
Improved Spectral Sparsification and Numerical
Algorithms for SDD Matrices
Ioannis Koutis1, Alex Levin2, and Richard Peng3

1 Computer Science Department, University of Puerto Rico, Río Piedras
ioannis.koutis@upr.edu

2 Department of Mathematics, Massachusetts Institute of Technology
levin@mit.edu

3 School of Computer Science, Carnegie Mellon University
yangp@cs.cmu.edu

Abstract
We present three spectral sparsification algorithms that, on input a graph G with n vertices
and m edges, return a graph H with n vertices and O(n logn/ε2) edges that provides a strong
approximation of G. Namely, for all vectors x and any ε > 0, we have

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx,

where LG and LH are the Laplacians of the two graphs. The first algorithm is a simple modifica-
tion of the fastest known algorithm and runs in Õ(m log2 n) time, an O(logn) factor faster than
before. The second algorithm runs in Õ(m logn) time and generates a sparsifier with Õ(n log3 n)
edges. The third algorithm applies to graphs where m > n log5 n and runs in Õ(m logm/n log5 n n)
time. In the range wherem > n1+r for some constant r this becomes Õ(m). The improved sparsi-
fication algorithms are employed to accelerate linear system solvers and algorithms for computing
fundamental eigenvectors of dense SDD matrices.

1998 ACM Subject Classification G.2.2 [Discrete Mathematics]: Graph Theory—graph algo-
rithms; G.3 [Probability and Statistics]: Probabilistic algorithms (including Monte Carlo)

Keywords and phrases Spectral sparsification, linear system solving

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.266

1 Introduction

The efficient transformation of dense instances of graph problems to nearly equivalent sparse
instances is a very powerful tool in algorithm design. The idea, widely known as graph
sparsification, was originally introduced by Benczúr and Karger [3] in the context of cut
problems. Spielman and Teng [10] generalized the cut-preserving sparsifiers of Benczúr and
Karger to the more powerful spectral sparsifiers, which preserve in an algebraic sense the
Laplacian matrix of the dense graph. The main motivation of spectral sparsifiers was the
design of nearly-linear time algorithms for the solution of symmetric diagonally dominant
(SDD) linear systems.1

Given that even the existence of cut-preserving sparsifiers is not immediately clear, the
result of Benczúr and Karger was indeed very surprising; they proved that, for arbitrary ε,
cuts can be preserved within a factor of 1 ± ε by a graph with O(n logn/ε2) edges. This

1 A matrix A is SDD if for all i, Aii ≥
∑

j 6=i
|Aij |.

© Ioannis Koutis, Alex Levin, and Richard Peng;
licensed under Creative Commons License NC-ND

29th Symposium on Theoretical Aspects of Computer Science (STACS’12).
Editors: Christoph Dürr, Thomas Wilke; pp. 266–277

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.266
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

I. Koutis, A. Levin, and R. Peng 267

graph can be computed by a randomized algorithm that runs in O(m log3 n) time, where m
is the number of edges in the dense graph. Spielman and Teng gave the first construction of
spectral sparsifiers, but the edge count of these objects was several log factors bigger than
that of Benczúr and Karger’s cut-preserving sparsifiers. However, recent progress that we
review below allows for the construction of spectral sparsifiers with O(n logn/ε2) edges in
Õ(m log3 n log(1/ε)) time.2

Sparsification can be employed to immediately accelerate algorithms for numerous prob-
lems. In several cases and depending on the density of the instance, the sparsification routine
dominates the running time of the sparsifier-enhanced algorithm. This provides a strong
incentive for speeding up the construction of sparsifiers even further.

This problem was recently undertaken in the context of cut-preserving sparsifiers by Fung
et al. [5]. Improving upon the work of Benczúr and Karger, they proved that there is an
O(m log2 n) time algorithm that computes a sparsifier with O(n logn/ε2) edges. This stands
as the fastest known algorithm with this sparsity guarantee for general graphs. However,
Fung et al. also showed that we can do even better on slightly more dense graphs. More
concretely, they proved that there is an O(m + n logn) time algorithm that computes a
sparsifier with O(n log2 n/ε2) edges. Note that by transitivity, a combination of the two
algorithms can produce a graph with O(n logn/ε2) edges in O(m + n log4 n/ε2) time. In
other words, there is a linear time sparsification algorithm for graphs with more than n log4 n

edges.
This leads us to the main question we address in this paper: Is something analogous to

the result of Fung et al. [5] possible for spectral sparsification? We answer the question in
the affirmative. We first show that a slight modification of the known algorithm can improve
the run time to Õ(m log2 n log(1/ε)). This nearly matches the most general result of [5].
We present two additional sparsification algorithms. The first generates a sparsifier with
Õ(n log3 n/ε2) edges in Õ(m logn) time. The second produces a sparsifier with Õ(m/ log2 n)
edges in O(m logm/(n log5 n) n) time. As in the cut-preserving case, transitivity then allows
us to re-sparsify these sparsifiers with the fastest general-case algorithm in order to get a
sparsifier with O(n logn/ε2) edges.

Applications in numerical algorithms. Sparsification can be used to accelerate the
computation of an approximate Fiedler eigenvector of a (normalized) graph Laplacian [11],
and more generally of the first non-trivial eigenvector of an SDD matrix L. The approximate
eigenvector is a normalized vector x such that xTLx is within 1 ± ε of the eigenvalue λ2.
More concretely, by applying the simple inverse power method analyzed in [11] to the
sparsifier with O(n log3 n/ε2) edges one can obtain a 1± ε approximation of its eigenvector in
O(n log5 n log(1/ε)/ε2) time. However, sparsification preserves the eigenvalues within 1± ε
and so the computed approximation is a 1 ± 3ε approximation for the dense graph. This
implies overall that the Fiedler eigenvector of a graph with m > n log3 n can be computed
in O(m logn + n log5 n log(1/ε)/ε2) time. The previously fastest known algorithm runs in
time O(m log2 n log(1/ε)). We note here that one practical application of eigenvectors is
in partitioning algorithms; the analysis of Cheeger’s inequality [4] tells us how to turn an
approximate Fiedler vector into a partition. Hence, we give an improvement to the running
time of a fundamental graph partitioning algorithm. Finally we note that the computation
of additional eigenvectors can be performed in the same amount of time (per vector) by
restricting the action of the matrix to the complement of the subspace spanned by the
previously computed eigenvectors.

2 We use the Õ() notation to hide log log n factors.

STACS’12

268 Improved Spectral Sparsification and Numerical Algorithms for SDD Matrices

In addition, the 1± ε sparsifiers we obtain can be applied in a standard way as precondi-
tioners for SDD linear systems, giving us a faster solver for these systems. In particular, for
the case when m, the number of non-zero entries in the matrix of the system, is greater than
n1+r for some small constant r, we can show that our solver approximates a solution with
relative error δ in time Õ(m log(1/δ)). The previously best known algorithm [8] runs in time
Õ(m logn log(1/δ)).

2 Overview of our techniques

2.1 Brief background on spectral sparsification
The first algorithm for edge-efficient spectral sparsifiers was given by Spielman and Srivastava
[9]. Their algorithm produces a sparsifier with O(n logn/ε2) edges in a very elegant way:
it samples edges with replacement. The probability of sampling an edge is proportional to
its weight multiplied by its effective resistance in the resistive electrical network associated
with the given graph. Computing the effective resistance of a given edge requires—almost by
definition—the solution of a linear system on the graph Laplacian.3 However, Spielman and
Srivastava also provided a way of estimating all m effective resistances by solving O(logn)
SDD systems; their approach involves characterizing the effective resistances as the squared
lengths of vectors and then applying the Johnson-Lindenstrauss (JL) theorem [2]. This holds
under the assumption that the SDD solver is direct, i.e. it outputs an exact solution. The use
of a nearly-linear time iterative solver that computes approximate solutions introduces an
additional source of imprecision; Spielman and Srivastava showed that solving the systems
up to an inverse polynomial precision is sufficient for sparsification. This brings the running
time of their algorithm to Õ(m logc+2 n), where c is the constant appearing in the running
time of the SDD solver.

2.2 The Õ(m log2 n) algorithm
While the work of Spielman and Srivastava did not improve the running time of the SDD
solver, it proved to be a decisive step towards the fast SDD solver of Koutis, Miller, and Peng
[7, 8], which runs in time Õ(m logn log(1/δ)). Using this solver in the Spielman and Srivastava
sparsification sampling scheme immediately yields an Õ(m log3 n/ε2) time algorithm. This
brings us to the first contribution of this paper, a tighter analysis of the Spielman and
Srivastava algorithm. In Section 5 we show that a fixed precision from the SDD solver is
actually sufficient for sparsification. This decreases the running time to Õ(m log2 n/ε2). This
improvement is included in all our subsequent algorithms.

2.3 The Õ(m log n) algorithm
In order to speed up the algorithm further, we need to break the central bottleneck, which
comes from having to solve O(logn) linear systems each of which takes Õ(m logn) time. We
improve the running time of this step by allowing for cruder, but more easily-computable,
approximations of the effective resistances. It was shown in [7] that if we estimate the
effective resistances, the Spielman-Srivastava scheme still goes through, but we may need to
sample more edges to compensate for the loss of accuracy.

3 Laplacian matrices are SDD.

I. Koutis, A. Levin, and R. Peng 269

In particular, we estimate the effective resistances by using a spine-heavy approximation to
G. This is a graph that has an extremely good low stretch spanning tree. In [8] it was shown
that linear equations in Laplacians of spine-heavy graphs can be solved in Õ(m log(1/δ))
time. Further any graph can be easily transformed into a spine-heavy approximation while
distorting the effective resistances by at most an Õ(log2 n) factor. Using this spine-heavy
approximation in order to quickly estimate effective resistances, and then sampling with
respect to these estimates, allows us to get a sparsifier with O(n log3 n/ε2) edges in Õ(m logn)
time. The details are given in Section 5.

2.4 The Õ(m) algorithm
Several more obstacles needs to be circumvented for an even faster algorithm. Even assuming
a computationally free SDD solver, estimating the effective resistances via the Johnson-
Lindenstrauss projection requires operating on m vectors of dimension O(logn), which is too
expensive. This forces us to try to decrease (hopefully down to a constant) the dimension of
the projections. Of course this introduces higher distortions in the estimates for the effective
resistances, but as we noted above the algorithm can compensate by taking more samples.
The second key to our result comes into play here: transitivity. We observe that it is enough
to produce a sparsifier with m′ = O(m/ log2 n) edges since we can then run our slightly
slower algorithm in time Õ(m′ log2 n) = Õ(m) and get the final sparsifier. This trick allows
us to reduce the dimension of the JL projection to a constant, for large enough m. The
details are given in Section 6.

However to get these severely distorted estimates for the effective resistances, it is not
enough to just take our O(m log2 n) algorithm and replace the JL projection by a constant-
dimensional one. The remaining bottleneck is the running time of the solver; its construction
requires at the minimum the computation of a low-stretch tree which takes Õ(m logn) time
[1]. The solver steps after the construction of the low-stretch tree take Õ(m) time on a
spine-heavy graph. This implies that we would be able to sparsify in Õ(m) time if the
computation of the low-stretch tree were not an issue.

To solve this problem, we show that every graph can be decomposed into graphs of
diameter O(logn) with relatively few edges between the pieces. Spanning trees with O(logn)
average stretch can be easily computed for each of these pieces, and thus we sparsify them
separately and then put the results together. The details are given in Section 7.

3 Background on spectral graph theory

3.1 The graph Laplacian and its pseudoinverse
Let G = (V,E,w) be an undirected weighted graph on n vertices, which we identify with the
integers {1, 2, . . . , n}, and m edges, where the weight of edge e is given by we. The Laplacian
of G is denoted by LG. It is a symmetric n×n matrix with zero row and column sums, where
the (i, j) off-diagonal entry is given by −w(i,j) if (i, j) is an edge of G and 0 otherwise. The
ith diagonal entry is given by the weighted degree of vertex i.

If G is a connected graph, then LG is a matrix of rank n− 1, with its kernel spanned by
1 (the vector of all 1’s). We let L+

G denote the Moore-Penrose pseudoinverse of LG; this is
a matrix that acts as the inverse of LG on (kerLG)⊥, and satisfies L+

GLG = LGL
+
G = In−1,

where In−1 is the projection onto the (n− 1)-dimensional image of LG.
Given the one-to-one correspondence of graphs and their Laplacians we will often apply

algebraic notation to graphs, with the obvious meaning.

STACS’12

270 Improved Spectral Sparsification and Numerical Algorithms for SDD Matrices

3.2 Spectral approximation and sparsification
In this paper we concentrate on symmetric diagonally dominant matrices. For two matrices
A and B of the same dimension, we write A � B if xTAx ≤ xTBx for all vectors x. For two
graphs G and H, we write G � H if the Laplacians satisfy LG � LH .

I Definition 1. We say that a graph H is a κ-approximation of a graph G if G � H � κG.

It is not hard to show that if H is a graph that κ-approximates a graph G then we have

1
κ
L+
G � L

+
H � L

+
G (1)

I Definition 2. Given a graph G, we say that a (sparser) graph H is a 1 ± ε spectral
sparsifier of G if

(1− ε)G � H � (1 + ε)G. (2)

It is easy to see that if H is a 1± ε spectral sparsifier of G then 1
1−εH is a graph that

1+ε
1−ε -approximates G. By the definition, it is also easy to verify transitivity. If G1 is a 1± ε1
sparsifier of G and G2 is a 1± ε2 of G1 then G2 is a (1± ε1)(1± ε2) sparsifier of G.

3.3 Graphs as resistive electrical networks
We can consider our graph G as an electrical network of nodes (vertices) and wires (edges),
where edge e has resistivity of w−1

e Ohms.
In this context it is very useful to give another definition of the Laplacian LG, in terms

of its incidence matrix BG. To define BG, fix an arbitrary orientation for each edge in G.
For a vertex i let χi be its (n× 1) characteristic vector, with a 1 at the ith entry and 0’s
everywhere else. Let e = (i, j) be an edge and define be = χi − χj . Then BG is the m× n
matrix whose eth row is the vector be. Let WG be the m ×m diagonal matrix whose eth
diagonal entry is we. With these definitions, it is easy to verify that

LG = BTGWGBG =
∑
e∈G

webeb
T
e .

For notational convenience, we will drop the subscripts on LG, BG, and WG when the
graph we are dealing with is clear from context.

Going back to the electrical analogy, the effective resistance between vertices i and j,
denoted by RG(i, j) or RG(e) when (i, j) is an edge e, is the voltage difference that has to
be applied between i and j in order to drive one unit of external current between the two
vertices. Algebraically it is given by

RG(i, j) = (χi − χj)TL+
G(χi − χj) (3)

The above equation allows us to apply (1) and see that

G � H � κG⇒ (1/κ)RG(e) ≤ RH(e) ≤ RG(e). (4)

The definition of the effective resistance for (i, j) in (3) shows directly that it can be
computed by solving the system LGx = (χi − χj). In light of this, (4) will be of central
importance in our proofs. Informally, it states that if H is a κ-approximation of G, then the
effective resistance of any edge in G can be approximated by the effective resistance of the
same edge in H, which can be done by solving the system LHx = (χi − χj). This will allow
us to construct special approximations H for which solving with LH is easier than with LG.

I. Koutis, A. Levin, and R. Peng 271

3.4 Low-stretch trees, spine-heavy graphs and SDD solvers
Let T be a spanning tree of G. For any edge e = (i, j) of G, there is a unique path e1, e2, . . . , eν
between i and j along edges of T. We say that the stretch of e in T is stretchT (e) :=
we
∑ν
i=1 w

−1
ei
, i.e. the weight of e multiplied by the sum of inverse weights of tree edges on

the path from i to j. We denote by stretchT (G) the sum of stretches in T of all edges of G,
i.e. stretchT (G) =

∑
e∈G stretchT (e).

It is known that every graph G has a spanning tree T with stretchT (G) = Õ(m logn),
known as a low-stretch tree. The tree can computed in time Õ(m logn) [1, 8]. We call a
graph spine-heavy if it has a spanning tree with stretchT (G) = O(m/ logn). Given a graph
G we can compute a spine-heavy graph H that Õ(log2 n)-approximates it by computing a
low-stretch tree and then scaling up the weights of tree edges in G by the Õ(log2 n) factor.
This is summarized in the following lemma.

I Lemma 3. Every graph G with n vertices is Õ(log2 n)-approximated by a spine-heavy graph
H. The graph H can be constructed in time dominated by the computation of a low-stretch
tree for G.

Finally we state a lemma that summarizes the recent work on fast SDD solvers [8].

I Lemma 4. Let A be an SDD matrix. There is a symmetric operator Ãδ such that

(1− δ)A � Ãδ � (1 + δ)A

and that for any vector b, the vector Ã+
δ b can be evaluated in Õ(m logn log(1/δ)) time.

Moreover, if A is the Laplacian of a spine-heavy graph and its low-stretch tree is given, then
Ã+
δ b can be evaluated in Õ(m log(1/δ)) time.

4 The Spielman-Srivastava sampling scheme

Spielman and Srivastava [9] give the following simple algorithm for producing a 1±ε sparsifier
of a graph G: For each i from 1 to N = O(n logn/ε2), we sample an edge e of G from the
probability distribution p assigning e a probability pe proportional to qe = weR

G(e). If we
select edge e, we add it to the sparsifier with weight we/(Npe).

This scheme produces a 1± ε sparsifier with high probability. An analysis is given in [9],
and a different perspective can be found in Srivastava’s dissertation [13].

For the efficient implementation of their algorithm Spielman and Srivastava first obtain a
different expression for the effective resistance, via a simple algebraic manipulation:

RG(i, j) = (χi − χj)TL+(χi − χj)
= (χi − χj)TL+LL+(χi − χj)
= (χi − χj)TL+BTW 1/2W 1/2BL+(χi − χj)
= ‖W 1/2BL+(χi − χj)‖2

The advantage of this definition is that it expresses the effective resistance as the squared
Euclidean distance of two points, given by the ith and jth column of the matrix W 1/2BL+.

This new expression still involves the solution of a linear system with L. The natural
idea is to replace L with an approximation L̃ satisfying the properties described in Lemma 4.
So instead of RG(i, j) we compute the quantities R̂G(i, j) = ‖W 1/2BL̃+

δ (χi − χj)‖2.
Of course, there are still m systems to be solved. To work around this hurdle, Spielman

and Srivastava observe that projecting the vectors to an O(logn)-dimensional space preserves

STACS’12

272 Improved Spectral Sparsification and Numerical Algorithms for SDD Matrices

the Euclidean distances within a factor of 1± ε/8, by the Johnson- Lindenstrauss theorem.
Algebraically this amounts to computing the quantities ‖QW 1/2BL̃+

δ (χi − χj)‖2, where Q is
a properly defined random matrix of dimension k ×m for k = O(logn). The authors invoke
the result of Achlioptas [2], which states that one can use a matrix Q each of whose entries
is randomly chosen in {±1/

√
k}.

The construction of the sparsifiers can can thus be broken up into three steps.
1. Compute QW 1/2B. This takes time O(km), since B has only two non-zero entries per

row.
2. Apply the linear operator L̃+

δ to the k columns of the matrix (QW 1/2B)T , using Lemma
4. This gives the matrix Z = QW 1/2BL̃+

δ .
3. Compute all the (approximate) effective resistances (time O(km)) via the square norm of

the differences between columns of the matrix Z. Then sample the edges.

5 The first two sparsification algorithms

5.1 The Õ(m log2 n) algorithm
Spielman and Srivastava prove that the approximations R̂G(i, j) can be used to obtain the
sparsifier if they satisfy

(1− ε/4)RG(i, j) ≤ R̂G(i, j) ≤ (1 + ε/4)RG(i, j).

Then they show that this can be satisfied if δ, the accuracy guarantee of the linear system
solver, is taken to be an inverse polynomial in n. Thus their algorithm is dominated by
the second step (the applications of L̃+

δ) and takes time Õ(m log3 n log(1/ε)).
The following lemma shows that in fact it is enough to take take δ to be a constant.

Furthermore, our proof significantly simplifies the corresponding analysis of [9].

I Lemma 5. For a given ε, if L̃ satisfies (1− δ)L � L̃ � (1 + δ)L where δ = ε/8, then the
approximate effective resistance values R̂G(u, v) = ‖W 1/2BL̃+(χu − χv)‖2 satisfy:

(1− ε)RG(u, v) ≤ R̂G(u, v) ≤ (1 + ε)RG(u, v).

Proof. We only show the first half of the inequality, as the other half follows similarly. Since
L and L̃ have the same null space, by (1) the given condition is equivalent to:

1
1 + δ

L+ � L̃+ � 1
1− δL.

Since 1
1+δL

+ � L̃+, we have

RG(u, v) = (χu − χv)TL+(χu − χv)
≤ (1 + δ)(χu − χv)T L̃+(χu − χv)
= (1 + δ)(χu − χv)T L̃+L̃L̃+(χu − χv).

Applying the fact that L̃ � (1 + δ)L to the vector L̃+(χu − χv) in turn gives:

RG(u, v) ≤ (1 + δ)2(χu − χv)T L̃+LL̃+(χu − χv)

= (1 + δ)2‖W 1/2BL̃+(χu − χv)‖2 = R̂G(u, v)

The rest of the proof follows from 1
(1+δ)2 ≤ 1− ε/4 by choice of δ. J

This proves our first theorem.

I Theorem 6. There is a 1±ε sparsification algorithm that runs in time Õ(m log2 n log(1/ε)).

I. Koutis, A. Levin, and R. Peng 273

5.2 The Õ(m log n) algorithm
In [7] it was proven that if we use estimates to the effective resistances, rather than the true
values, the Spielman-Srivastava scheme still works, but in order to produce the sparsifier we
have to compensate by taking more samples. Specifically, for α > 1, if the probabilities with
which we sample all edges are at least 1/α of the true values, then we have to take α times
as many samples. This is formalized in the following lemma.

I Lemma 7. Suppose that we run the Spielman-Srivastava algorithm and sample edges with
probabilities proportional to q̃e such that (1/α)qe ≤ q̃e ≤ qe for all edges e. Then, taking α
times as many samples gets us a 1± ε sparsifier with the same high probability guarantee as
the Spielman-Srivastava algorithm run with probabilities proportional to qe.

We are now ready to state our second theorem.

I Theorem 8. There is a 1± ε sparsification algorithm for graphs with m > n log3 n edges
that runs in time Õ(m logn log(1/ε)). The output sparsifier contains Õ(n log3 n/ε2) edges.

Proof. Given the input graph G we construct a spine-heavy graph H that Õ(log2 n)-
approximates G. The construction can be done in time Õ(m logn), by Lemma 3. We
run the Spielman-Srivastava scheme (Section 4) on H to approximate the effective resis-
tances RH(i, j) within a factor of 1± ε. Step 2 of the Spielman-Srivastava scheme runs in
Õ(m logn log(1/ε)) time on H, by Lemma 4. We adjust the approximate effective resistances
in H down by a factor of 1 + ε to accommodate for the upper side of the error in Lemma 5.
Then, by (2) the calculated approximate effective resistances satisfy

1
Õ(log2 n)

RG(i, j) ≤ R̂H(i, j) ≤ RG(i, j).

Finally we let q̃e = weR̂
H(i, j) for all edges e = (i, j) of G and sample the edges of G with

probabilities proportional to q̃e. By Lemma 7 we see that we get a 1 ± ε sparsifier with
Õ(n log3 n/ε2) edges. J

6 Effective resistances via very-low dimensional projections

With the improvement of the last section, all three steps of the Spielman-Srivastava algorithm
take Õ(m logn) time; our goal now is to reduce this to Õ(m). The extra logarithm in the
current implementation is due to the dimension k = O(logn) of the projection matrix Q,
and we address this issue here.

It is worth noting that once we have a sparsifier H with O(m
log2 n

) edges such that(
1− ε

2

)
G � H �

(
1 + ε

2

)
G,

we can afford to fully (1± ε
2)-sparsify that H using our Õ(m log2 n) algorithm. The sparsifier

of H (with O(n logn/ε2) edges) will then be a 1± ε-sparsifier for G.
Since we can take more samples, we are able to underestimate probabilities more ag-

gressively by decreasing the dimension we project onto, and still get a good approximation
to G with high probability. In order to show that we do not underestimate effective resis-
tances by too much, we need a more detailed understanding of the relationship between
the dimension k and the approximation guarantee. This is provided by the version of the
Johnson-Lindenstrauss theorem stated as Lemma 7 of [6]:

STACS’12

274 Improved Spectral Sparsification and Numerical Algorithms for SDD Matrices

I Lemma 9. Let u be a unit vector in Rν . For any given positive integers k, let U1, . . . , Uk be
random vectors chosen independently from the ν-dimensional Gaussian distribution Nν(0, 1).
For Xi = uTUi, define W = W (u) = (X1, . . . , Xk) and L = L(u) = ‖W‖2. Then for any
β > 1:
1. E(L) = k,
2. Pr[L ≥ βk] < O(k) exp(−k2 (β − (1 + ln β)),
3. Pr[L ≤ k/β] < O(k) exp(−k2 (β−1 − (1− ln β)).

Following standard analysis of the Johnson-Lindenstrauss theorem, we see that this
lemma essentially gives us the probability of increasing or decreasing sizes of a given vector
by a certain factor when we multiply the vector by a random matrix of Gaussian entries.4
Roughly, the third part states that for a given small constant r � 1, the probability of
underestimating distances (and hence effective resistances in our application) by an nr factor
is around O(n−rk/2). By setting k sufficiently large and applying a union bound, we obtain
that with high probability all estimates are at least Ω(n−r) of the true quantities required
by the Spielman-Srivastava algorithm.

Combining this with the fact that weight times effective resistance is upper bounded by
1, one can show by concentration of measure theorems that the normalizing factor (i.e. the
weighted sum of the estimated effective resistances) stays within a constant factor of its true
value with high probability. Therefore, with high probability we underestimate the edge
selection probabilities by at most a factor of O(nr). The number of samples we need to take
as a result is n1+r logn. As long as this is smaller than m/ log2 n we can sparsify in Õ(m)
time. This shows that as long as m is big enough relative to n, we can sparsify in linear time,
as we claimed in the introduction. We formalize this argument below.

I Lemma 10. There is an algorithm that, on input a graph G with n vertices, m edges, a
low-stretch spanning tree for G with total stretch Õ(m logn), and a parameter t, generates a
1± ε sparsifier with Õ(mt logn/ε2) edges in Õ(m log m

3t log2 n
n log(1/ε)) time.

Proof. We first construct in O(m) time the spine-heavy graphG′ that Õ(log2 n)-approximates
G. We then apply the Spielman-Srivastava sampling scheme in order to estimate the effective
resistances in G′.

Invoking Part 3 of Lemma 9 with β = m
nt log2 n

shows us that when we project onto k
dimensions, the probability of underestimating by a factor of β is at most:

O(k) exp
(
k

2 (1− β−1 − ln β)
)
≤ O(k) exp

(
k

2 (1− ln β)
)
≤ O(k)(3/β) k

2

where the first inequality follows from k/2 ≥ 0 and 1 − β−1 ≤ 1. So when (3/β) k
2 = n−d,

taking a union bound over all m ≤ n2 edges gives that no edge’s effective resistance is
underestimated by more than a factor of β. The requirement on k imposed by this is:

O(k)(3/β) k
2 ≤ n−d

k ≥ 2d logβ/3 n+ logβ/3 k +O(1)

Setting d to be some constant and taking the value of β as before we see that taking
k = O(log m

3nt log2 n
n) will give us the required high probability claims.

4 This is a minor difference from previous parts, where we use matrices entries randomly chosen in ±1/
√

k

I. Koutis, A. Levin, and R. Peng 275

This shows that projecting in order to estimate effective resistances and using these to
estimate edge selection probabilities will give us values that are at least an nt log2 n/m factor
of the true value (for β as above). Following the proof of Lemma 5 we can see that using an
approximate solver introduces a small multiplicative error. Using the fact that G′ is a graph
that O(log2 n)-approximates G, we see that this method produces approximates probabilities
in G that are at least a factor of ntm of the true values.

Consider sampling with these estimated probabilities. Then, by the discussion at the be-
ginning of Section 5.2 with α = m/(nt), we see that to sparsify we need to take O(mt lognε−2)
samples.

The running time of this process is dominated by amount of time it takes to do k

solves in LG′ , namely O(km log(1/ε)) by Lemma 4. For the choice of k as before this is
Õ(m log m

3t log2 n
n log(1/ε)), as required.

J

I Theorem 11. Given a graph G with n vertices, m edges such that m > n log5 n, and a
low-stretch spanning tree with stretch Õ(m logn), we can generate a 1± ε-sparsifier H of G
with O(n logn/ε2) edges in Õ(m log m

n log5 n
n log(1/ε)) time.

Proof. Applying Lemma 10 with t = O(log3 n) gives a graph with Õ(m
log2 n

) edges that is
a 1± ε-sparsifier. This graph can in turn be sparsified in Õ(m

log2 n
log2 n) = Õ(m) time, by

Theorem 8. J

7 Improved sparsification via graph decompositions

Theorem 11 reveals that the computation of the low-stretch tree of the input graph is the
final bottleneck on our way to getting the faster algorithms. In order to solve this problem,
we no longer compute a low-stretch spanning tree for the entire graph. Instead, we decompose
the graph into subgraphs for which we can trivially find low-stretch spanning trees and we
sparsify each subgraph separately. The decomposition is based on the following simple fact
about low diameter graphs:

I Lemma 12. Given an unweighted graph with n vertices, m edges, and diameter O(logn),
finding a breadth-first search (BFS) tree in O(m) time gives low stretch spanning tree with
average stretch O(logn).

We can now apply low diameter decomposition to extend this to arbitrary undirected
graphs losing an extra factor of log logn. The variant of low diameter decomposition that
we use can be best described using the following lemma (see, e.g., [14, Lemma 4]).

I Lemma 13. Given an undirected, unweighted graph with n vertices and m edges, we can
partition it into pieces of O(logn) diameter so that at most m/2 edges are between the pieces.

Applying this O(log logn) times and sparsifying the edges between pieces each time gives
the claim for arbitrary unweighted graphs:

I Theorem 14. Given an undirected, unweighted graph G with n vertices and m edges
such that m > Ω(n log4 n), we can output a sparsifier H with Õ(n logn/ε2) edges in
Õ(m log m

3n log4 n
n log(1/ε)) time.

Proof. We create G1, . . . Gl where l = 4 log logn as follows. Given G1 . . . Gi, we partition
E(G) \ E(G1) . . . \ E(Gi) into low diameter pieces using Lemma 13 and let Gi+1 be edges

STACS’12

276 Improved Spectral Sparsification and Numerical Algorithms for SDD Matrices

with both endpoints in the same piece that’s not in some Gj with j ≤ i. Applying guarantees
of Lemma 13 inductively gives |E(Gi)| ≤ 2−iE(G) = 2−im, and specifically |E(Gl)| ≤ m

log2 n
.

Therefore Gl can be sparsified to Hl via the slower algorithm in time Õ(m log(1/ε)).
We now turn our attention toG1 . . . Gl−1. IfGi contains less thanO(m/(log2 n/4 log logn))

edges, it can be left unsparsified. Otherwise, since a low-stretch tree can be obtained trivially,
we can sparsify it by means of Lemma 10. Concretely, by letting t = log2 n we get graphs
H1, . . . ,Hl−1 (the 1± ε-sparsifiers of the corresponding Gi) such that

(1− ε)Gi � Ĥi � (1 + ε)Gi,

in total time Õ(m log m
n log4 n

n log(1/ε)). Letting Ĥ = Hl +
∑
i<lHi gives a sparsifier

with Õ(m
logn/ε

2) edges, which can in turn be sparsified in Õ(m) time to generate H with
O(n logn/ε2) edges. J

For weighted graphs, we partition edges by weights into buckets and sparsify each subgraph.
Combining this type of partition with the lemmas above gives a sparsifier with O(logn) loss
in edge count.

I Theorem 15. Given a graph G with n vertices, m edges such that m > Ω(n log5 n) we can
compute in Õ(m log m

3n log5 n
n log(1/ε)) time a sparsifier for it with Õ(n logn/ε2) edges.

Proof. By Section 10.2 of [12], edges whose endpoints are connected by a path with weights
that are larger by a factor of n3 can be discarded without significant changes to the spectral
structure of the graph. Then grouping the edges by weights into buckets containing edges
with weights [(1 + ε)iWmin, (1 + ε)i+1Wmin] gives a partition of G into G1, . . . , Gl such
that |V (G1)| + · · · + |V (Gl)| ≤ O(n lognε−1). By Lemma 10 with t = log2 n, each Gi
where |E(Gi)| ≥ |V (Gi)| m

n log3 n
can be sparsified to a graph with |V (Gi)| m

n log3 n
edges in

Õ(log m
n
n(|E(Gi)|+ |V (Gi)| logn)) time. The total running time of this part is Õ(log m

n
n(m+

n log2 nε−1)). Then the total number of edges remaining is at most m
n log3 n

∑
i |V (Gi)| ≤ m

log2 n
.

This graph can in turn be sparsified in Õ(m) time to give a sparsifier with O(n logn/ε2)
edges. J

8 Final Remarks

We remark that the Õ(m) sparsification algorithm of this paper relies crucially on graph
decompositions. However it seems natural to conjecture that decompositions are not necessary,
and that the same upper bound can be obtained via straightforward sampling scheme.
We believe that this is an interesting question that would potentially lead to a deeper
understanding of low-stretch subgraph computations.

On the other hand the original algorithm of Spielman and Teng remains the only known
combinatorial sparsification algorithm that does not rely on solving systems. Designing
a spectral sparsification algorithm that does not depend on a linear system solver and
that outputs a very sparse graph with O(n logn) or O(n log2 n) edges is a challenging open
problem. Given that it may be impossible to achieve this, it also makes sense to ask for
algorithms that compute very sparse κ-approximations for small κ. Such algorithms could
play a significant role in the development of more practical SDD solvers.

Finally, the possibility of a linear time sparsification algorithm for graphs with m =
O(n logc n) edges is left open, and we believe it poses an interesting open problem.

I. Koutis, A. Levin, and R. Peng 277

Acknowledgments We would like to thank Jonathan Kelner and Gary Miller for useful
discussions and the anonymous referees for carefully reading this paper. Ioannis Koutis
and Richard Peng are partially supported by the National Science Foundation under grant
number CCF-1018463. Richard Peng was at Microsoft Research New England for part of
this work and is supported by a Microsoft Research Fellowship. Alex Levin is supported by
a National Science Foundation graduate fellowship.

References
1 Ittai Abraham, Yair Bartal, and Ofer Neiman. Nearly tight low stretch spanning trees.

CoRR, abs/0808.2017, 2008.
2 Dimitris Achlioptas. Database-friendly random projections. In PODS ’01: Proceedings

of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pages 274–281, 2001.

3 András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in O(n2) time.
In STOC ’96: Proceedings of the Twenty-Eighth Annual ACM symposium on Theory of
Computing, pages 47–55, 1996.

4 Fan Chung. Random walks and local cuts in graphs. Linear Algebra and its applications,
423(1):22–32, 2007.

5 Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Panigrahi. A
general framework for graph sparsification. In STOC ’11: Proceedings of the 43rd ACM
Symposium on Theory of Computing, pages 71–80, 2011.

6 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In STOC ’98: Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 604–613, 1998.

7 Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD
systems. In FOCS ’10: Proceedings of the 51st Annual IEEE Symposium on Foundations
of Computer Science, 2010.

8 Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m logn solver for SDD linear
systems. In FOCS ’11: Proceedings of the 52nd Annual IEEE Symposium on Foundations
of Computer Science, 2011.

9 Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
In STOC ’08: Proceedings of the 40th Annual ACM symposium on Theory of Computing,
pages 563–568, 2008.

10 Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph parti-
tioning, graph sparsification, and solving linear systems. In STOC ’04: Proceedings of the
36th Annual ACM Symposium on Theory of Computing, pages 81–90, 2004.

11 Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for preconditioning
and solving symmetric, diagonally dominant linear systems. CoRR, abs/cs/0607105, 2006.

12 Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. CoRR,
abs/0808.4134, 2008.

13 Nikhil Srivastava. Spectral sparsification and restricted invertibility, 2010. PhD Thesis,
Yale University.

14 Luca Trevisan. Approximation algorithms for unique games. In FOCS ’05: Proceedings of
the 46th IEEE Symposium on Foundations of Computer Science, pages 5–34, 2005.

STACS’12

	Introduction
	Overview of our techniques
	Brief background on spectral sparsification
	The (mlog2 n) algorithm
	The (mlogn) algorithm
	The (m) algorithm

	Background on spectral graph theory
	The graph Laplacian and its pseudoinverse
	Spectral approximation and sparsification
	Graphs as resistive electrical networks
	Low-stretch trees, spine-heavy graphs and SDD solvers

	The Spielman-Srivastava sampling scheme
	The first two sparsification algorithms
	The (mlog2 n) algorithm
	The (mlogn) algorithm

	Effective resistances via very-low dimensional projections
	Improved sparsification via graph decompositions
	Final Remarks

