on men, we assume nothing about the
execution of GS-M on the two lists except that a particular man x is active in both lists. Yet,
we are able to show that a man who proposes to w when Q′(x;w) is used must also propose
when Q′′(x;w) is used. This result allows us to focus solely on active men that have been
discovered in the current invocation of Explore, thereby restricting the number of recursion
steps to O(n).

I Lemma 3. For two distinct strategies Q′ and Q′′ in S(Q,w), suppose that x is active in
both Q′(w) and Q′′(w). Then a man who is active in Q′(x;w) is also active in Q′′(x;w).

Proof. Consider the strategies Q1 = (Q′(−w), Q′(x;w)) and Q2 = (Q′′(−w), Q′′(x;w)). Let
y denote a man who is active in Q′(x;w) but not in Q′′(x;w). Then, µQ2(y) � w � µQ1(y)
in P (y).

Note that µQ1(w) = x and µQ2(w) = x. Clearly, any Q1-blocking pair in µQ2 must
involve w, as otherwise it would also be a Q2-blocking pair. However, since x is at the top of
w’s list in Q1, w cannot be in a Q1-blocking pair, implying that µQ2 is a Q1-stable matching.
Since µQ1 is the men-optimal stable matching for Q1, we have that µQ1(y) � µQ2(y) in P (y).
This contradicts the fact we have shown earlier, and hence y must be active in Q′′(x;w). J

The next lemma completes the proof. We give one more notation, where yis are men
defined in Lemma 2.

Q1(w) = Q1(y1;w), and Qj+1(w) = [yj+1, Qj(w) \ {yj}], for 1 ≤ j ≤ s− 1.

I Lemma 4. For each j (1 ≤ j ≤ s), the algorithm invokes Q(yj , I;w) for some tuple I,
and each man in

{
xij−1+2, . . . , xij , yj+1

}
is active in it.

Proof. We prove this result by induction on yi. The base case has been already proved,
since for y1, it has been shown earlier that Q(y1;w) is invoked at the beginning and every
man in {x2, . . . , xi1 , y2} is active in Q(y1;w) after y1.

Suppose that the induction hypothesis holds for yt, where t ≤ s − 2, i.e., for some
tuple I, Q(yt, I;w) is invoked, and each man in

{
xit−1+2, . . . , xit

, yt+1
}
is active in it. We
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will complete the proof by showing that the hypothesis holds for yt+1. If yt+1 is “new”,
i.e., it is added to N during the invocation of Q(yt, I;w), then Q(yt+1, yt, I;w) is invoked
subsequently. Using the fact that yt+1 is active in both Qt+1(w) and Q(yt, I;w), and all the
men in {xit+2, . . . , yt+2} are active in Qt+1(w) after yt+1, Lemma 3 applied to each of them
implies that they are also active in Q(yt+1, yt, I;w). Hence, for this case, the hypothesis is
proved for yt+1.

If yt+1 is already in N when Q(yt, I;w) is invoked, then for some tuple I ′, yt+1 should
have been added to N during the invocation of Q(I ′;w). Thus, Q(yt+1, I

′;w) would have
been invoked prior to Q(yt, I;w). Using the same argument (on Qt+1(w) and Q(yt+1, I

′;w))
that we used for the earlier case, we conclude that even for this case, the hypothesis holds
for yt+1. J

Thus, we have shown that all the men in AS′(w) are active somewhere during the
execution of the algorithm and thus, all are present in N at the end of the execution. This
completes the proof of Theorem 1. J

4 Algorithm to test if a strategy is totally stable

In this section, we consider the problem of deciding, for a given true strategy P and a stated
strategy Q, whether Q is totally stable. We show that this problem is solvable in time O(n4).
Algorithm 2 uses Algorithm 1 as a subroutine.

Algorithm 2: Algorithm for Total Stability.
Input: True strategy P, stated strategy Q, and the set of women W .
Output: Answers “Yes”, if Q is totally stable, else “No”.

1 foreach w ∈W do
2 Run Algorithm 1 on input (Q, w) to obtain Nw(Q) and Lw(Q)
3 Let Ñ ← {m ∈ Nw(Q) s.t. w prefers m to µQ(w), in P (w)}
4 foreach m ∈ Ñ do
5 Let Q(m, I;w) ∈ Lw(Q) be the list that yields (m,w) as a matched pair
6 Let µ be the men-optimal (Q(−w), Q(m, I;w))-stable matching
7 if µ is P-stable then
8 return “No”

9 return “Yes”

The following result is of independent interest as it implies that Algorithm 1 on the
input (Q, w) generates all matchings that can be attained by changing w’s preference list. In
particular, it answers if for any given w ∈W , there exists a strategy Q′ ∈ S(Q,w) such that
µQ′(w) � µQ(w) in P (w), and the matching µQ′ is P-stable matching. As a consequence,
using Algorithm 1 as a subroutine, Algorithm 2 is able to solve Total Stability.

I Theorem 5. For any (fixed) man m, if there exists a permutation Q′(w) of a woman w’s
list Q(w) such that the strategy Q′ = (Q(−w), Q′(w)) yields a matching that matches w to
m, then that matching is unique.

Proof. Suppose that Q′(w) (defined in the theorem) is an arbitrary strategy of w to obtain m,
and let µ′ denote the men-optimal Q′-stable matching. Algorithm 1 applied to input (Q, w)



S. Gupta, K. Iwama, and S. Miyazaki 23:11

computes a list Q(m, I;w) such that w attains m by the strategy Q∗ = (Q(−w), Q(m, I;w)).
Note that m appears at the front of the list Q∗(w) = Q(m, I;w). Let µ∗ be the men-optimal
Q∗-stable matching. Our goal is to show that µ′ = µ∗.

I Claim 6. For each m, µ∗(m) � µ′(m) in Q′(m).

Proof. We begin by showing that µ′ is Q∗-stable. We know that µ′ is Q′-stable, and Q′ and
Q∗ differ only in w’s list. Hence, if there is a Q∗-blocking pair in µ′, then it must contain w.
However, this is impossible since w is matched with m, who is at the front of the list Q∗(w).
Therefore, µ′ must be Q∗-stable

Since µ∗ is the men-optimal Q∗-stable matching and µ′ is a Q∗-stable matching, we have
that, for each man m, µ∗(m) � µ′(m) in Q∗(m). Since Q∗(m) = Q′(m) for each man m, the
claim is proved. J

I Claim 7. For each m, µ′(m) � µ∗(m) in Q′(m).

Proof. As for Claim 6, we begin by showing that µ∗ is Q′-stable. Suppose that it is not.
Then there is a Q′-blocking pair in µ∗, and it includes w for the same reason as in the proof
of Claim 6. Let (m′, w) denote a Q′-blocking pair in µ∗. Then, w � µ∗(m′) in Q′(m′), and
m′ � µ∗(w) in Q′(w).

Using Claim 6, we have w � µ′(m′) in Q′(m′), and µ∗(w) = µ′(w) = m by definition.
Hence, (m′, w) is a Q′-blocking pair in µ′, a contradiction. Again, for the same reason as in
the proof of Claim 6, we can conclude that µ′(m) � µ∗(m) in Q′(m) for each man m. J

By Claims 6 and 7, we have µ′(m) = µ∗(m) for each man m. Thus, µ′ = µ∗, completing
the proof of Theorem 5. J

I Theorem 8. Algorithm 2 solves Total Stability in O(n4) time.

Proof. Suppose that Algorithm 2 outputs “No”. Then, it implies that a P-stable manipulation
strategy was found, and therefore Q is not totally stable. For the opposite direction, suppose
that Q is not totally stable and there exists a woman w who has a manipulation strategy Q′
such that µQ′ is P-stable. Then, man µQ′(w) is added to Ñ when Algorithm 1 is executed
on the input (Q, w). By Theorem 5 the matching µQ′ is uniquely defined, i.e., there is a
unique matching resulting from a manipulation strategy of w that results in the matched
pair (w, µQ′(w)). Since µQ′ is P-stable, Algorithm 2 will output “No.” This proves the
correctness of Algorithm 2.

We claim that the time complexity of Algorithm 1 is O(n3). This is because the size
of the set N is at most n, and is computed iteratively by executing GS-M once for each
man m ∈ N . Since the running time of GS-M is O(n2), the running time of Algorithm 1 is
O(n3). Algorithm 2 executes Algorithm 1 for each woman w ∈W . Hence, the running time
of Algorithm 2 is O(n4). J

5 Conclusions

We leave the question of manipulation by a group of women as an avenue of further research.
In particular, we would like to answer in polynomial time (1) if a stated strategy Q is totally
stable against manipulations by a subset of women, and (2) if a given subset of women
W ′ ⊆ W have a manipulation strategy that yields a P-stable matching and gives each of
them a better partner than the one given by the stated strategy. In this article, we solved
both of these problems for the special case of manipulation by one woman acting on her own.
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