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Abstract
Network coding [1] is a technique to maximize communication rates within a network, in com-
munication protocols for simultaneous multi-party transmission of information. Linear network
codes are examples of such protocols in which the local computations performed at the nodes
in the network are limited to linear transformations of their input data (represented as elements
of a ring, such as the integers modulo 2). The quantum linear network coding protocols of
Kobayashi et al. [17, 18] coherently simulate classical linear network codes, using supplemental
classical communication. We demonstrate that these protocols correspond in a natural way to
measurement-based quantum computations with graph states over qudits [21, 4, 8] having a
structure directly related to the network.
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1 Introduction

Network coding [1] is a technique to maximize the rate at which a set of source nodes can
simultaneously transmit a set of independent messages to certain target nodes through a
fixed network. For this purpose, it is sufficient to give each communication link enough
bandwidth to accommodate multiple messages to be transmitted at once: however, less
bandwidth may be required at each link if one allows nodes to distribute information about
the messages across the network. A classic example is the two-pair problem on the “butterfly
network” (illustrated in Figure 1): rather than halve the bandwidth between two messages
at an apparent bottleneck in the network, the internal nodes may perform simple local
computations on the messages, to allow the input data to be reconstructed at the targets.
Linear network coding is the special case in which the protocol only requires each node to
compute a linear transformation of its inputs to achieve this goal.

We consider quantum network coding, in which we perform similar tasks with quantum
states transmitted through noiseless quantum channels. It is immediately apparent that some
problems which can be sensibly posed for “classical” network coding are impossible in general
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Figure 1 The butterfly network, with source nodes S1 and S2 and target nodes T1 and T2.
The two-pair problem on this network is for S1 to communicate their input to the target T2, and
simultaneously for S2 to communicate their input to the target T1, assuming that each edge can
carry at most one message (represented e.g. by a single bit, 0 or 1). The classic solution is for S1,
S2, and V2 to duplicate their inputs, and for V1, T1, and T2 to compute the parity of their inputs, in
which case (t1, t2) = (s2, s1).

for quantum network coding. For instance, while a classical network code allows for the
each of the source nodes to each send a copy of their inputs to both targets in the butterfly
network (see page 220), this is clearly not possible for quantum states due to the no-cloning
theorem [24]. Other problems which do not require multiple copies of the input states to be
re-created at the output (such as the two-pairs problem above) are still potentially unsolvable
with fixed-capacity quantum channels alone, even when the corresponding classical problem is
solvable [15, 19]. However, some of these problems become feasible for quantum states when
the network nodes share prior entanglement [14], or if the capacities of the communication
links scale as the logarithm of the number of target nodes [22].

Because classical information is easier to faithfully transmit and transform than quantum
information, it is common to consider quantum protocols which also allow classical com-
munication, and where fewer restrictions are imposed on the classical than the quantum
communication (see Ref. [20]). In a setting where no restrictions are imposed on classical
communication, Kobayashi et al. [17] describe a quantum protocol for the k-pairs problem:
the problem in which each of k source nodes wish to communicate their input message
to one of k distinct target nodes. Their protocol is in effect a coherent simulation of a
classical linear network code. More generally, for any classical linear network code which
performs some injective linear transformation t = Ms of the input data, Ref. [17] yields a
corresponding quantum procedure to coherently simulate that network over for arbitrary
superpositions of input data. We call such a protocol a (classically assisted) quantum linear
network code. For the k-pairs problem, the protocols of Ref. [17] were subsequently extended
in two different ways by Ref. [18]: to restrict the classical communication to the same network
as the quantum communication (albeit with multiple rounds of communication, and sending
a single message backwards as well as forwards along each communication link) and to
accommodate non-linear protocols as well.

In this article we show that classically assisted quantum linear network codes in the style
of Ref. [18] are in effect an instance of one-way measurement based quantum computation
(MBQC) [21, 4, 8, 9]: a model of quantum computation in which one may entangle an arbitrary
input state |ψ〉 with a graph state, which is then subjected to a sequence of measurements,
leaving a final residual state which contains a transformed state U |ψ〉 for some unitary
transformation1 U . Furthermore, the graph state used as a resource is closely related

1 In general, the transformation which is performed on an input state |ψ〉 is not necessarily a unitary
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Figure 2 An illustration of the transformation of messages performed by a single network node
in a linear coding protocol.

structurally to the network used in the coding protocol. This demonstrates a link between
MBQC and linear network coding, construed as distributed models of computation, and
suggests novel ways of interpreting measurement-based procedures. At the same time, this
suggests MBQC as a unifying framework in which to consider multi-party quantum networking
protocols, including cryptographic applications formulated in the one-way model [3, 16] as
well as standard security proofs of BB84 [23].

2 Preliminaries

In this section, we present introductory remarks on classical linear network coding, and
summarize the development of Refs. [17, 18]. We assume familiarity with standard models
of quantum computation on qubits, as well as measurement-based quantum computation
(see e.g. Refs. [21, 4, 8, 9] for introductory references). We introduce the notation and the
definitions for the operators used over qudits of dimension d below.

2.1 Classical network coding
We model a communications network by a directed graph of communications links, each of
which can be used to transmit a single message from some message set M . In this article
we suppose that M consists of a cyclic ring2 Zd = Z/dZ. The messages are sent between
co-operative agents (represented by nodes of the digraph) who may perform some non-trivial
transformation of the data they receive from ingoing links. In the context of linear network
codes, the transformations performed by each node are linear transformations, as represented
in Figure 2.

The result of this computation is then sent as output messages to other nodes. We restrict
ourselves to directed acyclic networks, and assume that each node waits for all inputs to
arrive before computing its outputs.

The canonical network coding problems involve distributing information from a collection
of source nodes S = {S1, S2, . . .} to a collection of target nodes T = {T1, T2, . . .}, such as the
multicast problem (in which each source Sh must transmit their data to every one of the
targets Tj), and the k-pairs problem (in which each source Sh tries to send their message
to a single target Tπ(h), for some permutation π ∈ Sk of the indices). The source nodes

transformation, but rather some completely positive trace preserving map Φ acting on ρ0 = |ψ〉〈ψ|.
However, standard treatments of the one-way model describe how measurements on graph states may
be used to simulate the transformations performed by unitary circuits, which by construction would
transform the input state |ψ〉 unitarily.

2 In the setting where messages represent elements of a finite field GF(pr) (see e.g. Ref. [13]), we may
replace each communication link with r parallel communications links, representing elements of GF(pr)
as r-dimensional vectors over GF(p) ∼= Zp. In the case of linear network codes, this leads to no loss of
generality, as every GF(pr)-linear transformation of messages is also a GF(p)-linear transformation.

TQC’14
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Figure 3 The multicast problem on the butterfly network, formulated as a linear transformation
over the ring Zd. A solution by linear network coding decomposes this transformation as a product
of block matrices according to the network structure. A typical solution to this problem is presented
in Eqn. (1).

Sj each have some piece of information, usually represented as a single element sj ∈ Zd or
vector sj ∈ Znj

d . To put the source and target nodes on an equal footing to the other network
nodes, we suppose that the inputs sj of the sources Sj are messages received from elsewhere
(e.g. storage devices owned by the source nodes), and the outputs tj to be computed by the
targets Tj are also transmitted to somewhere, as depicted in Figure 1. A solution via linear
network codes simply assigns linear transformations to each node, in such a way that the
composite transformation performs the correct redistribution of input messages.

We regard linear network coding as a distributed model of computation, in which
linear transformations are decomposed into block matrices, where each non-trivial block is
represented by a single node. For any linear function f – of which the k-pairs and multicast
problems are special cases – we consider which transformations the nodes may perform (if
any) to compute f . Figure 3 presents the multicast problem on the butterfly network in
this form, to which one solution is the following assignment of matrices to each node in the
network:

S1 = S2 = V2 =
[
1
1

]
, V1 =

[
1 1

]
, T1 =

[
1 0
−1 1

]
, T2 =

[
1 −1
0 1

]
. (1)

2.2 Classically assisted quantum network coding
We now outline the constructions of Ref. [17], and also of Ref. [18] in the special case of
linear coding protocols over the ring Zd of integers modulo d, for protocols using message
qudits of dimension d.

Consider a node V performing some coding operation y = V x for x ∈ Z`d and y ∈ Zmd
in a classical coding network. We may simulate this node by initializing an output register
y = 0 ∈ Zmd , performing a bijective mapping (x,y) 7→ (x, y + V x) in the larger space Z`+md ,
and then discarding the input x. The bijective mapping can be performed by elementary
row transformations on x, which in the quantum setting may be performed by controlled-X
operations,

ΛXj,k =
d−1∑
c=0
|c〉〈c|j ⊗X

c
k , (2)
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where X |q〉 = |q + 1 mod d〉 is an analogue of the unitary Pauli operator σx on qubits.
Consider a generic node V which accepts a collection of input qudits a1, . . . , a` as input and
produces output qudits b1, . . . , bm, coherently simulating the transformation |x〉a1···a`

7−→
|Tx〉b1···bm . In the construction of Ref. [17] for quantum linear codes, V simulates this
transformation by preparing the qudits b1, . . . , bk in the |0〉 state, and performing the
transformations

ΛXVj,k

(
|xk〉⊗ |0〉

)
= |xk〉⊗ |Vj,kxk〉 (3)

on the qudits ak and bj , for every index 1 6 j 6 ` and 1 6 k 6 m in any order. For
standard basis states, the result is to transform |x〉|0〉 7→ |x〉|V x〉. This characterizes a linear
transformation

ŨV =

 m∏
j=1

∏̀
k=1

ΛXVj,k

ak,bj

(1a ⊗ |0〉b

)
, (4)

which is a unitary embedding for any transformation V . (An example of such a circuit is
illustrated in Figure 4.) If the qudits a1, . . . , a` where originally in standard basis states,
we could simply discard them; but if they are initially not in standard basis states, they
will become entangled with b1, . . . , bm. To decouple them, we attempt to project each of the
qudits aj to the |+〉 state by measurement,

|+〉 = 1√
d

(
|0〉+ |1〉+ · · ·+ |d− 1〉

)
. (5)

Successfully doing so on a generic input state |ψ〉=
∑

x ux |x〉 would lead to the sequence of
transformations

|ψ〉 7−→
∑

x
ux |x〉a |0〉b 7−→

∑
x
ux |x〉a |V x〉b

7−→ 1√
d`

(⊗̀
k=1
|+〉ak

)
⊗
∑

x
ux |V x〉b . (6)

This mapping is of course non-unitary: projection onto |+〉 must be performed as part of
a measurement onto some basis. Ref. [17] considers a measurement of the qudits aj in the
Fourier basis,

|ωr〉 = 1
√
d

d−1∑
x=0

e2πixr/d |x〉 = F |r〉 , where F = 1
√
d

d−1∑
x,r=0

e2πikx/d |x〉〈r| . (7)

The operator F is the quantum Fourier transform over Zd. We may attempt to simulate
projection of each qudit aj onto |+〉 by Fourier basis measurements, where a result of
|ω0〉 is a success, as |ω0〉 = |+〉. If we obtain results

∣∣ωrj

〉
for rj 6= 0 instead of |+〉, the

post-measurement state is(⊗̀
k=1
|ωr〉ak

)
⊗
∑

x
uxe−2πi(r·x)/d |V x〉b (8)

up to normalization. If V is injective, the relative phase e−2πi(r·x)/d can be undone by
a suitable application of Z operations on the qudits b1, . . . , bm, where Z is the unitary
generalization of σz:

Z =
d−1∑
q=0

e2πiq/d |q〉〈q| . (9)

TQC’14
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If V is not injective, then only certain vectors r of measurement outcomes can be immediately
corrected, resulting in a non-unitary CP map. However, regardless of whether some nodes
in coding network perform non-invertible operations, the relative phases which accumulate
on the entire state are linear functions. Then if the transformation performed by the whole
network is injective, the phases which have accumulated due to the measurements can be
undone if the target nodes have sufficient information about the measurement outcomes.

The protocol of Ref. [17] solves the k-pairs problem: thus the transformation it performs
is indeed injective. Each node simply transmits their measurement outcomes to each target
node, which performs a suitable combination of Z operations to correct the relative phases.
Ref. [18] presents an alternative protocol in which the measurements are deferred until after
all quantum messages have been sent, and in which the internal nodes of the network do the
majority of the phase corrections, as follows. Consider a node which attempts to coherently
simulate a transformation L : Z`d → Zmd in the middle of a coding network which attempts
to coherently simulate a transformation M : ZS

d → ZT
d on an input state |ψ〉 =

∑
x ux |x〉.

Suppose that we perform the simulation procedure above, but omitting the Fourier basis
measurements. For some linear maps H and K, the state after the final quantum messages
is in general an entangled state of the form3

|Ψ〉 =
∑

x
ux |x〉S ⊗ |Mx〉T ⊗

(
|Kx〉a1,...,a`

⊗ |LKx〉b1,...,bm

)
⊗ |Hx〉rest , (10)

where the factors in parentheses are the input and output qudits to the node L. If the qudits
b1, . . . , bm are measured in the Fourier basis by the nodes to which they are sent, they yield
some outcomes r1, . . . , rm, and the remaining qudits are transformed to

|Ψ′〉 =
∑

x
ux |x〉S ⊗ |Mx〉T ⊗

(
e−2πi(r·LKx)/d |Kx〉a1,...,a`

)
⊗ |Hx〉rest , (11)

where r is the vector of the outcomes. Let τ = L>r: we have τ ·Kx = r·LKx by construction.
If the nodes which perform these measurements send the outcomes to the node L, then L
can undo the phases induced by measurement of the qudits bk by performing the operation
Zτ := Zτ1

a1
Zτ2
a2
· · ·Zτ`

a`
, which performs the mapping

Zτ1
a1
Zτ2
a2
· · ·Zτ`

a`

∣∣∣(Kx
)
1

(
Kx
)
2 · · ·

(
Kx
)̀ 〉

= exp
(

2πi
d

[
τ1(Kx)1 + · · ·+ τ`(Kx)`

])
|Kx〉

= e2πi(τ ·Kx)/d |Kx〉. (12)

Performing these corrections on |Ψ′〉 then yields the state

|Ψ′′〉 =
∑

x
ux |x〉S ⊗ |Mx〉T ⊗ |Kx〉a1,...,a`

⊗ |Hx〉rest , (13)

which has fewer unmeasured qudits than |Ψ〉, and no relative phases. This simulates projecting
the qudits b1, . . . , bm to the |+〉 state. By induction, if each node aside from the source
nodes (but including the target nodes) measures their input qudits in the Fourier basis,
and communicates the outcomes backwards along their incoming links to the nodes which

3 The final tensor factor is on the remaining nodes entangled with the sources, whose components in
the standard basis are again some linear transformations of the standard basis on the source nodes’
inputs; by induction on the depth of the coding network, one may show that H and K are indeed linear
transformations.
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provided those qudits, those nodes can correct for the effect of the measurements. Eventually
one obtains the state∣∣Ψ(n)〉 =

∑
x
ux |x〉S ⊗ |Mx〉T, (14)

which is an entangled state of the (collective) inputs to the source nodes and the outputs of
the target nodes. If the source nodes measure their qudits in the Fourier basis, it suffices for
them to communicate the outcomes to target nodes in such a way that the outcomes can be
corrected.

For arbitrary linear transformations M , direct communication among target nodes or
between the source and the target nodes may be required to undo the relative phases induced
by measurement. If the source nodes measure their qudits and collectively obtain a vector s
of outcomes, the resulting state on the remaining qudits is∣∣Ψ(n+1)〉 =

∑
x
uxe−2πi(s·x)/d |Mx〉T. (15)

If M has a left-inverse A, and we let B = A>, it suffices for the sources to somehow
communicate σj :=

∑
k Bjksk to the target node T which is responsible for producing the

message tj . This would allow T to perform a Zσj correction and undo the relative phase on
the jth output qudit. Specifically, if the sources collectively communicate σ = Bs to the
targets, who collectively perform the phase operations Zσ = Zσ1

t1 Z
σ2
t2 · · · on the target qudits,

the resulting state is∣∣Ψ(n+2)〉 =
∑

x
uxe2πi

[
σ·(Mx)−s·x

]
/d |Mx〉T =

∑
x
uxe2πi[s>(AM−1)x]/d |Mx〉T

=
∑

x
ux |Mx〉T; (16)

There are special cases where the amount of communication required outside of the network
can be bounded. In particular, for the k-pairs problem where M is a permutation matrix
(so that (M−1)> = M), it suffices to perform the classical linear coding protocol on the
vector s to transmit σ = Ms to the target nodes. In this case, all classical communications
may be restricted to the same network as the quantum communications – albeit using each
communication link once in reverse, for the measurements of the qudits involved in the
intermediate messages. More generally, if M is injective and there is a block-diagonal matrix
B (where the blocks act on collections of messages held by individual target nodes) such that
M>BM = 1, the sources may communicate Ms to the targets, allowing the target nodes to
compute σ = B>Ms and use this to govern phase corrections.

3 Classically assisted quantum linear coding is one-way MBQC

We now show how any coherent linear coding protocol, as described in Section 2.2, is
in essence a measurement computation in the one-way model. The graph states of the
MBQC procedures constructed in this way are easily derived from the coding network itself:
allocate two entangled qudits at either end of each communications link in the network
(one for the node on either side of the link), with further entangling operations between the
qudits corresponding to the incoming links and the outgoing links. The corrections are the
same as for the coherent coding network, albeit with some supplemental corrections arising
from the way that the ΛX operations are simulated. If we follow the protocol of Ref. [17],

TQC’14
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Figure 4 Equivalent ways to decompose a unitary transformation ŨV which prepares a single
message qudit, for a single-row matrix V = v>. The left-hand circuit represents the decomposition
of Eqn. (4). Variables vj below operations denote the power to which the circuit operation is raised.
Multi-row coding transformations V may be simulated by several such circuits, acting on different
target qudits.

the corrections are all deferred to the end of the procedure, as in standard treatments of
measurement-based computation.

Again, we assume familiarity with the measurement based model: see Refs. [21, 7, 4, 9]
for references applicable to qubits (similar results and constructions apply over arbitrary
qudits).

3.1 MBQC simulation of a single coding node
The main element of the correspondence between quantum linear network coding and MBQC is
the observation that ΛX operations differ by only a Fourier transform from a controlled-phase
operation,

ΛZ = (1⊗ F )ΛX(1⊗ F †) =
d−1∑
c=0
|c〉〈c| ⊗ Z c, (17)

which are the diagonal operations used to construct the entanglement structures in measurement-
based computation. This means that the injective maps ŨV used to perform the coding at
each node may be straightforwardly represented in terms of preparing the state |+〉= F |0〉
for each output qudit bj to be sent, performing the entangling operation ΛZVj,k between each
input qudit ak and each output qudit bj , and then acting on bj with a Fourier transform, as
represented in Figure 4.

Note that the inverse Fourier transform acting on the output-message qudit may be
simulated by a Fourier basis measurement by introducing another auxiliary qudit, using a
standard MBQC construction. Consider a qudit v in an arbitrary pure state |ψ〉=

∑d−1
x=0 ux |x〉.

We may introduce a qudit w prepared in the state |+〉, and entangle them using a ΛZ†
operation, obtaining the state

|Ψ〉vw = ΛZ†vw |ψ〉v |+〉w . (18)

We then measure v in the Fourier basis, obtaining a state |ωr〉, and perform the operation X−r
on w. We may use the stabilizer formalism (see e.g. Ref. [10]) to succinctly verify how this
sequence of transformations, considered as CP maps, transform X and Z: as these generate
an operator basis for single-qudit states, this will suffice to show how it transforms |ψ〉v to
F † |ψ〉w. Specifically, we wish to see how the group of Pauli operators which stabilize the
state (i.e., at each point in time, those Pauli operators for which the state is a +1-eigenvector)
transforms, for states on v and/or w. We use the following facts:
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We write ω = exp( 2πi
d ) ∈ C as a minor abuse of notation: it is easy to verify that

X |ωr〉= ωr |ωr〉. In particular, |+〉 is the unique +1-eigenvector of X up to scalar factors.
Measuring v in the Fourier basis is equivalent to measuring the eigenstates ofXv, obtaining
some state |ωr〉: the post-measurement state is then stabilized by ω−rXv, as well as
by operators (but only those operators) which commute with Xv and stabilized the
pre-measurement state.
Conjugating Xv by ΛZ†vw yields XvZ

†
w, and similarly conjugating Xw by ΛZvw yields

Z†vXw. As they are diagonal, conjugating Zv or Zw by ΛZvw has no effect. Conjugating
by X−rw transforms Z†w to ω−rZ†, and leaves Xw unchanged.

We may then describe the sequence of transformations on |ψ〉v as follows: for any scalar
φ ∈ C, the operator φXv transforms as follows:

〈φXv〉 7
prep. |+〉w−−−−−−−→

〈
φXv , Xw

〉
7 ΛZ

†
vw−−−−→

〈
φXvZ

†
w , Z

†
vXw

〉
7 Xv meas.−−−−−−−→

〈
φXvZ

†
w , ω

−rXv

〉
=
〈
ω−rXv

〉
⊗
〈
φωrZ†w

〉
7 X
−r
w corr.−−−−−−−→

〈
ω−rXv

〉
⊗
〈
φZ†w

〉
, (19a)

so that these operations transform φXv 7→ φZ†w; and similarly,

〈φZv〉 7
prep. |+〉w−−−−−−−→

〈
φZv , Xw

〉
7 ΛZ

†
vw−−−−→

〈
φZv , Z

†
vXw

〉
=
〈
φZv , φXw

〉
7 Xv meas.−−−−−−−→

〈
ω−rXv , φXw

〉
7 X
−r
w corr.−−−−−−−→

〈
ω−rXv

〉
⊗ 〈φXw〉 , (19b)

so that we obtain φZv 7→ φXw. Similarly, for any Weyl operator Wa,b [10, Definition II],
the operator φWa,b acting on v will be transformed to a Weyl operator φW−a,b on w;
the calculation is straightforward. This implies (c.f. [10, Eqn. 17]) that aside from the
teleportation from v to w, the effect is an inverse Fourier transform of the state.

Thus, we may simulate the coding procedure of a node V as described in Section 2.2 as
follows. Provided a collection of incoming qudits a1, . . . , a`, we may prepare output qudits
b1, . . . , bm by:
1. preparing output message qudits b1, . . . , bm and auxiliary qudits b′1, . . . , b′m in the state
|+〉;

2. entangling the qudits bj and b′j by a ΛZ† operation, and performing ΛZVjk operations
between each pair of qudits ak and b′j ;

3. measuring each qudit b′j in the Fourier basis, obtaining some outcome rj , and performing
an X−rj operation on the corresponding output qudit bj .

This describes a MBQC procedure with inputs and outputs which we may illustrate by a
geometry (in the terminology of Ref. [9, 7]) specifying the input and output qubits.

Figure 5 presents geometries for the partial coding operation performed by ŨV as in
Figure 4, and for the entire operation of a single coding node (including the eventual
measurement of the input qubits): input qudits have arrows pointing inwards, and output
qudits have arrows pointing outwards.

3.2 MBQC geometries to simulate entire network coding protocols
In the diagrammatic convention of this article, composition of MBQC procedures may be
represented by contracting the arrows between the outputs of earlier procedures and the
inputs of later ones. For MBQC procedures to simulate the linear network codes, composing

TQC’14



226 Quantum Linear Network Coding as One-way Quantum Computation
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b′m bm
−1

...
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Figure 5 Geometries of MBQC procedures for a single node performing a transformation V :
Z`

d → Zm
d of the standard basis. Incoming/outgoing message qudits are represented by blue circles;

auxiliary qudits by black squares. (a) The geometry associated to coding a single message qudit,
simulating the right-hand circuit of Figure 4. Edges are labeled by their “weights”, i.e. the necessary
power of ΛZ in the procedure. As the qudits ak remain unmeasured, these are depicted as being
outputs as well as inputs of this procedure. (b) The geometry associated to the entire operation of
a coding node, including measurement of the incoming message qudits. Edge weights between the
qudits ak and αj depend on the coding operation being simulated: if the coding operation being
performed is sparse, many of these edge weights will be zero (corresponding to edges which should
be omitted entirely). Only the qudits bj form the output of this procedure.

the geometries associated to each node yields a bipartite graph with a structure closely
related to that of the coding network itself. Specifically, one associates a qudit for the output
qudits of the coding network, as well as for each incoming and outgoing message qudit at
each node (with qudits at the outgoing links being the “auxiliary” qudits described above),
and connecting them by a bipartite graph corresponding to the non-zero coefficients Vjk of
the coding node. The edges of the coding network are replaced by undirected edges with
weights −1, corresponding to the entangling operations between the outgoing message qudits
(which are either the inputs for some other node, or the outputs of the entire network). The
directionality of the communication links are represented by the order of the measurement
and correction operations, as well as the classical communication involved in the correction
subroutine.

As an example, we illustrate this construction in Figure 6 for procedure for the two-
pair problem performing a swap operation on two qudits (e.g. in which we use the coding
operations S1 = S2 = V2 = [ 1 1 ]> and V1 = T1 = T2 = [−1 −1 ]).

As every measurement involved is performed in the Fourier basis (equivalently: the
eigenbasis of the X operator), the only information which this graphical representation omits
are the order in which the measurements occur, and the correction procedures, which we
consider next.



N. de Beaudrap and M. Roetteler 227

S1

S2

V1 V2

T1

T2

s1 m3 t1

s2

m5

t2

m1

m2

m4
m6

m7

(a)

S1

S2

V1 V2

T1

T2

s1 m3 t1

s2 m5 t2

m1

m2

m4

m6

m7

t′1

t′2

m′4

(b)

s1

s2

m1

m2

m3

m4

m5

m6

m7

t1

t2

m′4

t′1

t′2

(c)

s1

s2

m4

t1

t2

m′4

t′1

t′2

(d)

Figure 6 Construction of a MBQC geometry for a procedure simulating a coding protocol for the
2-pair problem on (a) the butterfly network, shown with message qudits for each communication link.
(b) The graph obtained by substituting each coding node, with the geometry for the corresponding
MBQC procedure. This is derived by adding vertices for “auxiliary” qudits (black squares) for each
output message qudit, and associating each “auxiliary–output” pair to an outbound network link.
Edges represent powers of ΛZ operations, which are used for single-qudit teleportation along the
network links. The input and output message qudits of the linear code become the source and target
subsystems of the MBQC procedure. (c) The same geometry, presented in grid formation. (d) The
geometry of a MBQC procedure (c.f. Ref. [5, Figure 7]) for the swap operation.

3.3 Measurement and communication of outcomes
The corrections required to use X measurements to simulate projection onto |+〉 may
be performed in two natural ways, corresponding to the protocols of Refs. [17] and [18]
respectively.

3.3.1 Free classical communication
In a setting as in Ref. [17] where classical communication is free, all corrections may be
deferred to the target nodes of the coding network, which prepare the output qudits. This is
a natural approach for simulating the network code as a MBQC procedure: in measurement-
based computation, it is conventional to simulate CP maps in such a way that the output
qudits are the only qudits on which unitary correction operations are performed. As in
Ref. [17], successful projection onto the |+〉 state (or a “0” outcome of a X measurement)
is the ideal case; it then suffices to determine how the errors (or byproduct operations in
the terminology of Ref. [21]) propagate to the output qudits, in order to correct them. We
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describe this in terms of communication directly to the targets, as well as some amount of
communication within the coding network.

When simulating the coding procedure at each node using auxiliary qudits, measuring
those auxiliary qudits introduces an additional source of error: if the correction is not
immediately performed on the outgoing message qudits, this induces additional phase errors.
Commuting an X−rbj

operation past an entangling operation ΛZUij

bjc′i
, where c′i is an auxiliary

qudit for a subsequent node performing a coding operation U , yields an error operation
X−rbj

Z−rUij

c′
i

. The operation X−rbj
does not affect the outcome of the measurement on bj ,

as the states |ωr〉 are eigenvectors of X. The Z error on c′i induced by postponing the
correction on bj is significant, but we may account for this error by classical post-processing
of the measurement result r′ on c′i itself. Let r̃ = rUij for the sake of brevity: because
XZ−r̃ ∝= ωrZ−r̃X, we may account for an uncorrected Z−r̃ operation on c′i by performing
an X measurement, obtaining some outcome r′0, and then subtracting r̃ from that outcome
to obtain an adjusted outcome r′ = r′0 − r̃ for future corrections.

More generally, c′i will accumulate uncorrected Z errors arising from the uncorrected X
errors on each of the input messages on which it depends. If those input qubits bj have errors
X−rj associated with them, these collectively induce an error

Z−(r1Ui1+r2Ui2+··· ) = Z−êi·Ur (20)

on c′i. We may simulate this correction after the Z measurement by subtracting r̃ = êi · Ur
from the measurement outcome r′0, yielding r′ = r′0 − êi · Ur. By propagating the results of
the auxiliary qudit measurements forward through the coding network, subsequent coding
nodes may locally adapt the measurement outcomes in order to simulate the correction of
errors on their own auxiliary qudits, allowing the target nodes to perform the necessary X
corrections on the output qudits of the network. Alternatively, all of the results may be
transmitted directly to the target nodes, which can simulate this sequential adaptation of
measurement outcomes themselves.

For a coding network performing an injective transformation M : ZS
d → ZT

d , the phase
errors induced by measurement of the message qudits may be corrected in the manner
described in Ref. [17]. Without loss of generality, we may suppose that the agents at each
network coding node prepare their auxiliary and message qudits, and all nodes except the
target nodes communicate their outgoing messages to their recipients. Afterwards, they
measure their auxiliary nodes in some order consistent with the topological ordering of the
network, and similarly communicate the outcomes forward, allowing subsequent nodes to
adjust their auxiliary measurement outcomes, and allowing target nodes to perform what X
corrections are necessary on the output qudits. The remaining measurement operations and
classical messages are identical to those of Ref. [17], in which it does not matter if nodes
transmit outgoing message qudits before they measure incoming message qudits.

For the sake of completeness, we sketch an inductive approach to the Z correction protocol
of the target nodes in this setting. Let A be a left-inverse of M , and consider an input state
|ψ〉 to the coding network, expressed as

|ψ〉 =
∑

x∈ZS
d

ux |x〉 =
∑

y∈img(M)

uAy |Ay〉 . (21)

The state obtained after performing the preparation and entanglement phases of the MBQC
procedure, and after performing the auxiliary qudit measurements and X corrections on the
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output qudits, is exactly a state of the form in Eqn. (10), of the form

|Ψ〉 =
∑

y∈img(M)

uAy |Ay〉S ⊗ |MAy〉T ⊗ |HAy〉rest =
∑

y∈img(M)

uAy |Ay〉S ⊗ |y〉T ⊗ |HAy〉rest (22)

for some linear map H. (The latter equality holds because for any y = Mx, we have
MAy = MAMx = y.) Indeed, the distinction between the input qudits S and the other
non-target qudits is unimportant: we may subsume the linear map A on the standard basis
of S and the map HA on the standard basis of the other qudits into a map

K =
[
A

HA

]
(23)

where the upper rows correspond to indices in S, and the lower rows to the other non-output
qudits. We may then write

|Ψ〉 =
∑

y∈img(M)

uAy |y〉T ⊗ |Ky〉ΩrT . (24)

We may isolate any non-output qudit u ∈ Ω r T . Let Ω′ = Ω r {u}, and consider another
decomposition

K =
[

κ>u

K ′

]
(25)

where the upper row corresponds to the index for the qudit u and contains a row-vector κ>u ,
and K ′ corresponds to all of the other non-output qudits; we may then once more re-write

|Ψ〉 =
∑

y∈img(M)

uAy |y〉T |κu · y〉u ⊗ |K ′y〉Ω′rT. (26)

Measuring u in the Fourier basis and obtaining the outcome r, the resulting state on the
remaining qudits is

|Ψ′〉 =
∑

y∈img(M)

uAy ω
−r(κu·y) |y〉T |K ′y〉Ω′rT, (27)

following Eqn. (11). If the outcome r is transmitted to the target nodes, and who know the
value of κu, they may simply compute σ := rκu and collectively perform Zσ = Zσ1

t1 Z
σ2
t2 · · ·

on the qudits of T, thereby obtaining

|Ψ′′〉 =
∑

y∈img(M)

uAy |y〉T |K ′y〉Ω′rT, (28)

which is again a state of the same form as in Eqn. (10), on one fewer qudits. By induction,
we may measure each of the qudits of Ω r T in any order (or simultaneously), and transmit
them to the target nodes, which then make the appropriate Z corrections to obtain the state∣∣Ψ(n)〉 =

∑
y∈img(M)

uAy |y〉T =
∑

x∈ZS
d

ux |Mx〉T . (29)

In summary, provided free classical communication to the targets and within the coding
network, all measurements may be performed simultaneously, with the results of the measure-
ment of incoming messages being transmitted directly to the targets to perform Z corrections
on the output qudits. Measurement results of the auxiliary qudits may be communicated
along the coding network, and used to adapt the outcomes of subsequent measurements,
culminating in measurement information useful to the target nodes to perform X corrections
on the output qudits.
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3.3.2 Constrained classical communication
In the setting of Ref. [18], we attempt to reduce the amount of classical communication which
takes place outside of the network (but allowing messages to pass in either direction). To
this end, we allow the source nodes and the intermediate nodes of the network to perform Z

corrections. The way in which these corrections are performed follows from (a) the description
of how X corrections may be simulated in the setting of “free” classical communication, as
this already can be performed only with communication within the coding network; and
(b) the phase correction procedure of Ref. [18] which was outlined in Section 2.2. These
corrections may be performed as follows:

All auxiliary qudits may be measured simultaneously, and their outcomes propagated
forward through the network, as in the previous section. Alternatively, one may instead
perform X correction operations for the auxiliary qudits at each node: this imposes an
order on the measurement of the auxiliary qudits which is consistent with the topological
order of the network, so that each node may use the measurement outcomes for preceding
auxiliary qudits when correcting its own auxiliary qudits.
The measurement of each node’s incoming message qudits must be performed in an order
opposite to the topological order of the coding network, in order to allow the node which
sent each message qudit to perform the necessary corrections involving its own incoming
message qudits.

From this, one may derive schedules for measuring each qudit in the network, and for
communicating classical messages forward or backward through the network to allow the
necessary X or Z corrections.

For the correction of phases induced by measurement of the input qubits of the source,
following As in Section 2.2, whether the corrections arising from the measurement of the
input qudits managed by the source nodes can be corrected without communicating outside
of the network, may depend on the transformation which the network performs. For any
linear transformation M for which M>BM = 1 for some block-diagonal B acting on blocks
of qudits held by target nodes – e.g for permutation matrices M – classical network coding
of of the outcomes of measuring the inputs of the source nodes will suffice.

3.4 Overview of the MBQC construction
The above construction rests on the fact that the protocol of Ref. [17] is unaffected if the
measurements are deferred until each node sends its messages. (The protocol of Ref. [18] in
fact requires this modification.) The result of doing so causes these protocols to give rise to
large distributed entangled states, on which local measurements are performed to simulate
projection onto the |+〉 state. In this sense, these protocols are literally quantum computation
by measurements; the modifications described in this Section – namely, replacement of
ΛX operations by ΛZ operations, introduction and measurement of auxiliary qudits in
order to make the previous modification possible, and communication of the results of
measuring auxiliary qudits – are straightforward modifications which demonstrate that they
are effectively computations in the one-way MBQC model of Refs. [21, 7].

The MBQC procedures which result from these transformations have comparable complex-
ity to the original protocols of Refs. [17, 18], differing essentially only in the various operations
performed on the auxiliary qudits, as well as the communication and transformation of their
measurement outcomes. For a coding network with k input messages, ` output messages, and
m internal communication links, the total number of qudits involved in the MBQC procedure
is easily verified to be k+2`+2m, following Section 3.2. The number of entangling operations
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involved for each node (disregarding exponents) is simply the same as the number of ΛX
operations involved in simulating ŨV , plus twice the out-degree (involved in entangling the
auxiliary and outgoing message qudits for the node). Thus there are exactly 2(m+ `) more
entangling operations, in the form of ΛZ operations, in the MBQC protocol than there are
ΛX operations in the original presentation of the protocols in Refs. [17, 18]. There are also
exactly 2(m+ `) additional classical messages sent in the MBQC protocol, either directly to
the targets or entirely within the network, again as a result of measuring the auxiliary qudits.

4 Open questions

In this article, we have illustrated the way in which classically-assisted quantum linear network
coding over Zd as described by Kobayashi et al. [17, 18] is in effect an instance of measurement-
based computation in the one-way model [21, 7], in particular using measurements only in
the Fourier basis (the eigenbasis of the X cyclic shift operator on d-dimensional qudits).
While not explicitly presented as an instance of MBQC, the differences between the protocols
of Refs. [17, 18] and one-way measurement-based procedures are straightforward, and involve
no substantial differences in e.g. the amount of classical communication required. We may
ask to what extent these results (particularly the bounds on classical communication outside
of the network) hold for classically assisted non-linear quantum codes as well.

While the MBQC model is sometimes described as a distributed model of computation,
little emphasis has been placed on the communication cost of MBQC computation. A common
presentation (e.g. as in Refs. [3, 2]) is that measurement results are recorded by an effectively
delocalized classical control, which receives messages containing measurement outcomes from
one or more agents which manage individual qudits, and which responds with instructions of
how to perform subsequent measurements. Bounding the communication requirements of a
MBQC procedure, to eliminate the need of a delocalised control center, may be necessary to
realize the reduction in the computational depth of a MBQC procedure (one of the theoretical
selling points of the MBQC model [21]).

As network coding subsumes constant-depth distributed computation, we may interpret
these results as recommending measurement-based computation as a framework for analyzing
multiparty communication protocols, as we have suggested in the introduction. We may
also consider this as an alternative means of approaching the problem of assigning semantics
to measurement-based computations, a problem of some interest in models of quantum
computation [7, 9, 12, 6]. Specifically: rather than interpreting a measurement-based
procedure as a quantum circuit with some potentially exotic features (such as closed time-
like curves [6]), we may interpret pieces of measurement-based computations as coherently
simulating transformations of the standard basis on several qudits at once. Such simple
semantics is likely to prove useful to any programme to find novel ways of using measurement-
based computation as a medium in which to develop algorithms (see Ref. [11]).

As a final open question, we ask whether a converse to our results hold, the form of
a classical simulation algorithm for certain measurement-based computations by linear
network codes. This article shows that (a coherent quantum simulation of) a classical linear
network code is in effect a measurement-based procedure which performs only X-eigenbasis
measurements, on a graph state with similar structure to the coding network. This is a special
case of an efficiently simulatable class of computations: the unitary transformations realized
by MBQC procedures performing only Pauli-eigenbasis measurements are Clifford group
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operations,4 which can be simulated e.g. on standard basis states by linear transformations
on a cyclic ring [10]. This raises the question: is there a sense in which a MBQC procedure
on a graph G, which implements unitary a transformation using only measurements in a
Pauli eigenbasis (or only the X-eigenbasis) and Pauli corrections, can be “locally” simulated
by a classical linear code – in such a way that the expectation value of any observable on
a single given qudit can be evaluated from information available at a corresponding target
node – on a network similar to G?
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