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Abstract
We give the first tight integrality gap for Vertex Cover in the Sherali-Adams SDP system. More
precisely, we show that for every ε > 0, the standard SDP for Vertex Cover that is strengthened
with the level-6 Sherali-Adams system has integrality gap 2− ε. To the best of our knowledge this
is the first nontrivial tight integrality gap for the Sherali-Adams SDP hierarchy for a combinatorial
problem with hard constraints.

For our proof we introduce a new tool to establish Local-Global Discrepancy which uses
simple facts from high-dimensional geometry. This allows us to give Sherali-Adams solutions with
objective value n(1/2 + o(1)) for graphs with small (2 + o(1)) vector chromatic number. Since
such graphs with no linear size independent sets exist, this immediately gives a tight integrality
gap for the Sherali-Adams system for superconstant number of tightenings. In order to obtain
a Sherali-Adams solution that also satisfies semidefinite conditions, we reduce semidefiniteness
to a condition on the Taylor expansion of a reasonably simple function that we are able to
establish up to constant-level SDP tightenings. We conjecture that this condition holds even for
superconstant levels which would imply that in fact our solution is valid for superconstant level
Sherali-Adams SDPs.
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1 Introduction

A vertex cover of a graph G = (V,E) is a subset S of the vertices such that for every
edge ij ∈ E at least one vertex among i, j lies in S. In the Minimum Vertex Cover
problem the objective is to find the vertex cover of minimum size. While a 2-approximation
algorithm is rather straightforward, considerable effort has failed to yield any polynomial
time algorithm with approximation ratio 2−Ω(1). Indeed the best algorithm known achieves
an approximation ratio of 2−O(

√
1/ logn) [21]. On the other hand, the strongest PCP-based

hardness result [12] shows that 1.36-approximating Vertex Cover is NP-hard. Only by
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42 Tight Gaps for VC in the SA SDP Hierarchy

assuming Khot’s Unique Game Conjecture [24], whose validity is the subject of an active
area of research (see [1, 25] for example), one can show a 2− o(1) hardness.

Motivation for studying Vertex Cover is two-fold. For one thing it is arguably one
of the simplest NP-hard problems whose inapproximability remains unresolved. But more
importantly, studying Vertex Cover has introduced some very important techniques both
in terms of approximation algorithms and hardness of approximation with [12] being a prime
example. Intuitively this is, at least partly, due to the “hard constraints” of Vertex Cover,
that is the solution has to satisfy a number of inflexible constraints (the edge constraints).
As many of the standard techniques for proving hardness of approximation and integrality
gaps produce solutions which satisfy most constraints in an instance, showing tight hardness
for Vertex Cover has remained unresolved.

Trying to resolve the approximability of Vertex Cover, one could study the behav-
ior of prominent algorithmic schemes, such as Linear Programming (LP) and Semidefinite
Programming (SDP) relaxations, which have yielded state-of-the-art algorithms for many
combinatorial optimization problems. There, the measure of efficiency is the Integrality Gap
which sets the approximation limitation of the algorithms based on these relaxations. In
this work we show that a large family of LP and SDP relaxations for Vertex Cover have
integrality gap arbitrarily close to 2. Such an integrality gap rules out a rich and important
family of approximation algorithms for the problem at hand.

Furthermore, there seems to be a connection between integrality gaps for strong LP/SDP
relaxations of a problem and its hardness of approximation. In one direction the reductions
used to establish hardness of approximation for many problems have been used to construct
integrality gaps for them, e.g. [26, 9, 29, 33]. In the other direction, and specifically for
Vertex Cover, Vishwanathan [34] shows that any hard instance of the problem should
have subgraphs that look like the so called “Borsuk graphs”. Interestingly a specific subfamily
of Borsuk graphs were previously used in many integrality gap instances for Vertex Cover,
e.g. [17, 8, 20, 15, 16]. To make the picture even more complete, we show that any Borsuk
graph is a good integrality gap instance for the (so called) Sherali-Adams LP system of
relaxations for Vertex Cover.

The (tight) integrality gap of the standard LP and SDP relaxations for Vertex Cover has
long been resolved [17]. Nevertheless, celebrated relaxations for a number of combinatorial
problems require strengthenings (addition of extra constraints) aiming to drop the integral-
ity gap. In that direction, a number of systematic procedures, known as Lift-and-Project
systems have been proposed to systematically improve the integrality gap. These systems
build strong hierarchies of either LP relaxations (as the Lovász-Schrijver and the Sherali-
Adams systems) or SDP relaxations (as the Lovász-Schrijver SDP, the Sherali-Adams SDP
and the Lasserre systems). Lift-and-Project systems can be thought of as being applied in
rounds (also called levels). The bigger the number of rounds used, the more accurate the
obtained relaxation is. In fact, if as many rounds as the number of variables are used, the
final relaxation is exact and no integrality gap exists. On the other hand the size of the
derived relaxation grows exponentially with the number of rounds, which implies that the
time one needs to solve it also grows. It is then natural to ask whether looking at a modest
number of rounds (say O(1) or log logn ) will result in an algorithm with approximation
factor better than 2.

Identifying the limitations of relaxations derived by Lift-and-Project system has attracted
much attention and showing integrality gaps for the Sherali-Adams SDP and the Lasserre
systems stand as the most attractive subjects in this area of research due to a number of
reasons. Firstly, the best algorithms known for many combinatorial optimization problems
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(and Vertex Cover in particular) are based on relaxations weaker than those derived
by a constant (say four) rounds of the Sherali-Adams SDP system which we study here,
e.g. [18, 23, 2, 21]. Lift-and-Project hierarchies have been also used recently in designing
approximation algorithms with a runtime-approximation ratio trade off, e.g. [11, 27, 10, 4,
22, 3, 19]. Finally, for some particular constraint satisfaction problems, and modulo the
Unique Games Conjecture, no approximation algorithm can perform better than the one
obtained by Sherali-Adams SDP of a constant number of rounds (see [28].) One can then
think of algorithms based on the Sherali-Adams SDP as an interesting model of computation.

In this work we study the limitations of strong relaxations for Vertex Cover in the
powerful Sherali-Adams SDP system. The performance of the same hierarchy has been stud-
ied for other combinatorial problems (see [29, 6, 7]), but its integrality gap for Vertex
Cover remained open, due to the hard constraints mentioned earlier. Our main result is
as follows.

I Theorem 1.1. For every ε > 0, the SDP derived by the level-6 Sherali-Adams SDP system
for Vertex Cover has integrality gap 2− ε.

Theorem 1.1 yields the first nontrivial Sherali-Adams SDP integrality gap for Vertex
Cover and in fact any problem with hard constraints. While tight integrality gaps for
weaker or incomparable systems were known, there were no good candidates for Sherali-
Adams SDP integrality gap solutions.In particular, while integrality gaps for the closely
related but weaker Sherali-Adams LP system for Vertex Cover were known [9], the solution
there does not satisfy the required positive semidefiniteness condition. As we explain below,
apart from the significance of our new SDP integrality gap, we also believe that our proofs
are interesting in their own right. In Section 3 we give a high level description of our ideas,
along with a detailed explanation of how our techniques are different from existing integrality
gap results.

On our way to prove the above theorem we need to define new solutions for Sherali-
Adams LP relaxations of Vertex Cover. As mentioned, one of our contributions is an
intuitive and geometric explanation of why this large family of LPs are fooled by a certain
family of graphs, the so-called Borsuk graphs. This yields a tight level-Ω(

√
logn/ log logn)

integrality gap for Sherali-Adams LP (see Theorem 4.4.) Other than being used in our proof
of Theorem 1.1, our solution is arguably simpler and more intuitive than the integrality gap
of [9] for the same system.1

The heart of the problem in showing integrality gaps for Sherali-Adams SDPs is that
the proposed solution needs to satisfy a strong positive-semidefiniteness condition. Toward
establishing Theorem 1.1, we show how to reduce this condition into a clean analytic state-
ment about a certain function parameterized by t. We are able to show that this analytic
statement holds up to t = 6, hence the level-6 Sherali-Adams SDP gap. We have strong
evidence (both theoretical and experimental) that the aforementioned analytic statement
holds for any constant value of t, which we explicitly state as a conjecture in Section 5.3.
To sum up, we have the following second theorem.

I Theorem 1.2. Assuming Conjecture 5.12, for every constant ε > 0 and t ∈ N, the SDP
derived by the level-t Sherali-Adams SDP system for Vertex Cover has integrality gap
2− ε.

For a brief discussion of the validity of Conjecture 5.12 see Remark 5.3.

1 Although it should be mentioned that their integrality gap applies to more rounds.
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Known integrality gaps for Vertex Cover: Considerable effort has been invested
in strong lower bounds for various hierarchies for Vertex Cover. For LP hierarchies, [31]
shows an integrality gap of 2−ε for Ω(n) rounds of the Lovász-Schrijver system and [9] shows
the same integrality gap for the stronger Sherali-Adams system up to Ω(nδ) rounds (with δ
going to 0 together with ε.) Both results concern LP hierarchies, which are incomparable
to SDP relaxations. For SDP hierarchies, and for the Lovász-Schrijver SDP system which is
stronger than both the LS system and the canonical SDP formulation (but incomparable to
Sherali-Adams), [14] shows an integrality gap of 2− ε for Ω(

√
logn/ log logn) levels.

The integrality gap of two stronger hierarchies for Vertex Cover, on the other hand,
has long been open. The first is the Sherali-Adams SDP system which is stronger than the
LS system, and the subject of this paper. The second is the Lasserre system, for which no
tight integrality gap for Vertex Cover is known.2 If one is content with an integrality
gap less than 2, a 1.36 integrality gap for Ω(nδ) levels [33] and a 7/6 integrality gap for Ω(n)
levels [30] of the Lasserre system are known. We will compare our proof techniques with
previous ones at the end of Section 3.

2 Preliminaries

2.1 Borsuk Graphs, Frankl-Rödl Graphs and Tensoring
Our integrality gap instances are Frankl-Rödl graphs. These graphs are parameterized by
an integer m which is considered growing and a real parameter 0 < γ < 1.

I Definition 2.1. (Frankl-Rödl graphs) The Frankl-Rödl graph Gmγ is the graph with vertices
{−1, 1}m where two vertices i, j ∈ {−1, 1}m are adjacent iff dH(i, j) = (1− γ)m.

Frankl-Rödl graphs exhibit an interesting “extremal” combinatorial property. While Gm0
is a perfect matching and thus has a vertex cover of size half the number of its vertices, a
beautiful theorem by Frankl and Rödl states that for slightly larger γ, any vertex cover of
Gmγ is very large. The fact that such a small geometric perturbation results in a drastic
change in the vertex cover size has led to the use of Frankl-Rödl graphs as tight integrality
gap instances in a series of results [17, 8, 14, 15, 16].

I Theorem 2.2 ([14]; slight modification of Theorem 1.4 of [13]). Let m be an integer and
let γ = Θ(

√
logm/m) be a sufficiently small number so that γm is an even integer. Then

any vertex cover of Gmγ contains at least a 1− o(1) fraction of the vertices.

An important tool in proving strong integrality gaps is tensoring of vectors. Recall
that for u ∈ Rn and v ∈ Rm their tensor product u ⊗ v ∈ Rnm is a vector indexed by
ordered pairs from [n] × [m] taking value uivj at coordinate (i, j). For any polynomial
P (x) = c1x

t1 + . . . + cqx
tq with nonnegative coefficients consider the function TP mapping

a vector u ∈ Rn to the vector TP (u) = (√c1u⊗t1 , . . . ,√cqu⊗tq ) ∈ R
∑

i
nti , where u⊗d is

the vector obtained by tensoring u with itself d times. Polynomial tensoring can be used
to manipulate inner products in the sense that TP (u) · TP (v) = P (u · v); it was used as an
ingredient in many integrality gap results such as [17, 8, 14, 15].

We often think of the vertices of the Frankl-Rödl graphs as (scaled and) embedded on
the unit sphere Sm−1. In this sense the Frankl-Rödl graphs are subgraphs of the infinite
Borsuk graphs.

2 In fact there are only a few combinatorial problems for which tight Lasserre integrality gaps are known.
(see [30] and [33] for some notable exceptions.)
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I Definition 2.3. (Borsuk graphs) The Borsuk graph Bmδ is an infinite graph with vertex
set Sm−1. Two vertices x,y are adjacent if they are nearly antipodal, i.e. ‖x + y‖ ≤ 2

√
δ.

2.2 Strong relaxations for Vertex Cover
In this subsection we give a brief high level description of the Sherali-Adams SDP system
applied to the Vertex Cover problem. This high level description should be enough to
understand the high level of our results. The interested reader can find a rigorous definition
in the full version of the paper or [32].

The starting point of the Sherali-Adams SDP for Vertex Cover is the following simple
LP relaxation of Vertex Cover. Assume that G = (V,E) is the input graph.

min
∑
i∈V

xi, s.t. ∀ij ∈ E xi + xj ≥ 1, ∀i ∈ V xi ∈ [0, 1] (1)

Here xi is the indicator variable of vertex i being part of a vertex cover. Since in the
LP relaxation (1) xi assumes any value in [0, 1], we may think of xi as encoding a local
distribution D({i}) of 0-1 assignments for the elements in {i}. The Sherali-Adams LP system
strengthens this relaxation by introducing variables to encode the joint status of a subset of
vertices U with respect to the vertex cover, for all subsets up to a certain size. In particular,
the Sherali-Adams LP system of level t, seen below, is a Linear Program with the following
variables. If U ⊂ V is any subset of the vertices of size at most t, the program will have
real-valued variables to specify a distribution D(U) over the subsets of U . Furthermore, the
program will have two kinds of constraints. The first kind (similar to the one in (1)) ensure
that any subset of U that is assigned a positive probability covers all the edges inside U ,
i.e. the distribution D(U) is over vertex covers of U . The second kind of constraints ensure
that the marginals of the distributions for U1 ⊆ U are consistent on U1, i.e. any event that
only depends on the vertices of U1 has the same probability according to D(U1) and D(U).
The objective value of the program is the sum over all vertices v, of the probability that v
is in the local vertex covers (which is well defined as D(U)’s are consistent for all U 3 v.)
That is, fix a U 3 v, the contribution of v to the objective function is, PS∼D(U)[v ∈ S].
Summarizing we have the following relaxations,

I Definition 2.4 (Level-t Sherali-Adams LP relaxation of Vertex Cover). Let P(U) denote
the powerset of U .

min
∑
i∈V PS∼D({i})[i ∈ S]

s.t. PS∼D({i,j})[i 6∈ S, j 6∈ S] = 0 ∀ij ∈ E (Edge constraints)
PS∼D(U1)[S = T ] = PS∼D(U)[S ∩ U1 = T ] ∀T ⊆ U1 ⊆ U ⊆ V, |U | ≤ t
D(U) is a distribution on P(U) ∀U ⊆ V, |U | ≤ t

(2)

I Definition 2.5 (Level-t Sherali-Adams SDP relaxation of Vertex Cover). The Sherali-
Adams SDP relaxation is the Sherali-Adams LP relaxation plus the following semi-definiteness
constraint. DefineM1 to be an (n+1)× (n+1) matrix whose rows and columns are indexed
by ∅, {1} , . . . , {n} as follows and add the following semi-definiteness condition.

mI,J = P
S∼D(I∪J)

[I ∪ J ⊆ S] M1 = [mI,J ](n+1)×(n+1) � 0. (3)

In other words, one makes a matrix whose first row and column and diagonal are the “sin-
gleton probabilities”, i.e., the probabilities of each vertex being in a set sampled according
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to the local distribution, while the rest of the matrix is filled with the “doubleton probabil-
ities”, i.e., the probabilities that pairs of vertices are in a set sampled according to the local
distribution together.

It is not hard to see that any integral solution of (1) gives rise to a solution to the
Sherali-Adams SDP relaxation of any level. It is also not hard to see that the optimum of
the Sherali-Adams SDP relaxation can be found in time polynomial in nt. While the above is
not the original definition of Sherali-Adams hierarchy it is equivalent. The reader can see the
original definition as well as the formal theorem stating the equivalence in the full version
of the paper.

3 Outline of Our Method and Comparison to Previous Work

By Theorem 2.2, for γ =
√

logm/m, Gmγ has no vertex cover smaller than 2m(1− o(1)). A
tight integrality gap therefore calls for a solution in the system of objective value at most
2m(1/2 + ε), for a small constant ε > 0.

Consider the following experiment used to define our solution. A geometric way to
obtain a distribution of vertex covers would be to embed Gmγ on the unit sphere and take a
sufficiently large spherical cap centered at a random point on the sphere. Of course, given
the Frankl-Rödl theorem mentioned above, in doing so we have not achieved much since
we are defining a global distribution of vertex covers, and thus its expected size has to be
at least 2m(1 − o(1)). However, it is useful to understand why these vertex covers are big
from a geometric point of view: the heightof the spherical cap must be at least 1 +√γ (as
opposed to 1 for a half-sphere.) Now concentration of measure on the sphere implies that
because √γm = ω(1) the area of such a cap is a 1 − o(1) fraction of the whole sphere. So
the probability that any vertex of the graph is in the cap is 1 − o(1), which is very large.
Had it been the case that √γm = o(1) concentration of measure would imply that the area
of the cap is 1/2 + o(1) of that of the sphere and we would have had a small vertex cover.

The main idea is that one only needs to define probabilities for small sets (up to size t
if the goal is to show integrality gaps for level-t Sherali-Adams LP relaxations.) So one can
first embed the points in such a small set in a small dimensional sphere and then repeat
the above experiment to define a random vertex cover. The spherical caps that are required
in order to cover the edges in these sets have the same height, but now, due to the lower
dimension, their area is greatly reduced! Specifically, if the original set has at most t points,
the experiment can be performed in a t-dimensional sphere and if

√
γt = o(1), the probability

of any vertex participating in the vertex cover will be no more than 1/2+o(1). In particular,
t = o(

√
m/ logm) would suffice.

It is critical, of course, that the obtained distributions are consistent. But this is “built-
in” in this experiment. Indeed, due to spherical symmetry, the probability that a set of
points on a t dimensional sphere belong to a random cap of a fixed radius depends only
on t, the radius of the cap and the pairwise Euclidean distances of the points in the set.
Interestingly this construction works for any graph with vector chromatic number 2 + o(1).
In other words, if G is an n vertex graph that can be embedded into the unit sphere so that
the end points of any edge are almost antipodes, then there is a sufficiently “low-level” (but
non-trivial) Sherali-Adams solution of value (1/2 + o(1))n.

Unfortunately, we cannot show that the above solution satisfies the extra constraints
imposed by the SA SDP system. Instead we change our solution in several ways to attain
positive semidefiniteness. These changes are somewhat technical and we avoid discussing
them in detail here. At a high level the changes are (i) we add a small probability of
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picking the whole graph as the vertex cover. (ii) We apply a transformation of the canonical
embedding of the cube in the sphere that ensures that the farthest pairs of vertices are
precisely the edges, and also that the inner products have a bias to being positive (as
opposed to the canonical embedding in which the average inner product is 0.)

To get some insight into the rationale of these modifications, first note that the matrix
whose positive definiteness we need to prove happens to be highly symmetric. For such
symmetric matrices a necessary condition for positive semi-definiteness is that the average
entry is at least as large as the square of the diagonal entries. Manipulation (i) above is
precisely the tool we need to ensure this condition, and has no adverse effect otherwise. The
second transformation is useful although not clearly necessary. We can, however, argue that
without a transformation of this nature, a good SDP solution is possible also for a graphs
in which edges connect vertices that are at least as far as m(1−γ) (rather than exactly that
distance). The existence of solutions for such dense graphs seems intuitively questionable.
Last, boosting the typical inner product can be shown to considerably boost the Taylor
coefficients of a certain function which we need to show only has positive Taylor coefficients.
The later is a condition to which we reduce the positive-semidefiniteness of our LP solution.

Comparison to Previous Work: There are more than half a dozen different integrality
gap constructions for Vertex Cover in different Lift-and-Project systems known. Among
these the most relevant to our work is [9]. In [9], Charikar, et al. obtain a Sherali-Adams
solution that is based on embedding the vertices of the graph in the sphere. The similarity
with our work is that Charikar et al. take a special case of caps, i.e. half-spheres, in order to
determine probabilities. Consistency of these distribution is, just as in our case, guaranteed
by the fact that these probabilities are intrinsic to the local distances of the point-set in
question. However, the reason that these distributions behave differently than a global
distribution (which is essential for an integrality gap construction) is completely different
than ours. It is easy to see that when the caps in the construction are half spheres, the
dimension does not play a role at all. However, in [9] there is no global embedding of the
points in the sphere but rather only a local one. In contrast, our distributions can be defined
for all dimensions, however as we mentioned we must keep the dimension reasonably small
in order to guarantee small objective value. Another big difference pertains to the different
instances. While our construction may very well be the one (or close to the one) that will
give a Lasserre integrality-gap bound, the instances of [9] have no substantial integrality gap
even for the standard SDP. Thus their result cannot be extended to the stronger Lasserre or
Sherali-Adams SDP hierarchies.

It is also important to put our work in context with the sequence of results dealing with
SDP integrality gaps of Vertex-Cover [17, 8, 14, 15, 16]. In these works the solution can
be thought of as an approximation to a very simple set: a dimension cut, that is a face of
the cube. This set is not a vertex cover, but in some geometric sense is close to one. The
SDP solutions are essentially averaging of such dimension-cuts with some carefully crafted
perturbations. Using the same language, the solution we present is based on Hamming balls
of radius m/2 (i.e. translations of the majority function) rather than dimension-cuts (i.e.
dictatorship functions). The perturbation we apply to make such a solution valid is simply
the small increase in the radius of the Hamming balls. Another distinction is that while
all previous results use tensoring to construct their solutions we mainly use it to certify its
positive semidefiniteness. In other words, our solutions are defined geometrically and then
tensoring is used to give an alternative view which helps to show they have the required
positive semidefiniteness.
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4 Fooling LPs derived by the Sherali-Adams System

4.1 Local Distributions of Vertex Covers for Borsuk Graphs
In this section we study relaxation (2) for discrete subgraphs of Bmγ on n vertices. In
particular, for every set U ⊆ [n] we define a distribution of vertex covers that are locally
consistent.

The family of distributions we are looking for arises from the following experiments. Fix
a discrete subgraph G = (V,E) of Bmδ on n vertices for which we want to construct a level t
Sherali-Adams LP solution with small objective value. Given that G = (V,E) is a subgraph
of Bmδ we can think of its vertices as points on Sm−1 and in particular talk about their
Euclidean distances. The following experiment defines the local distributions.

Experiment Local-Global

The input is any I ⊆ V , of size at most t, and some
√
δ > 0.

The result of the experiment is a distribution D(I) of 0/1 assignments on I.
(a) Embed the I-induced subgraph of G into St−1 preserving all pairwise Euclidean

distances.
(b) In St−1 consider the complement C of a random spherical cap of height 1−

√
δ.

(c) Vertices of I are assigned 1 if they are in the cap C, otherwise they are assigned 0.

Notice that step (a) is possible because |I| ≤ t.

I Lemma 4.1. For every finite subgraph of Bmδ on n vertices, the family of distributions
D(I), I ∈ P [n]

t , is a valid solution of (2), i.e. a family of locally consistent distributions of
vertex covers.

Proof. The second constraint of (2), i.e. local consistency, follows from the following simple
geometric fact: the probability distribution D(I) only depends on the pairwise Euclidean
distances of vertices in I and the parameter t. Given this simple observation it is not hard
to see that D(U1) is just the marginal of D(U) when U1 ⊆ U .

It therefore remains to argue that D(I) is a distribution of vertex covers, i.e. the first
constraint of (2). To that end, we need to show that in the Experiment Local-Global, two
adjacent vertices cannot be at the same time outside the random cap C. This is true simply
because the cap is big enough. In particular, for any two vertices i, j outside the cap if zi, zj
are their vectors and w is the vector corresponding to the tip of the cap, w · zi,w · zj >

√
δ

which implies ‖zi+zj‖ = ‖w‖ ‖(zi+zj)‖ ≥ w · (zi+zj) > 2
√
δ, where the penult inequality

is Cauchy-Schwarz. Since G is a subgraph of Bmγ , we conclude that ij cannot be en edge. J

All that remains is to show that the objective value of (2) for our solution is indeed
small. In fact, we can show a stronger statement, not only is the objective value n/2 + o(n)
but each vertex roughly contributes 1/2 to the objective value. In particular we can show
the following lemma.

I Lemma 4.2. For any fixed z ∈ St−1, we have Pw∈St−1 [w · z ≤ η] ≤ 1
2 + η

√
π
8 (t+ 1),

when w is distributed uniformly on St−1. Consequently, for any vertex i ∈ I of the graph G
(subgraph of Bmδ ), we have PS∼D(I)[i ∈ S] ≤ 1

2 +
√
δπ(t+ 1)/8.

The following theorems follow from Lemma 4.2. The proofs can be found in the full
version.
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I Theorem 4.3. Let G be a finite subgraph of Bmδ on n vertices. Then the level-
(

2ε2

π
1
δ − 1

)
Sherali-Adams relaxation (2) for vertex cover has objective value at most (1/2 + ε)n for G.

I Theorem 4.4. For every ε, there are graphs on n vertices such that the level-Ω( logn
log logn )

LP derived by the Sherali-Adams system for Vertex Cover has integrality gap 2− ε.

5 Fooling SDPs derived by the Sherali-Adams System

5.1 Preliminary Observations for the Sherali-Adams SDP Solution
Let y be a Sherali-Adams solution of the LP (2), namely yI = PS∼D(I)[I ⊆ S]. Then y
uniquely determines the matrix M1 = M1(y) in (3). In order to establish a Sherali-Adams
SDP integrality gap, we need to show thatM1(y) is positive-semidefinite for an appropriately
chosen y.

It is convenient to denote byM ′1(y) the principal submatrixM1(y) indexed by nonempty
sets. Note that for the solution we introduced in the previous section, all y{i} attain the

same value, say yR. In other words, M1(y) =
(

1 1yR
1T yR M ′1(y)

)
, where 1 denotes the all

1 vector of appropriate size. We leave the proof of the following fact for the full version.

I Fact 5.1. Suppose that 1 is an eigenvector for M ′1(y). Then M1(y) � 0 iff M ′1(y) � 0 and
for some j ∈ V , avgi∈V y{i,j} ≥ y2

R.

The next Lemma establishes a sufficient condition for solutions fooling SDP relaxations
for Borsuk graphs. The proof uses the standard tool of tensoring introduced in Section 2.1.

I Lemma 5.2. Let y be a level-t Sherali-Adams solution for Vertex Cover for a Borsuk
graph with vector representation ui and suppose that the value y{i,j} can be expressed as
f(ui · uj). If the Taylor expansion of f(x) has no negative coefficients, then M ′1(y) � 0.

Proof. Consider the Taylor expansion of f(x) =
∑∞
i=0 aix

i, where ai ≥ 0. We map ui ∈
Sm−1 to an infinite dimensional space as follows ui 7→ Tf (ui). Then the vectors Tf (ui)
constitute the Cholesky decomposition of M ′1(y), and therefore M ′1(y) � 0. J

Now we examine the Sherali-Adams solution of some special case that will be instructive
for our general argument. Consider some n vertex subgraph G = (V,E) of Bmρ2 with vector
representation zi ∈ Sm−1. Suppose also that edges ij ∈ E appear exactly when zi · zj =
−1 + 2ρ2, and that for all other pairs i, j ∈ V we have zi · zj ≥ −1 + 2ρ2. Run Experiment
Local-Global with parameters t = 2 and δ = ρ2 to define the level-2 Sherali-Adams solution
y

yI = P
w∈S1

[w · zi ≤ ρ, ∀i ∈ I] (4)

for all I of size at most 2, where w is distributed uniformly on the circle.

I Claim 5.3. The values y{i,j} depend on the inner product x = zi · zj in the following way:
(a) if 2ρ2 ≥ x+ 1, y{i,j} = 1− 2θρ

π , (b) if 2ρ2 ≤ x+ 1, y{i,j} = 1− θρ
π ; where θx = arccos(x).

In particular, when zi · zj = 1, y{i,j} = 1− θρ
π .

The next fact is motivated by the condition of Lemma 5.2.

I Fact 5.4. If ρ ∈ [0, 1], the Taylor expansion of the function 1 − θρ
π −

θx
2π has no negative

coefficient.
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We leave the proofs of Claim 5.3 and Fact 5.4 for the full version.
Note that if we start with a configuration of vectors zi for which zi · zj ≥ −1 + 2ρ2

for all pairs i, j ∈ V , then the value y{i,j} will be described as a function on the inner
product zi · zj = x, and this function on x will have Taylor expansion with nonnegative
coefficients. Unfortunately, for our Sherali-Adams solution of the previous sections this is
not the case. We establish this extra condition in Section 5.2, making sure that M ′1(y) is
positive semidefinite. Proving that the matrix M1(y) is positive semidefinite will require
one extra simple argument, which is self evident from fact 5.1.

5.2 An Easy level-2 Sherali-Adams SDP Solution
In this section we apply the techniques developed in Section 5.1 to show a tight integrality gap
for Vertex Cover in the level-2 Sherali-Adams SDP system. This serves as an instructive
example for higher levels whose proof are a smooth generalization of the arguments below.
We will show,

I Theorem 5.5. For any ε > 0, there exist δ > 0 and sufficiently big m, such that the
level-2 Sherali-Adams SDP system for Vertex Cover on Gmδ has objective value at most
2m(1/2 + ε).

As the theorem states, we start with the Frankl-Rödl graph Gmδ = (V,E), which is a subset
of Bmδ , with vector representation ui. Our goal is to define y in the context of Theorem 4.3,
so as the matrixM1(y) to be positive semidefinite. Our Sherali-Adams solution as it appears
in Theorem 4.3 does not satisfy the constraint M1(y) � 0, for reasons that will be clear
shortly. For this, we need to apply the transformation ui 7→ zi := (

√
ζ,
√

1− ζ TP (ui)),
for some appropriate tensoring polynomial P (x), and some ζ > 0 (that is allowed to be a
function of (m, δ)). We will use the following fact, first proved by Charikar [8].
I Fact 5.6. There exist a polynomial P (x), with nonnegative coefficients and P (1) = 1,
such that for all x ∈ [−1, 1], we have P (x) ≥ P (−1 + 2δ) = −1 + 2δ0, for some δ0 = Θ(δ).
Moreover, for every constant c > 0 and for every x ∈ (−c/

√
m, c/

√
m), we have |P (x)| =

O(
√

1/m).
We use the polynomial P of Fact 5.6 to map the vectors ui to the new vectors zi. Note

that with this transformation, for an edge ij ∈ E we have zi · zj = ζ + (1− ζ)P (−1 + 2δ) =
ζ + (1 − ζ)(−1 + 2δ0) = −1 + 2 (ζ(1− δ0) + δ0) . If we denote

√
ζ(1− δ0) + δ0 by ρ, then

the above transformation maps Gmδ to Gm′ρ2 , where m′ is the degree of the polynomial P .
We are therefore eligible to run Experiment Local-Global with parameters t = 2 and ρ2 on
the vectors zi = (

√
ζ,
√

1− ζ TP (ui)). Then Lemma 4.1 implies that y as defined in (4) is
a level-2 Sherali-Adams solution (the parameters δ, ζ will be fixed later). Next we show that
for a slightly perturbed y we have that M1(y) is positive semidefinite.

First we observe that the context of Section 5.1 is relevant to the current configuration of
vectors zi and to our graph instances, since zi ·zj ≥ −1+2ρ2. If ui ·uj = x, then the value of
y{i,j} is exactly g(ζ+(1−ζ)P (x)), where g(x) = 1− θρ

π −
arccos(x)

2π . By Fact 5.4 we know that
the function g(x) has Taylor expansion with nonnegative coefficients. Since ζ + (1− ζ)P (x)
is a polynomial with nonnegative coefficients, it follows that g(ζ + (1− ζ)P (x)) has Taylor
Expansion with nonnegative coefficients. Hence, we can apply Lemma 5.2 to obtain that

I Lemma 5.7. The matrix M ′1(y) is positive semidefinite.

In what follows we describe a way to extend the positive semidefiniteness of M ′1(y) to
that of M1(y). In fact what we will show is general and holds for any level t (where t is the
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Sherali-Adams level which solution y was engineered for). Since the entries of M ′1(y) are a
function of the inner product of the corresponding vectors of the hypercube, it follows that
the all 1 vector is an eigenvector for M ′1(y). By Fact 5.1 it follows that we need to show
that avgi∈V y{i,j} − y2

{i} ≥ 0. It turns out that this is not the case, but we can establish a
weaker condition (described here in terms of a general sphere dimension D).

I Lemma 5.8. There exist c > 0 (not depending on m, ρ), such that avgi∈V y{i,j} − y2
{i} ≥

−cDρ.

We omit the proof of this lemma from this extended abstract. A rough estimate that suffices
is that whenever two points have positive inner product, the probability that both are in a
random cap is at least 1/4. It can be shown that due to the affine transformation, all but
exponentially small fraction of the pairs will have positive inner products, hence we get that
the average of y{i,j} is at least 1/4− o(1). On the other hand, from Section 4 we know that
y{i} ≤ 1/2 +O(Dρ).

Boosting: It remains to show how to "boost" the solution to move from the relaxed
condition to the exact, and necessary one. The idea is simple. Consider a ridiculously waste-
ful integral solution to Vertex Cover, namely the solution that takes all vertices. Clearly, if
we take a convex combination of this solution with the existing one we still get a Sherali-
Adams solution. If the weight of the integral solution is some small number ξ > 0 then
the objective value increases by no more than ξ/2 which can be absorbed for arguments
to go through as long as ξ ≤ ε. Owing to the strict convexity of the quadratic function,
however, this simple perturbation does allow to improve the bound on averages as required
by Fact 5.1. This observation is made precise in the following Lemma whose proof can be
found in the full version.

I Lemma 5.9. Let y′ be the matrix y′ = (1− ξ)y+ ξJ where J represents the all 1 solution.
Also let s = y{i} and s′ = y′{i}}. Then avgi,jy′{i,j} − s′2 = Ω(ξ).

We are now ready to formally prove Theorem 5.5.

Proof. (of Theorem 5.5) We start with the n-vertex Frankl-Rödl graph Gmδ , with δ =
Θ( logn

log logn ) so as to satisfy the conditions of Theorem 2.2. We use the polynomial of Fact 5.6
to obtain the vectors zi = (

√
ζ,
√

1− ζ TP (ui)), with ζ = δ0 (where δ0 = Θ(δ) by Fact 5.6).
We set ρ =

√
ζ(1− δ0) + δ0 =

√
Θ(ζ), and we run the Experiment Local-Global on the

vectors zi with parameters t = 2 and ρ2, to obtain the vector y. By Lemma 4.1, we have
that y as defined in (4) is a level-2 Sherali-Adams solution. Note that since δ = o(1) we
conclude from Lemma 4.2 that y{i} = 1/2 + Θ(δ).

Next we define y′ as (1−ξ)y+ξJ . We already argued thatM ′1(y′) is positive semidefinite.
By the above discussion (and Lemma 5.9) we conclude that avgi,jy′{i,j} − y′

2
{i} ≥ 0. We

can therefore use Fact 5.1 to conclude that M(y′) � 0. The last thing to note is that the
contribution of every vertex in the objective value is 1/2 +O(δ) J

5.3 The Level-(t + 2) Sherali-Adams SDP Tight Integrality Gap
For the level-(t+ 2) SDP, we start with the n-vertex Frankl-Rödl graphs Gmδ , n = 2m with
vector representation ui. The value of δ is chosen so as to satisfy Theorem 2.2, namely
δ = Θ(

√
logm/m). As in Section 5.2 we apply to ui two transformations; one using the

tensoring polynomial of Fact 5.6 and one affine transformation. Then we use the resulting
vectors zi = (

√
ζ,
√

1− ζ TP (ui)) to define a level-(t + 2) Sherali-Adams solution that we
denote by y. Our construction of y will have a parameter ρ to be set later.
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Our goal is to meet the conditions of Fact 5.1. Namely, the first thing to ensure is that
M ′1(y) is positive semidefinite. In this direction, from Lemma 5.2 it suffices to show that
the Taylor expansion of the function that describes the value of y{i,j}, when ui ·uj = u, has
Taylor expansion with nonnegative coefficients. Given that this function at 0 will always
represent some probability, the problem is equivalent to showing that the first derivative
of this function has such a good Taylor expansion. Our transformation on the vectors
ui can be thought as mapping their inner product u first to x = P (u), and second x to
κζ(x) = ζ + (1− ζ)x. Under this notation, we can show the following lemma that involves
a number of technical calculations. The proof can be found in the full version of the paper.

I Lemma 5.10. The derivative of the functional description of y{i,j} is

Dζ(x) := −(arccos(κζ(x)))′(1− 2ρ2

1 + κζ(x) )t/2.

Therefore, to conclude that M ′1(y) � 0 it suffices to show the next technical lemma. The
proof requires arguments along the lines of that of Claim 5.7 and will appear in the full
version.

I Lemma 5.11. Set t = 4 and ρ2 ∈ [ζ, ζ + ζ3]. Then for sufficiently small ζ, the function
Dζ(x) as it reads in Lemma 5.10 has Taylor expansion with nonnegative coefficients.

Now we are ready to prove Theorem 1.1. First we obtain a level-(t+2) Sherali-Adams so-
lution from the vectors zi = (

√
ζ,
√

1− ζ TP (ui)) (the reader may think of t = 4). We need
to set ζ = 3

√
δ0, where δ0 = (1 + min(P (x))/2. Since the rounding parameter we need is

ρ =
√
ζ(1− δ0) + δ0, it is easy to see that ρ2 = ζ + ζ3 − ζ4. It follows by Lemma 5.11 that

the matrix M ′1(y) is positive semidefinite.
Now call c the constant for which avgi∈V y{i,j} − y2

{i} ≥ −ctρ
2. We also know that

if tρ2 is no more than a small constant ε/10, then y{i} ≤ 1/2 + ε. Then define y′ =
(1 − 4cε)y + (4cε)1. As we did for the level-2 Sherali-Adams SDP solution, the vector y′ is
a level-(t+ 2) Sherali-Adams solution. Moreover, the matrix M ′1(y′) is positive semidefinite,
and avgi∈V y′{i,j}− y′

2
{i} ≥ 0. All conditions of Fact 5.1 are satisfied implying that M1(y′) is

positive semidefinite. Finally, note that the contribution of the singletons is no more than
1/2 + Θ(ctρ2). Hence, if we start with tρ2 = o(1), the contribution of the singletons remains
1/2 + o(1). On the other hand, choosing δ = Θ(

√
logm/m) results in graphs Gmδ with no

vertex cover smaller than n− o(n).
The maximum value of t in Lemma 5.11 dictates the limitation on the level of our

integrality gap. In particular we have the following conjecture and the proof of Theorem 1.2
is straightforward.
I Conjecture 5.12. Set t be any even integer and ρ2 ∈ [ζ, ζ + ζ3]. Then for sufficiently small
ζ, the function Dζ(x) as it reads in Lemma 5.10 has Taylor expansion with nonnegative
coefficients.

I Theorem 5.13. Assuming Conjecture 5.12, for every constants ε > 0 and t, the level-t
SDP derived by the Sherali-Adams SDP system for Vertex Cover has integrality gap 2− ε.

I Remark. [On the validity of Conjecture 5.12] Evidence for the validity of Conjec-
ture 5.12 is both experimental and theoretical. In particular, some relatively simple argu-
ments can show the following two statements: (a) For every N0 > 0 there exist small enough
ζ > 0, such that the first N0 Taylor coefficients of Dζ(x) are positive, (b) For every ζ > 0,
there exist N0 > 0 such that all but the first N0 Taylor coefficients of Dζ(x) are positive.
While these partial results are not enough to imply Sherali-Adams SDP lowerbounds, they
do seem to indicate that Conjecture 5.12 is true.
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Discussion

We presented tight integrality gaps for level-6 Sherali-Adams SDP for Vertex Cover and
how if a certain analytical conjecture is proved they can be extended to any constant number
of rounds. Along the way we also gave an intuitive and geometric proof of tight Sherali-
Adams LP integrality gaps for the same problem. While these LP integrality gaps apply to
less rounds than [9] they remain highly nontrivial, yet significantly simplified.

For large t, proving Conjecture 5.12 seems challenging. We leave it as an open problem.
Another open problem is to extend the ideas in this paper to construct tight Lasserre gaps
for Vertex Cover and Unique Games, thus giving the strongest evidence that Unique Games
cannot be solved with SDP hierarchies.

Acknowledgements: The authors wish to thank Toniann Pitassi for many helpful
discussions and comments on an earlier version of the paper. The authors are also grateful
to the anonymous reviewers for suggestions on how to improve the presentation.
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