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Abstract
It is shown that the knapsack problem, which was introduced by Myasnikov et al. for arbitrary
finitely generated groups, can be solved in NP for graph groups. This result even holds if the
group elements are represented in a compressed form by SLPs, which generalizes the classical
NP-completeness result of the integer knapsack problem. We also prove general transfer results:
NP-membership of the knapsack problem is passed on to finite extensions, HNN-extensions over
finite associated subgroups, and amalgamated products with finite identified subgroups.
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1 Introduction

In their paper [36], Myasnikov, Nikolaev, and Ushakov started the investigation of classical
discrete optimization problems, which are classically formulated over the integers, for arbitrary
in general non-commutative groups. Among other problems, they introduced for a finitely
generated group G the knapsack problem and the subset sum problem. The input for the
knapsack problem is a sequence of group elements g1, . . . , gk, g ∈ G (specified by finite words
over the generators of G) and it is asked whether there exists a solution (x1, . . . , xk) ∈ Nk
of the equation gx1

1 · · · g
xk

k = g. For the subset sum problem one restricts the solution to
{0, 1}k. For the particular case G = Z (where the additive notation x1 · g1 + · · ·+ xk · gk = g

is usually preferred) these problems are NP-complete if the numbers g1, . . . , gk, g are encoded
in binary representation. For subset sum, this is a classical result from Karp’s seminal paper
[24] on NP-completeness. Knapsack for integers is usually formulated in a more general form
in the literature; NP-completeness of the above form (for binary encoded integers) was shown
in [17], where the problem was called multisubset sum.1 Interestingly, if we consider subset
sum for the group G = Z, but encode the input numbers g1, . . . , gk, g in unary notation, then
the problem is in DLOGTIME-uniform TC0 (a small subclass of polynomial time and even of
logarithmic space that captures the complexity of multiplication of binary encoded numbers)
[14], and the same holds for knapsack, since the instance x1 · g1 + · · · + xk · gk = g has a

∗ This author is supported by a fellowship within the Postdoc-Program of the German Academic Exchange
Service (DAAD).

1 Note that if we ask for a solution (x1, . . . , xk) in Zk, then knapsack can be solved in polynomial time
(even for binary encoded integers) by checking whether gcd(g1, . . . , gk) divides g.

© Markus Lohrey and Georg Zetzsche;
licensed under Creative Commons License CC-BY

33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016).
Editors: Nicolas Ollinger and Heribert Vollmer; Article No. 50; pp. 50:1–50:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2016.50
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


50:2 Knapsack in Graph Groups, HNN-Extensions and Amalgamated Products

solution if and only if it has a solution with xi ≤ k · (max{g1, . . . , gk, g})3 [37]. This allows
to reduce unary knapsack to unary subset sum. See [21] for related results.

In [36] the authors encode elements of the finitely generated group G by words over the
group generators and their inverses. For G = Z this representation corresponds to the unary
encoding of integers. Among others, the following results were shown in [36]:

Subset sum and knapsack can be solved in polynomial time for every hyperbolic group.
Subset sum for a virtually nilpotent group (a finite extension of a nilpotent group) can
be solved in polynomial time.
For the following groups, subset sum is NP-complete (whereas the word problem can be
solved in polynomial time): free metabelian non-abelian groups of finite rank, the wreath
product Z o Z, Thompson’s group F , and the Baumslag-Solitar group BS(1, 2).

Further results on knapsack and subset sum have been recently obtained in [27]:
For a virtually nilpotent group, subset sum belongs to NL (nondeterministic logspace).
There is a nilpotent group of class 2 (in fact, a direct product of sufficiently many copies
of the discrete Heisenberg group H3(Z)), for which knapsack is undecidable.
The knapsack problem for the discrete Heisenberg group H3(Z) is decidable. In particular,
together with the previous point it follows that decidability of knapsack is not preserved
under direct products.
There is a polycyclic group with an NP-complete subset sum problem.
The knapsack problem is decidable for every co-context-free group.

The focus of this paper will be on the knapsack problem. We will prove that this problem
can be solved in NP for every graph group. Graph groups are also known as right-angled
Artin groups or free partially commutative groups. A graph group is specified by a finite
simple graph. The vertices are the generators of the group, and two generators a and b are
allowed to commute if and only if a and b are adjacent. Graph groups somehow interpolate
between free groups and free abelian groups and can be seen as a group counterpart of trace
monoids (free partially commutative monoids), which have been used for the specification of
concurrent behavior. In combinatorial group theory, graph groups are currently an active
area of research, mainly because of their rich subgroup structure (see e.g. [5, 8, 16]).

To prove that knapsack belongs to NP for a graph group, we proceed in two steps: We
first show that if an instance gx1

1 · · · g
xk

k = g has a solution in a graph group, then it has a
solution where every xi is bounded exponentially in the input length (the total length of all
words representing the group elements g1, . . . , gk, g). We then guess the binary encodings of
numbers n1, . . . , nk that are bounded by the exponential bound from the previous point and
verify in polynomial time the identity gn1

1 · · · g
nk

k = g. The latter problem is an instance of
the so-called compressed word problem for a graph group. This is the classical word problem,
where the input group element is given succinctly by a so-called straight-line program (SLP),
which is a context-free grammar that produces a single word (here, a word over the group
generators and their inverses). An SLP with n productions in Chomsky normal form can
produce a string of length 2n. Nevertheless, the compressed word problem for a fixed graph
group can be solved in polynomial time (see [29] for details).

In fact, our proof yields a stronger result: First, it yields an NP procedure for solving
knapsack-like equations h0g

x1
1 h1 · · ·hk−1g

xk

k hk = 1 where some of the variables x1, . . . , xk
are allowed to be identical. We call such an equation an exponent equation. Hence, we prove
that solvability of exponent equations over a graph group belongs to NP.

Second, we show that the latter result even holds when the group elements g1, . . . , gk
and h0, . . . , hk are given succinctly by SLPs; we speak of solvability of compressed exponent
equations. This is interesting since the SLP-encoding of group elements corresponds in the
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case G = Z to the binary encoding of integers. Hence, membership in NP for solvability of
compressed exponent equations over a graph group generalizes the classical NP-membership
for knapsack (over Z) to a much wider class of groups.

Furthermore, we extend the class of groups for which solvability of knapsack (resp.
compressed exponent equations) is in NP by proving general transfer results. Our first
transfer result states that if H is a finite extension of G and solvability of compressed
exponent equations (or knapsack) is in NP for G, then the same holds for H. This provides
such algorithms for the abundant class of virtually special groups. These are finite extensions
of subgroups of graph groups. Virtually special groups recently played a major role in a
spectacular breakthrough in three-dimensional topology, namely the solution of the virtual
Haken conjecture [1]. In the course of this development it turned out that the class of
virtually special groups is very rich: It contains Coxeter groups [18], one-relator groups
with torsion [41], fully residually free groups [41], and fundamental groups of hyperbolic
3-manifolds [1].

We also prove transfer results for HNN-extensions and amalgamated products with finite
associated (resp. identified) subgroups in the case of the knapsack problem. These two
constructions are of fundamental importance in combinatorial group theory [34]. Examples
include Stallings’ decomposition of groups with infinitely many ends [38] or the construction
of virtually free groups [9]. Moreover, these constructions are known to preserve a wide range
of important structural and algorithmic properties [2, 6, 19, 22, 23, 25, 26, 30, 31, 35].

A side product of our proof is that the set of all solutions (x1, . . . , xk) ∈ Nk of an exponent
equation gx1

1 · · · g
xk

k = g over a graph group is semilinear, and a semilinear representation can
be produced effectively. This seems to be true for many groups, e.g., for all co-context-free
groups [27]. On the other hand, for the discrete Heisenberg group H3(Z) solvability of
exponent equations is decidable, but the set of all solutions of an exponent equation is not
semilinear; it is defined by a single quadratic Diophantine equation [27].

Finally, we complement our upper bounds with a new lower bound: Knapsack and subset
sum are both NP-complete for a direct product of two free groups of rank two (F2 × F2).
This group is the graph group corresponding to a cycle of length four. NP-hardness already
holds for the case that the input group elements are specified by words over the generators
(for SLP-compressed words, NP-hardness already holds for Z) and the exponent variables are
allowed to take values in Z (instead of N). NP-completeness of subset sum for F2 × F2 solves
an open problem from [15].

A full version of this work can be found in the arXiv [33].

Related work. The knapsack problem is a special case of the more general rational subset
membership problem. A rational subset of a finitely generated monoid M is the homomorphic
image inM of a regular language over the generators ofM . In the rational subset membership
problem forM the input consists of a rational subset L ⊆M (specified by a finite automaton)
and an element m ∈M and it is asked whether m ∈ L. It was shown in [32] that the rational
subset membership problem for a graph group G is decidable if and only if the corresponding
graph has (i) no induced cycle on four nodes (C4) and (ii) no induced path on four nodes
(P4). For the decidable cases, the precise complexity is open.

Knapsack forG can be also viewed as the question, whether a word equation z1z2 · · · zn = 1,
where z1, . . . , zn are variables, together with constraints of the form {gn | n ≥ 0} for the
variables has a solution in G. Such a solution is a mapping ϕ : {z1, . . . , zn} → G such that
ϕ(z1z2 · · · zn) evaluates to 1 in G and all constraints are satisfied. For another class of
constraints (so-called normalized rational constraints, which do not cover constraints of

STACS 2016



50:4 Knapsack in Graph Groups, HNN-Extensions and Amalgamated Products

the form {gn | n ≥ 0}), solvability of general word equations was shown to be decidable
(PSPACE-complete) for graph groups by Diekert and Muscholl [13]. This result was extended
in [12] to a transfer theorem for graph products. A graph product is specified by a finite
simple graph where every node is labeled with a group. The associated group is obtained
from the free product of all vertex groups by allowing elements from adjacent groups to
commute. Note that decidability of knapsack is not preserved under graph products: It is
not even preserved under direct products (see the above mentioned results from [27]).

2 Words and Straight-Line Programs

For a word w we denote with alph(w) the set of symbols occurring in w. The length of the
word w is |w|. A straight-line program, briefly SLP, is basically a context-free grammar that
produces exactly one string. To ensure this, the grammar has to be acyclic and deterministic
(every variable has a unique production where it occurs on the left-hand side). Formally,
an SLP is a tuple G = (V,Σ, rhs, S), where V is a finite set of variables (or nonterminals),
Σ is the terminal alphabet, S ∈ V is the start variable, and rhs maps every variable to a
right-hand side rhs(A) ∈ (V ∪ Σ)∗. We require that there is a linear order < on V such that
B < A whenever B ∈ N ∩ alph(rhs(A)). Every variable A ∈ V derives to a unique string
valG(A) by iteratively replacing variables by the corresponding right-hand sides, starting
with A. Finally, the string derived by G is val(G) = valG(S).

Let G = (V,Σ, rhs, S) be an SLP. The size of G is |G| =
∑
A∈V |rhs(A)|, i.e., the total

length of all right-hand sides. A simple induction shows that for every SLP G of sizem one has
|val(G)| ≤ O(3m/3) ⊆ 2O(m) [7, proof of Lemma 1]. On the other hand, it is straightforward
to define an SLP H of size 2n such that |val(H)| ≥ 2n. This justifies to see an SLP G as a
compressed representation of the string val(G), and exponential compression rates can be
achieved in this way. More details on SLPs can be found in [29].

3 Knapsack and Exponent Equations

We assume that the reader has some basic knowledge concerning (finitely generated) groups
(see e.g. [34] for further details). Let G be a finitely generated group, and let A be a finite
generating set for G. Then, elements of G can be represented by finite words over the
alphabet A±1 = A ∪A−1. An exponent equation over G is an equation of the form

v0u
x1
1 v1u

x2
2 v2 · · ·uxn

n vn = 1

where u1, u2, . . . , un, v0, v1, . . . , vn ∈ G are group elements that are given by finite words
over the alphabet A±1 and x1, x2, . . . , xn are not necessarily distinct variables. Such an
exponent equation is solvable if there exists a mapping σ : {x1, . . . , xn} → N such that
v0u

σ(x1)
1 v1u

σ(x2)
1 v2 · · ·uσ(xn)

n vn = 1 in the group G. Solvability of exponent equations over G
is the following computational problem:
Input: An exponent equation E over G (where elements of G are specified by words over the
group generators and their inverses).
Question: Is E solvable?
The knapsack problem for the group G is the restriction of solvability of exponent equa-
tions over G to exponent equations of the form ux1

1 ux2
2 · · ·uxn

n u−1 = 1 or, equivalently,
ux1

1 ux2
2 · · ·uxn

n = u where the exponent variables x1, . . . , xn have to be pairwise different.
We will also study a compressed version of exponent equations over G, where elements of

G are given by SLPs over A±1. A compressed exponent equation is an exponent equation
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v0u
x1
1 v1u

x2
2 v2 · · ·uxn

n vn = 1 where the group elements u1, u2, . . . , un, v0, v1, . . . , vn ∈ G are
given by SLPs over the terminal alphabet A±1. The sum of the sizes of these SLPs is the
size of the compressed exponent equation. Let us define solvability of compressed exponent
equations over G as the following computational problem:
Input: A compressed exponent equation E over G.
Question: Is E solvable?
The compressed knapsack problem for G is defined analogously. Note that with this terminol-
ogy, the classical knapsack problem for binary encoded integers is the compressed knapsack
problem for the group Z. The binary encoding of an integer can be easily transformed into
an SLP over the alphabet {a, a−1} (where a is a generator of Z) and vice versa. Here, the
number of bits in the binary encoding and the size of the SLP are linearly related.

It is a simple observation that the decidability and complexity of solvability of (compressed)
exponent equations over G as well as the (compressed) knapsack problem for G does not
depend on the chosen finite generating set for the group G. Therefore, we do not have to
mention the generating set explicitly in these problems.

I Remark 1. Since we are dealing with a group, one might also allow solution mappings
σ : {x1, . . . , xn} → Z to the integers. But this variant of solvability of (compressed) exponent
equations (knapsack, respectively) can be reduced to the above version, where σ maps to N,
by simply replacing a power uxi

i by uxi
i (u−1

i )yi , where yi is a fresh variable.

The goal of this paper is to prove the decidability of solvability of exponent equations for
so-called graph groups. We actually prove that solvability of compressed exponent equations
for a graph group belongs to NP. Graph groups will be introduced in the next section.

4 Traces and Graph Groups

Let (A, I) be a finite simple graph. In other words, the edge relation I ⊆ A×A is irreflexive
and symmetric. It is also called the independence relation, and (A, I) is called an independence
alphabet. We consider the monoid M(A, I) = A∗/≡I , where ≡I is the smallest congruence
relation on the free monoid A∗ that contains all pairs (ab, ba) with a, b ∈ A and (a, b) ∈ I.
This monoid is called a trace monoid or partially commutative free monoid; it is cancellative,
i.e., xy = xz or yx = zx implies y = z. Elements of M(A, I) are called Mazurkiewicz traces
or simply traces. The trace represented by the word u is denoted by [u]I , or simply u if no
confusion can arise. For a language L ⊆ A∗ we denote with [L]I = {u ∈ A∗ | ∃v ∈ L : u ≡I v}
its partially commutative closure. The length of the trace [u]I is |[u]I | = |u| and its alphabet
is alph([u]I) = alph(u). It is easy to see that these definitions do not depend on the concrete
word that represents the trace [u]I . For subsets B,C ⊆ A we write BIC for B × C ⊆ I. If
B = {a} we simply write aIC. For traces s, t we write sIt for alph(s)Ialph(t). The empty
trace [ε]I is the identity element of the monoid M(A, I) and is denoted by 1. A trace t is
connected if we cannot factorize t as t = uv with u 6= 1 6= v and uIv. For a trace t ∈M(A, I)
let ρ(t) be the number of prefixes of t. We will use the following statement from [4].

I Lemma 2. Let t ∈M(A, I) be a trace of length n. Then ρ(t) ∈ O(nα), where α is the size
of a largest clique of the complementary graph (A, I)c = (A, (A×A) \ I).

We define the group G(A, I) = 〈A | ab = ba ((a, b) ∈ I)〉. Such a group is called a graph
group, or right-angled Artin group, or free partially commutative group. Here, we use the term
graph group. We represent elements of G(A, I) by traces over an extended independence
alphabet. For this, let A−1 = {a−1 | a ∈ A} be a disjoint copy of the alphabet A, and let
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A±1 = A ∪ A−1. We define (a−1)−1 = a and for a word w = a1a2 · · · an with ai ∈ A±1 we
define w−1 = a−1

n · · · a−1
2 a−1

1 . This defines an involution (without fixed points) on (A±1)∗. We
extend the independence relation I to A±1 by (ax, by) ∈ I for all (a, b) ∈ I and x, y ∈ {−1, 1}.
For a trace t = [u]I (u ∈ (A±1)∗) we can then define t−1 = [u−1]I . This is well-defined, since
u ≡I v implies u−1 ≡I v−1. There is a canonical surjective morphism h : M(A±1, I)→ G(A, I)
that maps every symbol a ∈ A±1 to the corresponding group element. Of course, h is not
injective, but we can easily define a subset IRR(A±1, I) ⊆ M(A±1, I) of irreducible traces
such that h restricted to IRR(A±1, I) is bijective. The set IRR(A±1, I) consists of all traces
t ∈ M(A±1, I) such that t does not contain a factor [aa−1]I with a ∈ A±1, i.e., there do
not exist u, v ∈ M(A±1, I) and a ∈ A±1 such that in M(A±1, I) we have a factorization
t = u[aa−1]Iv. For every trace t there exists a corresponding irreducible normal form that
is obtained by removing from t factors [aa−1]I with a ∈ A±1 as long as possible. It can be
shown that this reduction process is terminating (which is trivial since it reduces the length)
and confluent (in [28] a more general confluence lemma for graph products of monoids is
shown). Hence, the irreducible normal form of t does not depend on the concrete order of
reduction steps. For a group element g ∈ G(A, I) we denote with |g| the length of the unique
trace t ∈ IRR(A±1, I) such that h(t) = g.

5 Three Auxiliary Results

Based on Levi’s lemma for traces (see e.g. [10, p. 74]) one can show the following factorization
result for powers of a connected trace.

I Lemma 3. Let u ∈M(A, I) \ {1} be a connected trace and m ∈ N, m ≥ 2. Then, for all
x ∈ N and traces y1, . . . , ym we have: ux = y1y2 · · · ym if and only if there exist traces pi,j
(1 ≤ j < i ≤ m), si (1 ≤ i ≤ m) and xi, cj ∈ N (1 ≤ i ≤ m, 1 ≤ j ≤ m− 1) such that:

yi = (
∏i−1
j=1 pi,j)uxisi for all 1 ≤ i ≤ m,

pi,jIpk,l if j < l < k < i and pi,jI(uxksk) if j < k < i

sm = 1 and for all 1 ≤ j < m, sj
∏m
i=j+1 pi,j = ucj

cj ≤ |A| for all 1 ≤ j ≤ m− 1,
x =

∑m
i=1 xi +

∑m−1
i=1 ci.

I Remark 4. In Section 6 we will apply Lemma 3 to replace an equation ux = y1y2 · · · ym
(where x, y1, . . . , ym are variables and u is a concrete connected trace) by an equivalent
disjunction. Note that the length of all factors pi,j and si above is bounded by |A| · |u|.
Hence, one can guess these traces as well as the numbers cj ≤ |A| (the guess results in a
disjunction). We can also guess which of the numbers xi are zero and which are greater
than zero. After these guesses we can verify the independences pi,jIpk,l (j < l < k < i) and
pi,jI(uxksk) (j < k < i), and the identities sm = 1, sj

∏m
i=j+1 pi,j = ucj (1 ≤ j < m). If one

of them does not hold, the specific guess does not contribute to the disjunction. In this way,
we can replace the equation ux = y1y2 · · · ym by a disjunction of formulas of the form

∃xi > 0 (i ∈ K) : x =
m∑
i∈K

xi + c ∧
∧
i∈K

yi = piu
xisi ∧

∧
i∈[1,m]\K

yi = pisi ,

where K ⊆ [1,m], c ≤ |A| · (m − 1) and the pi, si are concrete traces of length at most
|A| · (m−1) · |u|. The number of disjuncts in the disjunction is not important for our purpose.

The second auxiliary result that we need is (recall that ρ(t) is the number of prefixes of the
trace t):
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I Lemma 5. Let p, q, u, v, s, t ∈ M(A, I) such that u 6= 1 and v 6= 1 are connected. Fur-
thermore, let m = max{ρ(p), ρ(q), ρ(s), ρ(t)} and n = max{ρ(u), ρ(v)}. Then the set
L(p, u, s, q, v, t) := {(x, y) ∈ N×N | puxs = qvyt} is semilinear and is a union of O(m8 ·n4|A|)
many linear sets of the form {(a+ bz, c+ dz) | z ∈ N} with a, b, c, d ∈ O(m8 · n4|A|).

The proof of Lemma 5 applies the theory of recognizable trace languages. We construct an
automaton for the language L = [puxs]I ∩ [qvyt]I with at most 4m4 · n2·|A| states. Then, we
analyze the set of all lengths of words from L using results on unary finite automata [39].

Finally, we need a bound on the norm of a smallest vector in a certain kind of semilinear
sets. We easily obtain this bound from a result by zur Gathen and Sieveking [40].

I Lemma 6. Let A ∈ Zn×m, a ∈ Zn, C ∈ Nk×m, c ∈ Nk. Let β be an upper bound for the
absolute value of all entries in A, a, C, c. The set L = {Cz + c | z ∈ Nm, Az = a} ⊆ Nk
is semilinear. Moreover, if L 6= ∅ then L contains a vector with all entries bounded by
β + n! ·m · (m+ 1) · βn+1.

6 Exponent Equations in Graph Groups

In this section, we prove the following two statements, where G is a fixed graph group:
The set of solutions of an exponent equation over G is (effectively) semilinear.
Solvability of compressed exponent equations over G belongs to NP.

In the next section, we will extend these results to the larger class of virtually special groups.
We start with some definitions. As usual, we fix an independence alphabet (A, I). In the
following we will consider reduction rules on sequences of traces. For better readability
we separate the consecutive traces in such a sequence by commas. Let u1, u2, . . . , un ∈
IRR(A±1, I) be irreducible traces. The sequence u1, u2, . . . , un is I-freely reducible if the
sequence u1, u2, . . . , un can be reduced to the empty sequence ε by the following rules:

ui, uj → uj , ui if uiIuj ,
ui, uj → ε if ui = u−1

j in G(A, I),
ui → ε if ui = ε (this rule deletes the empty trace ε from a sequence of traces).

A concrete sequence of these rewrite steps leading to the empty sequence is a reduction of
the sequence u1, u2, . . . , un. Such a reduction can be seen as a witness for the fact that
u1u2 · · ·un = 1 in G(A, I). On the other hand, u1u2 · · ·un = 1 does not necessarily imply
that u1, u2, . . . , un has a reduction. For instance, the sequence a−1, ab, b−1 has no reduction.
But we can show that every sequence which multiplies to 1 in G can be refined (by factorizing
the elements of the sequence) such that the resulting refined sequence has a reduction.
For getting an NP-algorithm, it is important to bound the length of the refined sequence
exponentially in the length of the initial sequence.

I Lemma 7. Let n ≥ 2 and u1, u2, . . . , un ∈ IRR(A±1, I). If u1u2 · · ·un = 1 in G(A, I),
then there exist factorizations ui = ui,1 · · ·ui,ki

such that the sequence

u1,1, . . . , u1,k1 , u2,1, . . . , u2,k2 , . . . , un,1, . . . , un,kn

is I-freely reducible. Moreover,
∑n
i=1 ki ≤ 2n − 2.

We now come to the main technical result of this paper:

I Theorem 8. Let u1, u2, . . . , un ∈ G(A, I) \ {1}, v0, v1, . . . , vn ∈ G(A, I) and let x1, . . . , xn
be variables (we may have xi = xj for i 6= j) ranging over N. Then, the set of solutions of
the exponent equation

v0u
x1
1 v1u

x2
2 v2 · · ·uxn

n vn = 1, (1)
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is semilinear. Furthermore, if there exists a solution, then there is a solution such that
xi ∈ O((αn)! · 22α2n(n+3) · µ8α(n+1) · ν8α|A|(n+1)), where

α ≤ |A| is the size of a largest clique of the complementary graph (A, I)c = (A, (A×A)\I),
λ = max{|u1|, |u2|, . . . , |un|, |v0|, |v1|, . . . , |vn|},
µ ∈ O(|A|α · 22α2n · λα), and
ν ∈ O(λα).

Proof. Let us choose irreducible traces for u1, u2, . . . , un, v0, v1, . . . , vn; we denote these
traces with the same letters as the group elements. A trace u is called cyclically reduced if
there do not exist a ∈ A±1 and v such that u = ava−1. For every trace u there exist unique
traces p, w such that u = pwp−1 and w is cyclically reduced (since the reduction relation
a−1xa → x is terminating and confluent [11, Lemma 16]). These traces p and w can be
computed in polynomial time. Note that for a cyclically reduced irreducible trace w, every
power wn is irreducible. Let ui = piwip

−1
i with wi cyclically reduced. By replacing every

uxi
i by piwxi

i p
−1
i , we can assume that all ui are cyclically reduced and irreducible. In case

one of the traces ui is not connected, we can write ui as ui = ui,1ui,2 with ui,1Iui,2 and
ui,1 6= 1 6= ui,2. Thus, we can replace the power uxi

i by uxi
i,1u

xi
i,2. Note that ui,1 and ui,2

are still irreducible and cyclically reduced. By doing this, the number n from the theorem
multiplies by at most α (which is the maximal number of pairwise independent letters). In
order to keep the notation simple we still use the letter n for the number of ui, but at the
end of the proof we have to multiply n by α in the derived bound. Hence, for the further
proof we can assume that all ui are connected, irreducible and cyclically reduced. Let λ be
the maximal length of one of the traces u1, u2, . . . , un, v0, v1, . . . , vn, which does not increase
by the above preprocessing.

We now apply Lemma 7 to the equation (1), where every uxi
i is viewed as a single factor.

Note that by our preprocessing, all factors ux1
1 , ux2

2 , . . . , uxn
n , v0, . . . , vn are irreducible (for

all choices of the xi). By taking the disjunction over (i) all possible factorizations of the
2n+ 1 factors ux1

1 , ux2
2 , . . . , uxn

n , v0, . . . , vn into totally at most 22n+1 − 2 factors and (ii) all
possible reductions of the resulting refined factorization of v0u

x1
1 v1u

x2
2 v2 · · ·uxn

n vn, it follows
that (1) is equivalent to a disjunction of statements of the following form: There exist traces
yi,1, . . . , yi,ki

(1 ≤ i ≤ n) and zi,1, . . . , zi,li (0 ≤ i ≤ n) such that

(a) uxi
i = yi,1 · · · yi,ki

(1 ≤ i ≤ n)
(b) vi = zi,1 · · · zi,li (0 ≤ i ≤ n)
(c) yi,jIyk,l for all (i, j, k, l) ∈ J1
(d) yi,jIzk,l for all (i, j, k, l) ∈ J2

(e) zi,jIzk,l for all (i, j, k, l) ∈ J3
(f) yi,j = y−1

k,l for all (i, j, k, l) ∈M1

(g) yi,j = z−1
k,l for all (i, j, k, l) ∈M2

(h) zi,j = z−1
k,l for all (i, j, k, l) ∈M3

Here, the numbers ki and li sum up to at most 22n+1−2 (hence, some ki can be exponentially
large, whereas li can be bound by the length of vi, which is at most λ). The tuple sets
J1, J2, J3 collect all independences between the factors yi,j , zk,l that are necessary to carry out
the chosen reduction of the refined left-hand side in (1). Similarly, the tuple sets M1,M2,M3
tell us which of the factors yi,j , zk,l cancels against which of the factors yi,j , zk,l in our chosen
reduction of the refined left-hand side in (1). Note that every factor yi,j (resp., zk,l) appears
in exactly one of the identities (f), (g), (h) (since in the reduction every factor cancels against
another unique factor).

Next, we simplify our statements. Since the vi are concrete traces (of length at most λ),
we can take a disjunction over all possible factorizations vi = vi,1 · · · vi,li (1 ≤ i ≤ n+1). This
allows to replace every variable zi,j by a concrete trace vi,j . Statements of the form vi,jIvk,l
and vi,j = v−1

k,l can, of course, be eliminated. Moreover, if there is an identity yi,j = v−1
k,l then

we can replace the variable yi,j by the concrete trace v−1
k,l (of length at most λ).
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In the next step, we replace statements of the form uxi
i = yi,1 · · · yi,ki (1 ≤ i ≤ n). Note that

some of the variables yi,j might have been replaced by concrete traces of length at most λ.
We apply to each of these equations Lemma 3, or better Remark 4. This allows us to replace
every equation uxi

i = yi,1 · · · yi,ki (1 ≤ i ≤ n) by a disjunction of statements of the following
form: There exist numbers xi,j > 0 (1 ≤ i ≤ n, j ∈ Ki) such that

xi = ci +
∑
j∈Ki

xi,j for all 1 ≤ i ≤ n,
yi,j = pi,ju

xi,j

i si,j for all 1 ≤ i ≤ n, j ∈ Ki,
yi,j = pi,jsi,j for all 1 ≤ i ≤ n, j ∈ [1, ki] \Ki.

Here, Ki ⊆ [1, ki], the ci are concrete numbers with ci ≤ |A| · (ki − 1), and the pi,j , si,j are
concrete traces of length at most |A| · (ki − 1) · |ui| ≤ |A| · (22n+1 − 3) · λ. Hence, the lengths
of these traces can be exponential in n.

Note that since xi > 0, we know the alphabet of yi,j = pi,ju
xi,j

i si,j (resp., yi,j = pi,jsi,j).
This allows us to replace all independences of the form yi,jIyk,l for (i, j, k, l) ∈ J1 (see (c))
and yi,jIzk,l for (i, j, k, l) ∈ J2 (see (d)) by concrete truth values. Note that all variables zk,l
have already been replaced by concrete traces. If yi,j was already replaced by a concrete
trace, then we can determine from an equation yi,j = pi,ju

xi,j

i si,j the exponent xi,j . Since
yi,j was replaced by a trace of length at most λ (a small number), we get xi,j ≤ λ, and we
can replace xi,j in xi =

∑
j∈Ki

xi,j + ci by a concrete number of size at most λ. Finally, if
yi,j was replaced by a concrete trace, and we have an equation of the form yi,j = pi,jsi,j ,
then the resulting identity is either true or false and can be eliminated.

After this step, we obtain a disjunction of statements of the following form: There exist
numbers xi,j > 0 (1 ≤ i ≤ n, j ∈ K ′i) such that
(a’) xi = ci +

∑
j∈K′

i
xi,j for all 1 ≤ i ≤ n, and

(b’) pi,juxi,j

i si,j = s−1
k,l (u

−1
k )xk,lp−1

k,l for all (i, j, k, l) ∈M .
Here, K ′i ⊆ Ki is a set of size at most ki ≤ 22n+1 − 2, ci ≤ |A| · (ki − 1) + λ · ki <
(|A|+λ) · (22n+1−2), and the pi,j , si,j are concrete traces of length at most |A| · (22n+1−3) ·λ.
The set M specifies a matching in the sense that for every exponent xa,b (1 ≤ a ≤ n, b ∈ K ′i)
there is a unique (i, j, k, l) ∈M such that (i, j) = (a, b) or (k, l) = (a, b).

We now apply Lemma 5 to the identities pi,ju
xi,j

i si,j = s−1
k,l (u

−1
k )xk,lp−1

k,l . Each such
identity can be replaced by a disjunction of constraints

(xi,j , xk,l) ∈ {(ai,j,k,l + bi,j,k,l · zi,j,k,l, ci,j,k,l + di,j,k,l · zi,j,k,l) | zi,j,k,l ∈ N}.

For the numbers ai,j,k,l, bi,j,k,l, ci,j,k,l, di,j,k,l we obtain the bound

ai,j,k,l, bi,j,k,l, ci,j,k,l, di,j,k,l ∈ O(µ8 · ν8|A|)

(the alphabet of the traces is A±1 which has size 2|A|, therefore, we have to multiply in
Lemma 5 |A| by 2), where, by Lemma 2,

µ = max{ρ(pi,j), ρ(pk,l), ρ(si,j), ρ(sk,l)} ∈ O(|A|α · 22αn · λα) and (2)
ν = max{ρ(ui), ρ(uk)} ∈ O(λα). (3)

Note that ρ(t) = ρ(t−1) for every trace t. The above condition (a’) for xi can be written as

xi = ci +
∑

(i,j,k,l)∈M

(ai,j,k,l + bi,j,k,l · zi,j,k,l) +
∑

(k,l,i,j)∈M

(ck,l,i,j + dk,l,i,j · zk,l,i,j).

Note that the two sums in this equation contain in total |K ′i| ≤ 22n+1 many summands (since
for every j ∈ K ′i there is a unique pair (k, l) with (i, j, k, l) ∈M or (k, l, i, j) ∈M).
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Hence, after a renaming of symbols, the initial equation (1) becomes equivalent to a finite
disjunction of statements of the form: There exist z1, . . . , zm ∈ N (these zi are the above
zi,j,k,l and m = maxi |K ′i|) such that

xi = ai +
m∑
j=1

ai,jzj for all 1 ≤ i ≤ n. (4)

Moreover, we have the following size bounds:
m = maxi |K ′i| ≤ 22n+1,
ai ∈ O(ci + |K ′i| · µ8 · ν8|A|) ⊆ O(22n(|A|+ λ+ µ8 · ν8|A|)) ⊆ O(22n · µ8 · ν8|A|)
ai,j ∈ O(µ8 · ν8|A|)

Recall that some of the variables xi can be identical. W.l.o.g. assume that x1, . . . , xk are
pairwise different and for all k + 1 ≤ i ≤ n, xi = xf(i), where f : [k + 1, n]→ [1, k]. Then,
the system of equations (4) is equivalent to

xi = ai +
m∑
j=1

ai,jzj (1 ≤ i ≤ k) and ai − af(i) =
m∑
j=1

(af(i),j − ai,j)zj (k + 1 ≤ i ≤ n).

The set of all (x1, . . . , xk) ∈ Nk for which there exist z1, . . . , zm ∈ N satisfying these equalities
is semilinear by Lemma 6, and if it is non-empty then it contains (x1, . . . , xk) ∈ Nk such that
xi ∈ O(n! ·m2 · 22n(n+1) · µ8(n+1) · ν8|A|(n+1)) ⊆ O(n! · 22n(n+3) · µ8(n+1) · ν8|A|(n+1)). Recall
that in this bound we have to replace n by α · n due to the initial preprocessing. This proves
the theorem. J

I Theorem 9. Let (A, I) be a fixed independence alphabet. Solvability of compressed exponent
equations over the graph group G(A, I) is in NP.

Proof. Consider a compressed exponent equation E = (v0u
x1
1 v1u

x2
2 v2 · · ·uxn

n vn = 1), where
ui = val(Gi) and vi = val(Hi) for SLPs G1, . . . ,Gn,H0, . . . ,Hn, which form the input. Let
m = max{|G1|, . . . , |Gn|, |H0|, . . . , |Hn|}, λ = max{|u1|, |u2|, . . . , |un|, |v0|, |v1|, . . . , |vn|} ∈
2O(m). By Thm. 8 we know that if there exists a solution for E then there exists a solution
σ with σ(xi) ∈ O((αn)! · 22α2n(n+3) · µ8α(n+1) · ν8α|A|(n+1)), where µ ∈ O(|A|α · 22α2n · λα),
ν ∈ O(λα), and α ≤ |A|. Note that the bound on the σ(xi) is exponential in the input length
(the sum of the sizes of all Gi and Hi). Hence, we can guess in polynomial time the binary
encodings of numbers ki ∈ O((αn)! · 22α2n(n+3) · µ8α(n+1) · ν8α|A|(n+1)) (where ki = kj if
xi = xj). It remains to verify the identity v0u

k1
1 v1u

k2
2 v2 · · ·ukn

n vn = 1 in G(A, I), where all
ui and vi are given by SLPs. This is an instance of the so-called compressed word problem
for G(A, I), where the input consists of an SLP G over the alphabet A±1 and it is asked
whether val(G) = 1 in G(A, I). Note that the big powers val(Gi)ki can be produced with the
productions of Gi and additional dlog kie many productions (using iterated squaring). Since
the compressed word problem for a graph group can be solved in polynomial time [29] (NP
would suffice), the theorem follows. For the last step, it is important that (A, I) is fixed. J

I Remark 10. Note that the bound on the exponents σ(xi) in the previous proof is still
exponential in the input length if the independence alphabet (A, I) is part of the input as
well. The problem is that we do not know whether the uniform compressed word problem
for graph groups (where the input is an independence alphabet (A, I) together with an SLP
over the terminal alphabet A±1) can be solved in polynomial time or at least in NP. The
latter would suffice to get an NP-algorithm for solvability of compressed exponent equations
over a graph group that is part of the input.
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7 Transfer Results

Here, we show that the property of having an NP-algorithm for the knapsack problem (or
compressed exponent equations) is preserved by certain group constructions.

Finite extensions and virtually special groups. Our first transfer result concerns finite
extensions. Together with our result on graph groups, this will provide an abundant class
of groups with an NP-algorithm for compressed exponent equations. A group G is called
virtually special if it is a finite extension of a subgroup of a graph group. Recently, this class
of groups turned out to be very rich. It includes all Coxeter groups [18], one-relator groups
with torsion [41], fully residually free groups [41], and fundamental groups of hyperbolic
3-manifolds [1].

The following is our transfer theorem for finite extensions. The idea is to guess the cosets
that occur on the left-hand side of an exponent equation. Given a collection of cosets, one
can then reduce to exponent equations over G.

I Theorem 11. Let G and H be finitely generated groups such that H is a finite extension
of G. If knapsack (resp. solvability of compressed exponent equations) belongs to NP for G,
then the same holds for H.

From Theorem 9 it follows that solvability of compressed exponent equations belongs to NP
for every subgroup of a graph group. Therefore, our transfer theorem implies:

I Theorem 12. Solvability of compressed exponent equations belongs to NP for every virtually
special group. In particular, solvability of compressed exponent equations belongs to NP for
Coxeter groups, one-relator groups with torsion, fully residually free groups, and fundamental
groups of hyperbolic 3-manifolds.

HNN-extensions and amalgamated products. The remaining transfer results concern two
constructions that are of fundamental importance in combinatorial group theory [34], namely
HNN-extensions with finite associated subgroups and amalgamated products with finite
identified subgroups. These constructions are known to preserve a variety of important
structural and algorithmic properties [2, 6, 19, 22, 23, 25, 26, 30, 31, 35].

Suppose G is a finitely generated group that has two isomorphic subgroups A and B

with an isomorphism ϕ : A → B. Then the corresponding HNN-extension is the group
H = 〈G, t | t−1at = ϕ(a) (a ∈ A)〉, where t is a new letter not contained in G. Intuitively, H
is obtained from G by adding a new element t such that conjugating elements of A with t
applies the isomorphism ϕ. Here, t is called the stable letter and the groups A and B are
the associated subgroups. A basic fact about HNN-extensions is that the group G embeds
naturally into H [20].

Our algorithm for knapsack in HNN-extensions is an adaptation of the saturation algorithm
of Benois [3] for the membership problem for rational subsets of free groups. Here, for each
path spelling aa−1, one adds a parallel edge labeled with the empty word. Since knapsack
is a special case of this problem, we need to choose a suitable subclass of automata that is
preserved by our saturation and corresponds to the knapsack problem. This subclass is the
class of knapsack automata, where each strongly connected component is a singleton or an
induced (directed) cycle.

With respect to NP-membership, one can show that the knapsack problem is equivalent
to the membership problem for knapsack automata (see [33]). Therefore, it suffices to show
that NP-membership of the latter problem is preserved by HNN-extensions, which we prove
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using a saturation procedure. Here, the basic idea is to successively guess states p and q
and check (using the algorithm for G) whether there is a path from p to q reading a word
u = t−1wt (resp. u = twt−1) such that w represents an element a ∈ A (resp. b ∈ B). If this

is the case, u represents ϕ(a) (resp. ϕ−1(b)) and we add an edge p ϕ(a)−−−→ q (resp. p ϕ−1(b)−−−−→ q),
which is termed shortcut edge.

This, however, it is not possible if p and q lie on a cycle, as that would create connected
components that are not cycles. In this case, we replace the cycle segment between p and
q with the shortcut edge and glue in new paths to make up for lost edges that entered or
left the cycle between p and q. In the end, we show that every element accepted by the
automaton has an accepting run that avoids factors t−1wt and twt−1 as above. This allows
us then to apply the algorithm for G to decide the membership problem.

I Theorem 13. Let H be an HNN-extension of the finitely generated group G with finite
associated subgroups. If knapsack for G belongs to NP, then the same holds for H.

In our last transfer theorem, we consider amalgamated free products. For each i ∈ {0, 1}, let
Gi = 〈Σi | Ri〉 be a finitely generated group and let F be a finite group that is embedded in
each Gi via an injective morphism ϕi : F → Gi. Then, the free product with amalgamation
with identified subgroup F is defined as G0 ∗F G1 = 〈G0 ∗ G1 | ϕ0(f) = ϕ1(f) (f ∈ F )〉.
Here, G0 ∗G1 denotes the free product G0 ∗G1 = 〈Σ0 ]Σ1 | R0 ]R1〉. Intuitively, G0 ∗F G1
consists of alternating sequences of elements of G0 and G1 where the elements of ϕ0(F ) and
ϕ1(F ) are identified.

The transfer theorem states that taking amalgamated products with finite identified
subgroups preserves NP-membership of knapsack. Since G0 ∗F G1 can be embedded into the
HNN-extension 〈G0 ∗ G1, t | t−1ϕ0(f)t = ϕ1(f) (f ∈ F )〉, it suffices to prove the theorem
for a free product G0 ∗G1. As above, we work with the membership problem for knapsack
automata and use a saturation procedure. Note that G0 ∗G1 is generated by Σ0 ∪ Σ1. We
guess states p and q and i ∈ {0, 1} and then check, using the NP algorithm for Gi, whether
there is a path from p to q that reads a representative of 1 ∈ Gi in (Σ±1

i )∗. If so, we add a
shortcut edge (p, ε, q). Again, the case that p and q lie on a cycle is somewhat more involved.

I Theorem 14. Let G0 and G1 be finitely generated groups with a common finite subgroup
F . If knapsack for G0 and for G1 belongs to NP, then the same holds for G0 ∗F G1.

8 Hardness Results

Since knapsack for binary encoded integers is NP-complete, it follows that the compressed
knapsack problem is NP-hard for every group that contains an element of infinite order.
Our final result states that (uncompressed) knapsack and subset sum are NP-complete for a
direct product of two free groups of rank two. Since this group is a graph group, we obtain a
matching lower bound for Thm. 9. Moreover, we solve an open problem from [15].

I Theorem 15. The subset sum problem and the knapsack problem are NP-complete for
F2×F2, where F2 is the free group of rank two. For knapsack, NP-hardness already holds for
the variant where the exponent variables are allowed to take values from Z (see Remark 1).
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